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Abstract

In the face of Global Climate Change the scientific evaluation of possible impacts on the nat-
ural and social environment became more and more important in recent years. In this context
computer-based simulation has emerged as a means of choice in many scientific disciplines as
it facilitates predictions about future impacts of climate change based on well-known physical
and societal relations. While in the past simulation models were developed within single dis-
ciplines one is nowadays particularly interested in interdisciplinary modelling which can be
achieved by coupling of formerly independent simulation models from different disciplines.
Thus the complex, mutually dependent processes occurring in nature and in socio-economic
systems can be studied and analysed in the model. Coupling of simulation models from vari-
ous disciplines is a non-trivial task; the problems one has to cope with range from the usage of
different (physical) units, over diverse granularity of the models concerning space and time,
up to completely different modelling and simulation approaches. It emerged – even in the
context of this work – that methods of computer science render considerable support in this
context.

In this work the development of Generic Framework for Integrative Environmental Simu-
lations is presented, which enables the coupling of spatially distributed, time-discrete simu-
lation models exchanging data among each other via interfaces at run time. The framework
was developed by applying a particular software engineering methodology – which is also
presented within this thesis – based on modelling on different abstraction levels and several
system views. For each abstraction level (requirements, design, components) precise rules for
modelling as well as conditions for the consistency of structural and behavioural models are
given. Moreover, an intuitive refinement relation between the single levels is introduced.

For the Generic Simulation Framework under consideration the three system views “Data
Exchange between Simulation Models”, “Modelling of the Simulation Space”, and “Time
Coordination of Integrative Simulations” were identified and – emanating from a common
base architecture – independently elaborated in the course of this thesis. Finally, the archi-
tectures of the different views are integrated to obtain the complete framework architecture.
Furthermore, we provide guidelines for the application of the framework for creating an inte-
grative environmental simulation system and describe an implementation of the framework as
distributed system in Java. Finally we report on the successful application of the framework
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within the interdisciplinary research project GLOWA-Danube in the context of which the inte-
grative simulation and decision support system DANUBIA was developed as an instance of the
framework under consideration. With DANUBIA simulation runs are executed to investigate
strategies for a sustainable water management in the Upper Danube watershed.
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Zusammenfassung

Im Angesicht des globalen Klimawandels bekam die Erforschung von dessen Auswirkungen
auf die Umwelt im Laufe der Zeit immer größere Bedeutung. In diesem Zusammenhang hat
sich die rechnergestützte Simulation in vielen wissenschaftlichen Disziplinen als geeignetes
Mittel erwiesen, da mit ihrer Hilfe Vorhersagen über zukünftige Auswirkungen des Klima-
wandels auf der Basis bekannter physikalischer und soziologischer Zusammenhänge getätigt
werden können. Während in der Vergangenheit fachspezifische Modelle zur Simulation in den
einzelnen Wissenschaftsbereichen entwickelt und verwendet wurden, ist man heutzutage vor
allem an einer fächerübergreifenden Modellierung interessiert, die zum Beispiel durch Kopp-
lung vormals eigenständiger Modelle erfolgen kann. Dadurch lassen sich auch die gegensei-
tigen Abhängigkeiten, Wirkzusammenhänge und Rückkopplungen der in Natur und Gesell-
schaft ablaufenden Prozesse im Modell abbilden. Die Kopplung von Modellen aus verschie-
denen Fachbereichen ist jedoch keineswegs trivial; die hierbei auftretenden Probleme reichen
von der Verwendung unterschiedlicher (physikalischer) Einheiten, unterschiedlicher Granula-
rität in Raum und Zeit, bis hin zu vollständig verschiedenen Modellierungs- und Implemen-
tierungsansätzen. Es hat sich – auch im Rahmen dieser Arbeit – gezeigt, dass die Informatik
mit ihren Methoden hier wertvolle Hilfe leisten kann.

In der vorliegenden Arbeit wird die Entwicklung eines generischen Frameworks zur in-
tegrativen Umweltsimulation vorgestellt, mit dem räumlich aufgelöste, zeit-diskrete Simula-
tionsmodelle gekoppelt werden können und zur Laufzeit über Schnittstellen untereinander
Daten austauschen. Die Entwicklung und Modellierung des Frameworks erfolgte nach einer
ebenfalls in dieser Arbeit vorgestellten Methodik, die auf verschiedenen Abstraktionsebenen
und einer sichtweisen Entwicklung des Systems beruht. Für jede in der Methodik auftreten-
de Abstraktionsebene (Anforderungsanalyse, Entwurf und Komponentenarchitektur) werden
präzise Darstellungsregeln für die zu verwendenden Modellierungselemente sowie Bedingun-
gen für die Konsistenz der statischen und dynamischen Modelle angegeben. Des Weiteren
wird eine intuitive Verfeinerungsrelation zwischen den einzelnen Ebenen definiert.

Für das betrachtete generische Simulations-Framework wurden die Systemsichten „Daten-
austausch zwischen den Simulationsmodellen“, „Modellierung des Simulationsraums“ und
„Zeitliche Koordination unterschiedlicher Modellzeitschritte“ identifiziert. Diese Sichten wer-
den im Verlauf der Arbeit – aufbauend auf einer gemeinsamen Basisarchitektur – getrennt von-

v



einander entwickelt und schließlich zu einer Architektur des gesamten Frameworks integriert.
Weiterhin werden Richtlinien zur Verwendung des Frameworks zur Erstellung eines integra-
tiven Simulationssystems gegeben und eine Implementierung des Frameworks als verteiltes
System in Java vorgestellt. Schließlich wird über die erfolgreiche Anwendung des Frame-
works zur Entwicklung des integrativen Simulations- und Entscheidungsunterstützungssys-
tems DANUBIA berichtet, das im Rahmen des interdisziplinären Umweltforschungsprojekts
GLOWA-Danube entwickelt wurde. Mit DANUBIA werden Simulationsläufe zur Erforschung
von Strategien für ein nachhaltiges Wasser-Management im Einzugsgebiet der Oberen Donau
durchgeführt.
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1
Introduction

In the face of Global Climate Change the scientific evaluation of possible impacts on the
natural and social environment became more and more important in recent years. For this
purpose computer-based simulation emerged as an appropriate means for making predictions
about the future without changing the system under consideration.

While in the past simulation models often were developed as monolithic applications by
a particular discipline to provide answers for specific questions of the respective discipline,
in recent years the need of interdisciplinary research grew in order to better understand the
complex, mutually dependent processes occurring in nature and in socio-economic systems.
Of particular importance are water-related processes which have an eminent impact on the
global change of the hydrological cycle with various consequences concerning water avail-
ability, water quality and water risks like water pollution, water deficiency, and floods. In the
last decade several projects have been initiated dealing with methods, techniques and tools to
support a sustainable water resource management, in particular in the context of the European
Water Framework Directive [Eur00].

With the demand for interdisciplinary research new challenges came up to the scientists
dealing with environmental modelling and simulation. Although computer science typically
does not deal with climatic or environmental issues the methods of computer science – in
particular well-founded software engineering techniques – emerged as important means for
supporting the affected disciplines. In this context even separate branches of informatics arose,
like environmental informatics [PH94] or geographical informatics [Bar95].

1.1 Background and Motivation
The background of this thesis is the integrative environmental research project GLOWA-
Danube [LMN+03], which is part of the German initiative GLOWA [Rie04] funded by the
German Ministry of Education and Research (GLOWA is an abbreviation for “Globaler Wan-
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del des Wasserkreislaufs” which means “Global Change of the Hydrological Cycle” in En-
glish) and ran from 2001 to 2010.

It was the goal of GLOWA-Danube to develop and validate integration techniques, simula-
tion models and new monitoring methods to assess the impact of Global Change on the water
resources of the Upper Danube basin. For this purpose the integrative simulation and deci-
sion support system DANUBIA was developed to identify strategies for the management of
water by analysing different global change scenarios for the period 2011–2060. A prototype
of DANUBIA was developed in 2004 (cf. [BHKL04]). The final version of DANUBIA was
released in 2010.

It is not the goal of this thesis to describe DANUBIA, though the development of DANUBIA

generated the motivation for this work. For this purpose the DANUBIA system was conceived
as a framework-based system, consisting of a Generic Simulation Framework which is inde-
pendent of the specific simulation models on the one hand, and a set of simulation models
which are developed locally by several model developers on the other hand. The mentioned
Generic Simulation Framework is the subject of the thesis at hand. It provides not only a so-
lution for the particular problems of GLOWA-Danube, but rather a solution for a wide range
of similar problems – in this case the coupling of simulation models from various scientific
disciplines.

1.2 Modelling and Simulation
In this section we clarify some notions in the context of (environmental) modelling and simu-
lation used throughout the thesis and exhibit how the framework under consideration fits into
this context.

The following definitions are widely borrowed from [Gar01]. A (real) system is a part of the
real world under study which can be identified from the rest of its environment for a specific
purpose. A model is an abstract representation of a system. Usually a model is simpler than
the real system, but equivalent to it in all relevant aspects. Modelling means the process of
developing a model. Typically the first step of modelling results in an abstract conceptual
model, which is in the next step refined to an executable simulation model which imitates the
behaviour of the system under certain conditions. The execution of a simulation model is
called a simulation run or simulation for short.

There are several categories of simulation model, the most commonly used include the
following: Physical models like, e.g., physical devices to train pilots, or wind tunnels to study
the aerodynamic properties of an aircraft. Graphical models which display the behaviour
of the system using a graphical representation. Mathematical models which are represented
by a set of mathematical expressions and/or logical equations expressing the relationships
among the entities within the system. Mathematical models are the most flexible and most
powerful types of model. They are usually implemented on a computer using software tools
like MATLAB and Simulink (cf. [Beu02]) or a general purpose programming language like
C++ or Java.
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1.3 Problems of Integrative Modelling

We consider in the following as a simulation model a computer program that simulates an
environmental process over a certain time span, called the simulation time, with regard to a
certain geographical area of the environment, called the simulation space. In an integrative
simulation system several simulation models are coupled in order to analyse dependencies and
feedbacks of the simulated processes.

Following [LB06] in [GJKH06] computer-based environmental simulation models can be
classified with respect to their

• basic modelling approach (process-, data- or agent-based modelling)

• treatment of simulation space (spatially distributed or lumped)

• treatment of simulation time (discrete or continuous)

Moreover, an integrative environmental simulation system comprising a set of simulation
models can be typed with respect to the

• mode of execution (parallel or sequential)

• mode of coupling between the simulation models (loose or tighten)

• treatment of (a common) simulation space

• treatment of (a common) simulation time

In this work we focus – on demand of the underlying environmental research project – on
process-based simulation models which are spatially distributed and work on an arbitrary but
discrete time scale. Coupling is achieved by data exchange between the parallel executed
models at run time via interfaces.

1.3 Problems of Integrative Modelling
Coupling of simulation models from various disciplines is a non-trivial task. One has, among
others, to cope with the following problems.

• Different (physical) units.

• Different simulation approaches. While in natural sciences a process- or data-based
simulation approach is preferred, in social sciences an agent-based approach is most
likely the means of choice.

• Different spatial resolutions. While natural science models typically use grid-based
spatial resolutions ranging from a few metres to a few kilometres, social science models
often consider geographical units defined by political boundaries, like, e.g., administra-
tive districts or countries.
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• Different time scales. The time scale of a simulation model depends strongly on the
modelled processes and typically ranges from minutes or hours in natural sciences to
months or years in social sciences.

Each of the problems mentioned above is addressed in a way by the Generic Simulation
Framework under consideration.

1.4 Approach: a Generic Framework for Integrative
Environmental Simulations

In this section we briefly introduce our approach of a generic simulation framework for inte-
grative environmental simulations. A more comprehensive summary is provided in Chapter 2.

A framework is a set of cooperating classes that make up a reusable design for a specific
class of software [GHJV95]. During an in-depth analysis of the problem domain which ac-
commodated best practices of software engineering, like, e.g. abstraction, separation of con-
cerns, we have identified three major requirements for an integrative simulation framework.
The framework should support

1. data exchange between concurrently running simulation models,

2. consistent treatment of simulation space, and

3. coordination of simulation models according to simulation time.

These requirements are realised in a component-based simulation framework which sup-
ports independent implementability and substitutability of components by relying only on
interface specifications. The framework defines generic components that implement common
structure and behaviour, thus imposing general rules which must be respected by concrete
simulation models when it comes to framework instantiation.

Orthogonally to the modularisation by components (which we do not consider in this sec-
tion) the framework is split into two logical layers, the framework core and the developer
interface. To explain the principle ideas behind these layers we consider Figure 1.1.

The framework core (depicted in dark blue) comprises an implementation of all features that
can be handled by the framework itself like, e.g. the time coordination, the common properties
of a simulation model, and the management of the spatial distribution. In contrast, the devel-
oper interface (light blue) is intended to facilitate the implementation of a simulation model.
It provides a programming interface, where particular elements exhibit so-called plug-points
(denoted by triangular gaps in the figure, cf. [DW99]) which have to be filled with appropriate
plug-ins in order to obtain an executable system. In our context the plug-ins are provided
by the concrete simulation models which are represented by the polygons labelled M1, . . . ,
M4 in the figure. The simulation models complete (or instantiate) the generic framework to a
concrete simulation system.
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As the figure suggests, the developer interface lies between the simulation models and the
framework core, making the complex framework core transparent for the model developer.
The considerable advantage of this design is that the model developer can concentrate on the
scientific model code, without being concerned with administrative issues, like, e.g. model
linking or time coordination, which are tasks of the framework core.

Developer Interface

Framework Core

M1 M2 M3 M4

M1 M4M3M2

Developer Interface

Framework Core

Figure 1.1: Idea of the framework-based system development

For the development and modelling of the framework a methodology mainly using the Uni-
fied Modeling Language (UML, [JBR05]) as a graphical notation and the Object Constraint
Language (OCL, [WK03]) for specifying constraints has been developed. This methodology
takes into account different abstraction levels and several system views. The abstraction levels
considered by the methodology include requirements, design and components. For each level
rigorous rules for the depiction of the single model elements, as well as consistency condi-
tions between structural and behavioural models are provided. Moreover, intuitive refinement
relations between the single levels are given.

Concerning the Generic Simulation Framework the following views to be considered by the
methodology have been identified: Data Exchange between Simulation Models, Modelling of
the Simulation Space, and Time Coordination of Integrative Simulations. These views corre-
spond to the requirements stated above and are developed by extending a common base which
is given by the basic requirements and system use cases of the framework. The complete
framework architecture is obtained by the integration of the architecture of the single views
according to the methodology.

The diagram in Figure 1.2 depicts the application of the methodology on the development
of the Generic Simulation Framework (with abbreviated names of the views and of the ab-
straction levels). For reasons of clarity only one extension arrow (↪) is drawn from the base
to each view (there should be another two, namely one for each abstraction level). The figure
reflects the organisation of this thesis: the base, the views, and the integration are dealt with
in a separate chapter each, while within each chapter the abstraction levels and refinement
steps are discussed in subsequent sections (except for the integration chapter where only the
components level is considered). We will revisit this diagram at the beginning of each chapter
as a guidance for the reader through the development process.
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base
req ↝ des ↝ cmp

data
req ↝ des ↝ cmp

space
req ↝ des ↝ cmp

time
req ↝ des ↝ cmp

integration
cmp

Figure 1.2: Development of the Generic Simulation Framework by different views and ab-
straction levels

The framework has been implemented as a distributed system in Java and successfully ap-
plied within the interdisciplinary research project GLOWA-Danube to construct the integra-
tive simulation and decision support system DANUBIA. It is generic in that sense that it is,
in principle, applicable to any kind of model which simulates environmental processes on a
grid-based space with an arbitrary, but discrete time scale.

1.5 Related Approaches
When considering related approaches of our work, we have to take into account both: ap-
proaches which evolved in the field of integrative environmental simulation systems as well
as approaches in software engineering which are related to our development methodology for
complex systems.

Concerning the first part an overview of requirements and some examples of modelling sys-
tems is provided by [Arg04] and [RA06]. A more recent overview of environmental modelling
systems and frameworks (on the regional as well as on the global scale) is given in [Jag10].
A number of other frameworks supporting integrated environmental modelling emerged since
the GLOWA-Danube project started in 2001. In the field of integrated water resource man-
agement, in particular in the context of the European Water Framework Directive [Eur00],
there are, e.g., the Object Modelling System OMS (cf. [KKO05]), ModCom (cf. [HBvEL03]),
The Invisible Modelling Environment TIME (cf. [RSP+03]), and the Open Modelling Inter-
face OpenMI (cf. [GGW07]). While TIME is a platform for the development of stand-alone
modelling tools, OMS, ModCom, and OpenMI are frameworks which support the independent
development of models and allow for execution of coupled simulations. In particular, OpenMI
is designed to extend existing stand-alone models by standard interfaces for coupling.

6



1.6 Organisation of the Thesis

Concerning one of the main characteristics of our approach, namely the distributed and
parallel execution of coupled simulation models, we observe that none of the aforementioned
frameworks have all of these properties. While, for example, OpenMI allows only for se-
quential execution of coupled models, OMS in fact facilitates parallel execution, but only for
independent (uncoupled) models. ModCom and TIME are both not designed for distributed
execution.

We will reconsider the related approaches in the discussion section of each chapter con-
cerning a view of the simulation framework. In [Kou09] a comparative study of recent envi-
ronmental simulation systems and frameworks having regard to our views has been elaborated
under supervision of the author.

Related approaches concerning our software engineering methodology are mentioned di-
rectly in the respective chapter.

1.6 Organisation of the Thesis
This thesis consists of twelve chapters, including an introduction (Chapter 1) and some conclu-
sions (Chapter 12). In Chapter 2 we present an overview of the thesis in that the development
and application of the integrative environmental simulation framework under consideration is
exhibited in a compressed manner.

Chapter 3 describes the methodology of system development applied in the subsequent
chapters, which is based on the separate treatment of different system views on different levels
of abstraction. In Chapter 4 we describe the system use cases and develop a base architecture
for the framework. The following chapters elaborate on the fundamental views of the frame-
work: data exchange between simulation models (Chapter 5), modelling of simulation space
(Chapter 6) and time coordination of simulation models (Chapter 7).

In Chapter 8 the previously developed design models of the different views are integrated to
a design model of the framework considering all of the mentioned views. Chapter 9 describes
how the framework can be applied within an integrative simulation project, i.e. how it has to
be enhanced to build up a complete integrative environmental simulation system. Thereafter a
reference implementation of the framework in the object-oriented programming language Java
is presented in Chapter 10. Chapter 11 reports on the successful application of our framework
in the integrative environmental project GLOWA-Danube where the integrative environmental
simulation and decision support system DANUBIA has been developed as an instance of the
framework.
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2
The Generic Simulation Framework

in a Nutshell

In this thesis, we report on a generic framework for computer-based environmental modelling
which supports the run time coupling of various simulation models from natural science and
socio-economic disciplines. The framework is generic in the sense, that it is, in principle,
applicable to any kind of model which simulates spatially distributed environmental processes
on an arbitrary, but discrete time scale. During an integrative simulation for some simula-
tion period, the framework coordinates the coupled models which run in parallel exchanging
iteratively data via their interfaces. For the development of the modelling framework best
practices of software engineering have been applied like abstraction, separation of concerns
and formal methods based on precise mathematical notations. For instance, the framework
provides abstractions of simulation models and thus facilitates the development and integra-
tion of concrete simulation models of particular disciplines. Separation of concerns involves
the aspects of information exchange between simulation models, consistent modelling of sim-
ulation space, and coordination of concurrently running simulation models.

Technically, for the development of the simulation framework the Unified Modeling Lan-
guage UML (cf., e.g. [RJB05]) has been used in the requirements and in the design phase,
while a framework implementation is programmed in Java making use of Java’s Remote
Method Invocation interface (RMI) for communication between distributed components. For-
mal methods have been applied to specify the requirements for the general life cycle each sim-
ulation model must obey and for specifying and proving the correctness of the coordination of
distributed simulation models, for which the framework is responsible. For this purpose, the
process algebra Finite State Processes FSP (cf. [MK06]) has been used. For the specification
of requirements concerning correct simulation configurations, invariants have been stated and
formalised in terms of the Object Constraint Language OCL (cf. [WK03]). The framework
design follows a component-oriented approach which allows to plug in arbitrary simulation
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models as long as the common requirements concerning, e.g., the simulation space and the life
cycle of a model are satisfied. Thus the integration of different simulation models into a cou-
pled simulation is considerably facilitated and (most) errors occurring in simulation models
caused by not meeting common requirements can be detected already at compilation time.

The framework has been developed and successfully applied to construct the integrative
simulation system DANUBIA within the interdisciplinary research project GLOWA-Danube1

([LMN+03]), which is part of the German national initiative GLOWA(Global Change in the
Hydrological Cycle) funded by the German Federal Ministry of Education and Research be-
tween 2001 and 2010. Within GLOWA-Danube, a group of researchers from various natu-
ral science and socio-economic disciplines joined forces to investigate the impact of climate
change on the water cycle within the Upper Danube watershed and to support the develop-
ment and evaluation of regional adaptation strategies. Actually 15 simulation models have
been developed by the research groups of GLOWA-Danube, such that various simulation con-
figurations can be built and run by our modelling framework within the DANUBIA system.

The outline of this Chapter is as follows. In Section 2.1, we identify common requirements
for integrative environmental simulations. Then, in Section 2.2, we summarise the design
of our framework in accordance with the given requirements. Section 2.3 introduces briefly
the integrative simulation system DANUBIA obtained by framework instantiation within the
context of the GLOWA-Danube project.

2.1 Requirements for Integrative Environmental
Simulations

We consider in the following as a simulation model a computer program that simulates an
environmental process over a certain time span, called the simulation time, with regard to a
certain geographical area of the environment, called the simulation space. In an integrative
simulation system several simulation models are coupled in order to analyse dependencies and
feedbacks of the simulated processes. It is obvious that, besides the technique of coupling it-
self, the consistent treatment of simulation time and simulation space is crucial for the integra-
tion of different simulation models. Moreover, for a comprehensive environmental simulation
not only processes occurring in nature but also processes reflecting human behaviour must be
taken into account. Therefore we have identified three major requirements. The framework
should support

1. data exchange between simulation models at run time,

2. consistent treatment of simulation space, and

3. coordination of simulation models according to simulation time.

In the following we elaborate more on each of the three requirements.
1http://www.glowa-danube.de
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2.1 Requirements for Integrative Environmental Simulations

2.1.1 Data Exchange between Simulation Models
The coupling of simulation models is based on interfaces. Interfaces for data exchange specify
data queries. We distinguish between provided interfaces specifying queries for data that is
provided by a simulation model, and required interfaces specifying queries for data that is
needed by a simulation model for its own computation. The general requirements concerning
data exchange are modelled in the UML class diagram in Figure 2.1. It says that a simulation
may involve arbitrarily many models, which play the role of the participating models for the
simulation, and that a model may have arbitrarily many interfaces, playing the role of provided
or required interfaces.

Simulation 1 Model DataInterface* provided

required
*models

*

Figure 2.1: Requirements model for data exchange

A concrete example of a provided and required interface is given later on when we illustrate
the framework instantiation in Figure 2.7. The following invariant expresses a consistency
requirement for data exchange which must be satisfied for any integrative simulation.

Invariant for data exchange

• In an integrative simulation, for each required interface of each participating model there
exists exactly one participating model which provides that interface.

This invariant can be formalised in terms of the following OCL-expression:

context S imu l a t i o n inv :
s e l f . models . f o r A l l (m |
m. r e qu i r e d −>f o r A l l ( r |

s e l f . models−>one ( n |
n . p rov ided −>i n c l u d e s ( r ) ) ) )

2.1.2 Modelling of Simulation Space
In an integrative environmental simulation the consistent treatment of the underlying simu-
lation space is crucial. It is obvious that in spatially distributed simulations one needs geo-
graphical atoms, which in the following will be called proxels. The term proxel (cf. [TK99])
stems from process pixel and suggests that a proxel does not only model a structural element
of the simulation space, but it shows also dynamic behaviour by simulating the environmental
processes on this particular geographical unit. The entire simulation area is then modelled by
a set of (non-overlapping) proxels.
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SimulationArea

Simulation 1 Model*

proxels

*

*area1

1 1

Proxel

pid {key}
property1
property2
...

computeProxel()

proxels

1

models

Figure 2.2: Requirements model for simulation space

The spatial requirements of an integrative simulation are described by the UML class di-
agram in Figure 2.2. It says that a simulation concerns always exactly one simulation area
which, in turn, consists of a set of proxels. The class Proxel requires that each proxel has a
unique identifier pid and an operation computeProxel() to compute the next state of a proxel
in each time step. Moreover, each proxel can have a number of properties which must be
common to all simulation models (like, e.g., geographical coordinates, elevation, etc.). On the
other hand, each simulation model has a set of proxels, on which it operates. The following
invariant requires that the models participating in an integrative simulation agree on the set of
proxels determined by the area of the simulation.

Invariant for the simulation space
• In an integrative simulation, all participating models operate (only) on proxels which

belong to the simulation area of the simulation.

A formalisation of this invariant in terms of an OCL constraint is given in Section 6.1.
Besides the basic properties, a proxel may store domain-specific properties as illustrated for
groundwater proxels in Figure 2.7 later on.

2.1.3 Coordination of Simulation Time
An important characteristics of our problem domain is the concurrent execution of different
simulation models which iteratively exchange information at run time via their interfaces. In
order to guarantee the consistency of data exchange during a simulation run, the single sim-
ulation models must be appropriately coordinated with respect to the progressing simulation
time. The correct coordination is a non-trivial task since, in general, simulation models have
different, individual time steps determining the model time between two consecutive compu-
tations. Model time steps depend, of course, on the simulated processes which typically range
from minutes or hours, like in natural sciences, to months, like in social sciences. Hence a pre-
cise, unambiguous specification of the coordination problem is mandatory. We first describe
the general life cycle which a simulation model must follow:
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• provide initial data at the model’s provided interfaces

• while not at simulation end

– get data from the model’s required interfaces

– compute new data for the next time step

– provide newly computed data at the model’s provided interfaces

For the formalisation of a model’s life cycle we use the process algebra Finite State Processes
FSP; cf. [MK06]. The following FSP process MODEL specifies the general behaviour of a
simulation model. In order to be generally applicable the process is parameterised with respect
to the model’s time step. The sequence of actions in line 5, getData[t] -> compute[t+Step] ->
provide[t+Step], is iteratively performed with increasing time t and thus formalises the itera-
tion in the informal description of a model’s life cycle given above. Note that the computation
of new data for time t+Step relies on data obtained for time t. This time difference avoids
deadlocks of concurrently running models (in the case of feedback loops) but it may also lead
to imprecisions whose relevance must be analysed in concrete cases and, if necessary, can be
improved by using smaller time steps.

1 range SimTime = SimSta r t . . SimEnd
2 MODEL( Step ) = ( s t a r t −> pro v i d e [ S imSta r t ] −> M[ S imSta r t ] ) ,
3 M[ t : SimTime ] =
4 i f ( t+Step <= SimEnd )
5 then ( getData [ t ] −> compute [ t+Step ] −> pro v i d e [ t+Step ] −>
6 M[ t+Step ] )
7 e l s e ( f i n i s h −> STOP) .

When several simulation models are executed in parallel, it is essential that only valid data
is exchanged, i.e. data that fits to the local model time of the participating models. To specify
this requirement we consider only two simulation models at a time, one, say U , acting as a
user of data, and the other one, say P, acting as a data provider. From the user’s point of view
we obtain the coordination condition (U), from the provider’s point of view the coordination
condition (P).

(U) U gets data expected to be valid at time tU only if the following holds:
The next data that P provides is valid at time tP with tU < tP.

(P) P provides data valid at time tP only if the following holds:
The next data that U gets is expected to be valid at time tU with tU ≥ tP.

Condition (U) ensures that the user does not get obsolete data while condition (P) guarantees
that data, available at the provider’s interface, will not be overwritten if it is not yet considered
by the user model. If one can show that all (pairwise) combinations of all models participating
in an integrative simulation considered in both roles, as user and as provider of data, satisfy
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2 The Framework in a Nutshell

the two coordination requirements, then the whole integrative simulation is coordinated cor-
rectly. We have again used FSP to formalise the coordination conditions in terms of so-called
property processes. Then, in a next step, we have constructed an explicit coordination process
with FSP and we have verified by model checking techniques that the coordination process
provides a solution for the coordination problem of integrative simulations (which later on can
be implemented in Java).

2.2 Simulation Framework
The requirements and concepts described in the previous section are realised in a component-
based simulation framework (cf. [HBJL09], [HBJL10]) which supports independent imple-
mentability and substitutability of components by relying only on interface specifications.

The framework defines generic components that implement common structure and be-
haviour, thus imposing general rules which must be respected by concrete simulation models
when it comes to framework instantiation. [DW99] use the notion of plug-point, provided by
a generic component, and plug-in, provided by some extension which completes the generic
component to an executable implementation. In the following we focus on the framework
and plug-points while, in Section 2.3, we show how the framework can be instantiated by
simulation models with plug-ins.

ProxelTable

...

pid:Integer{key}
elevation:Real
area:Real
easting:Real
northing:Real

<<plug−points>>
computeProxel()

<<queries>>
getPid():Integer
getElevation():Real
...

<<base class>>
AbstractProxel

DataInterface
<<base interface>>

1

*1

tc

*

1

TimeController

1

...

AbstractProxel
...

<<base class>>
AbstractModel

<<plug−points>>

getData(t:Date)
compute(t:Date)
provide(t:Date)

<<queries>>
proxel(pid:Integer):

*

Developer Interface 1

1

Framework Core

start()

base

modelId:String{key}

timeStep:TimeStep

modelId:String{key}
timeStep:TimeStep

1

ModelCore

...

...simEnd:Date
simBegin:Date

enterProv(...)

enterGet(...)
exitProv(...)

exitGet(...)
incModelTime(...)

currentModelTime: Date

Figure 2.3: Two-layered framework architecture
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2.2 Simulation Framework

The framework itself is split into two logical layers, the framework core and the devel-
oper interface. To explain the principle ideas behind these layers we consider the framework
excerpt shown in Figure 2.3 (without taking into account components yet).

The framework core implements all features that can be handled by the framework itself
like, e.g., the time coordination, the common properties of a simulation model (ModelCore),
and the management of the spatial distribution (ProxelTable). Concerning time coordination,
there exists at run time exactly one instance of the class TimeController which is a monitor
object that is called by each model core instance before data is fetched from or provided
to a data exchange interface. Each model core instance itself will be linked at run time to
exactly one concrete simulation model which must implement the abstract operations, given
by the plug-points getData, compute and provide, of the class AbstractModel of the developer
interface. The UML sequence diagram in Figure 2.4 illustrates the sequence of interactions
implemented in the start method by taking into account the life cycle of simulation models as
described in Section 2.1.3.

loop

provide(cmt)

exitGet(modelId, cmt)

enterGet(modelId, cmt)

getData(cmt)

compute(cmt)

provide(cmt)

sd runModel

start()

enterProv(modelId, cmt)

exitProv(modelId, cmt)

enterProv(modelId, cmt)

exitProv(modelId, cmt)

[modelId]:ModelCore base:AbstractModeltc:TimeCoordination

cmt:=currentModelTime

incModelTime(timeStep)

{cmt=simBegin}

[cmt.before(simEnd)]

Figure 2.4: Interactions of the start method

15



2 The Framework in a Nutshell

The lower layer in Figure 2.3 constitutes the programming interface for model developers.
Here one can find, corresponding to the conceptual requirements of Section 2.1, abstract base
classes like AbstractModel or AbstractProxel which contain plug-points in terms of abstract
operations. For example, the base class AbstractModel defines the plug-points getData, com-
pute and provide corresponding to the actions of a simulation model within its life cycle, which
have to be implemented by plug-ins, i.e. by concrete operations in a simulation model. The
interface DataInterface is a marker interface for all provided and required interfaces used for
data exchange.

Let us now consider how the two layers explained above fit into the component architecture
of the simulation framework shown in Figure 2.5. The framework comprises several compo-
nents each of them encapsulating a certain functional aspect of an integrative simulation.

ProxelTableModelCore

<<component>>

<<component>> <<component>>

<<component>>

AbstractProxel

<<base class>>

AbstractModel

<<base class>>

<<component>>

Model

<<component>>

****

Simulation

UserInterfaceSimulationAccess

*

ModelLinking TimeCoordination BaseData

Proxel

Figure 2.5: Component-based design of the simulation framework

The component Simulation is the main component for managing integrative simulations and
hence provides an interface for a (graphical) user interface. This interface offers operations
for starting, observing and aborting a simulation. Before starting a simulation the component
Simulation checks the simulation configuration for consistency, i.e. if the invariant concerning
interfaces as stated in Section 2.1.1 is fulfilled. At the beginning of a simulation the compo-
nent ModelLinking establishes the links between simulation models over their interfaces for
data exchange, including distribution over a network. The component TimeCoordination is re-
sponsible for the correct time coordination of the single models during a simulation run. The
component BaseData reads and stores initialisation data for the basic properties of the simu-
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2.3 Application of the Framework: The DANUBIA System

lation area for all simulation models. The component Model and its subcomponent Proxel are
generic components which contains framework core classes as well as the classes constituting
the programming interface for model developers as discussed above. In order to distinguish
the elements belonging to the developer interface from those of the framework core, the former
are marked with a stereotype, like, e.g. «base class», «base interface», or «data type».

We have used UML 2.0 for the complete framework design, in particular for the detailed
documentation of the developer interfaces. The framework is implemented in Java SE 6 and
contains approximately 25.000 lines of code.

2.3 Application of the Framework: The Danubia System
Within the GLOWA-Danube project ([LMN+03]) our simulation framework has been applied
to construct the integrative simulation system DANUBIA which integrates up to 15 simulation
models for natural processes (like hydrology, plant physiology, groundwater, glaciology etc.)
as well as socio-economic models. The latter have been developed to model the behaviour of
the involved actors in the areas of agriculture, economy, water supply, private households, and
tourism based on the structure of societies and their interests.
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Generic Simulation Framework

Groundwater

Actor

Atmosphere

Landsurface

Rivernetwork

Figure 2.6: System architecture of DANUBIA

An overview of the system architecture of DANUBIA is given in Figure 2.6. The DEEP-
ACTOR framework is an extension of the Generic Simulation Framework to address the special
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2 The Framework in a Nutshell

needs of societal simulation models (cf. [HJL10]) which is not in the scope of this thesis.
The purpose of DANUBIA is to serve as a tool for decision makers from policy, economy,

and administration for the sustainable planning of water resources in the Upper Danube basin
under global change conditions. DANUBIA is a distributed simulation system – the simulation
models are executed in parallel on a computer cluster periodically exchanging data during a
simulation run. DANUBIA was validated with comprehensive data sets of the years 1970 to
2005. It is actually in use to run and evaluate coupled simulations which are driven by climatic
as well as societal scenarios for the next 50 years. DANUBIA can be flexibly configured
regarding to the problem under consideration. Concerning performance, integrative simulation
runs with DANUBIA over a 50 year period actually take between 36 hours and four weeks
computing time, depending on the used simulation configuration.

Figure 2.7 shows in more detail, how a concrete simulation model is integrated in the frame-
work. The upper layer of Figure 2.7 depicts (parts of) the developer interface, known from
Figure 2.3, and the lower layer shows parts of a sample Groundwater model. One can see that
all model classes (and interfaces) of the groundwater model extend the base classes (the base
interface DataInterface resp.) of the developer interface by certain domain-specific properties,
like the proxel attributes gwWithdrawal, riverLevel etc., and by providing implementations for
the plug-in operations like, e.g., compute and computeProxel. Thereby the framework’s core
functionality concerning run time coordination, management tasks and the like is completely
hidden for model developers.

Finally note that beside omitting components Figures 2.3 and 2.7 show significant simpli-
fications with respect to the complete design model developed in the following chapters; for
example, in the complete model we use extra meta data classes to describe properties like
simStart, simEnd, modelId, etc.
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...

pid:Integer{key}
elevation:Real
area:Real
easting:Real
northing:Real

<<plug−points>>
computeProxel()

<<queries>>
getPid():Integer
getElevation():Real
...

<<base class>>
AbstractProxel

DataInterface
<<base interface>>

1

...

AbstractProxel
...

<<base class>>
AbstractModel

<<plug−points>>

getData(t:Date)
compute(t:Date)
provide(t:Date)

<<queries>>
proxel(pid:Integer):

*Developer Interface

modelId:String{key}
timeStep:TimeStep

LengthTable

unit = "m"

WaterFluxTable

unit = "m^3/s"

1 gwLevelTable inExFiltrationTable1

<<interface>>
WatersupplyToGroundwater

...

GroundwaterProxelGroundwater

getGroundwaterWithdrawal():
WaterFluxTable

...
inExFiltration:Real

gwWithdrawal:Real
gwLevel:Real

<<interface>>
GroundwaterToWatersupply

getGroundwaterLevel():LengthTable
getInExFiltration():WaterFluxTable

Groundwater Model

getGroundwaterLevel()
<<plug−ins>>

getData(t:Date)
compute(t:Date)
provide(t:Date)
...

<<plug−ins>>
computeProxel()
...

timeStep = "1 day"
modelId = "groundwater"

Figure 2.7: Framework instantiation
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3
Methodology of System Development

and Modelling

In this chapter we describe our general methodology for the development and modelling of
complex software systems. Although the presented methodology emerged during the devel-
opment of the generic simulation framework described in this thesis (and has of course been
applied for its development), it can also be useful for the development of arbitrary systems
where a separation into different system views is possible. In this context, a view is supposed
to be a functional aspect of the system under consideration (not to be confused with the dif-
ference between structural and behavioural view, for instance). Examples for such views are
mentioned in Section 3.5, where we describe how the development method is applied to the
generic simulation framework under consideration in this thesis.1

The proposed methodology makes use of well known software engineering practices like
object orientation, abstraction, separation of concerns, modelling techniques – in particular of
the Unified Modelling Language (UML) [JBR05] and the Object Constraint Language (OCL)
[WK03] – and formal software engineering methods. Its main characteristics are

• modelling on different abstraction levels (requirements, design, components),

• separate development of several independent system views on each abstraction level,
and

• step-wise integration of the different views to obtain the whole system architecture.

An overview of the methodology involving two views V 1 and V 2 is sketched in Figure 3.1.
The methodology starts with a common base view, where the abstraction levels requirements,

1We use the term “view” instead of “aspect” as it is recommended by the IEEE standard 1471 [IEE00]; more-
over, we want to avoid confusion with the field of aspect oriented programming.
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3 Methodology of System Development and Modelling

design and components are elaborated (↝ denotes the refinement steps between these levels).
Then the different views V 1 and V 2 are developed in that way, that the view model of each
level extends the corresponding base model (denoted by ↪). Finally the system views are
integrated on the components level by embedding the models of the different views into an
integration model for the overall system design.

base

requirements
£

design
£

components

V1

requirements
£

design
£

components

V2

requirements
£

design
£

components

integration

components

Figure 3.1: View-based development and integration on different abstraction levels

Notice, that the refinement within the views must respect the refinement of the base, so that
the diagram commutes. This can be achieved in that each subdiagram of the form

A1 ↪2 B1

£1 £ 3

A2 ↪
4

B2

is constructed as follows. We start with A1 (e.g. base/requirements) and then build A2 (e.g.
base/design) as a refinement of A1 (cf. 1 ) and B1 (e.g. V1/requirements) as an extension of A1
(cf. 2 ), at which the order of steps 1 and 2 does not matter. Finally, we construct B2 (e.g.
V1/design) as a refinement of B1 (cf. 3 ), so that B2, is also an extension of A2 (cf. 4 ). Note
that B2 in general does not follow automatically from A2 and B1, as a refinement step usually
requires additional design decisions.

The goal of the methodology is to develop a complete object-oriented system model in terms
of (enhanced) UML diagrams (including components) independent from a concrete program-
ming language. The syntax of the UML diagrams is enhanced in that way that an almost
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unambiguous implementation of the design model can be derived in usual object-oriented
programming languages like Java, C++, etc.

The remainder of this chapter is organised as follows. First, in Section 3.1 the diagram types
and modelling elements used within our methodology are provided, before in Section 3.2
the different abstraction levels used in each view are explained. Then, Section 3.3 details
on view-based development and Section 3.4 on the integration of the views, and finally, in
Section 3.5 we sketch how the methodology has been applied for the development of the
generic simulation framework under consideration in this thesis.

3.1 Diagrams and Modelling Elements

Before we start to explain our methodology we define which UML modelling elements will
be used. We do this by considering the respective excerpts of the UML superstructure speci-
fication [Obj09] (also called the UML meta model) and introduce – based on the UML meta
model – a mathematical description for our models which is useful for defining refinement and
extension relations as well as modelling constraints and consistency requirements later on.

The UML meta model makes strong use of class hierarchies to specify the properties of its
elements which, in fact, leads to quite elegant definitions of the meta model elements, but on
the other hand, it makes the meta model quite difficult to understand, because the properties of
elements are often spread over a set of superclasses which in addition are most likely depicted
in separate diagrams. In order to facilitate the understanding of the part of the meta model
used in our methodology we show all relevant properties of a meta model element directly
within or associated to this element. For example, the name of a class is represented by the
attribute name of the meta class Class (cf. Figure 3.3); in the original meta model the property
name is already defined within the meta class NamedElement which is the third superclass of
Class.

In our methodology we use class diagrams and component diagrams for modelling struc-
tural properties, and sequence diagrams for behavioural ones. Moreover, we use the Object
Constraint Language (OCL) to specify invariants and conditions. However, on the one hand
we insignificantly confine the UML superstructure specification by omitting some seldom used
modelling features (which will be mentioned at the respective place) in order to facilitate the
definition of refinement and extension as well as the transition to an implementation in a com-
mon object-oriented programming language. On the other hand we slightly enhance the UML
and OCL syntax in order to be able to better express some common programming language
constructs. The extensions are explained in the following sections, too.

Notice that in our methodology every UML diagram is shown in a rectangular box which
is labelled in a pentagonal box in the upper left corner of the rectangle with a stereotype
indicating the respective abstraction level, the respective diagram type and the diagram name.
In the remainder of this section we describe the utilised diagram types and our enhancements
of the OCL.
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3.1.1 Class Diagrams
On the requirements and the design level the main diagram type for structural modelling is a
class diagram. A class diagram shows (a part of) the structural model on a particular detailing
level (i.e. the details of some classes might be omitted or shown in a separate class diagram).
Roughly speaking, a structural model consists of classes and their relationships enriched with
invariants expressing constraints over the involved classes. A sample class diagram which
shows the most important features is depicted in Figure 3.2. The circled numbers in the fol-
lowing text refer to the numbers in this diagram.

literal1

literal2

literal3

<<enumeration>>

E
1

2

3

4

5

6

7

8

inv: Inv

id:String
b1

0..1
A

1

cd sample1

<<design>>

−id:String{key}

B1

−e:E

+opB()

−x:Integer

+getX():Integer{query}

−z:Real

B2

b21

+opA():Integer

+opB1(i:Integer)

Figure 3.2: Sample class diagram showing the most important modelling features (circled
numbers refer to explanations in the text)

Figure 3.3 shows the excerpt of the (adapted) UML meta model concerning classes and as-
sociations. A Class which is derived from Type always has a name and two Boolean properties
which define whether the class isAbstract or isActive respectively. An abstract class ( 1 ) is de-
picted with an italicised name, an active class ( 2 ) with an additional vertical bar on either side
of the class symbol. In our methodology, a class may have at least one superclass, i.e. we do
not permit multiple inheritance for classes as this is the case in the original UML meta model.
Furthermore, we require that the generalisation relation is acyclic. Then, a class possesses a
set of attributes and operations. Let us first consider the attributes.

An attribute is modelled by the meta class Property which provides a name, a type as well
as a multiplicity which is expressed by the attributes lower and upper, and a visibility. The
single VisibilityKinds are denoted as usual with the symbols ‘+’, ‘-’, ‘#’ and ‘∼’ respectively.
A property may belong to an association and may have a set of qualifiers ( 3 ). Keep in mind
that a qualified association end (i.e. the opposite end of the qualifier) is always multi-valued
although the multiplicity is mostly 0..1. Notice that each of the aforementioned properties is
optional (denoted by multiplicity 0..1 or * respectively); it depends on the actual abstraction
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Figure 3.3: Meta model for classes and associations

level which properties must be specified. However, the following rules must be adhered to on
any level:

• if the property does not belong to an association, it must have a name;

• if the lower bound is specified, then the upper bound must be greater than the lower
bound or *;2

• if the type is a class (i.e. no data type and not unspecified) then the property belongs to
an association;

• if the property belongs to an association, then it also belongs to the set of navigable ends
of this association.

The attribute isKey is an extension of the original UML meta model. It denotes that the
containing property is a unique (or identifying) attribute of its owning class. It is displayed as
property {key} behind the attribute ( 4 ). More formally, if a class C possesses an attribute a
with the property {key}, then the following invariant must be fulfilled:

context C
inv : C . a l l I n s t a n c e s ()−> f o r A l l ( c1 , c2 | c1 . a=c2 . a imp l i e s c1=c2 )

Concerning associations we do not support the following features: n-ary associations (for
n ≥ 3), association classes, aggregation and composition. Therefore an Association has always

2The type UnlimitedNatural provides the natural numbers and * for indefinite
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exactly two ends, and at least one of these ends is a navigableEnd (we do not model associa-
tions which are not navigable at all). The set of types defined by endType must correspond to
the types of the association ends. Moreover, we model two kinds of DataTypes: user defined
Enumerations ( 5 ) and predefined PrimitiveTypes (Integer, Real, String, Boolean).

Figure 3.4: Meta model for operations

The details of the meta class Operation are depicted in Figure 3.4. An operation must always
have a name, it may have a return type (if so, its multiplicity is specified by the attributes lower
and upper analogously to attributes) and an (ordered) set of parameters. A parameter also
must have a name and may have a type and a multiplicity. The flags isQuery and isAbstract
denote whether the operation is a query operation (depicted by the property {query}, 6 ) or an
abstract operation (depicted by an italicised name, 7 ) respectively. Moreover, an operation
may have three kinds of conditions: a preCondition, a postCondition and an enableCondition.
The enable condition is introduced in our methodology in order to express deferred behaviour.
An enable condition is stated in the form enable: Q which means that the execution of the
respective operation is blocked until the condition Q becomes true.

The type Constraint is supposed to be an (extended) OCL expression. Conditions of oper-
ations may be specified in the usual way in terms of OCL expressions or within a sequence
diagram in the context of the respective operation. An example for the different kinds of
conditions and their interpretation is provided in the following section.

Invariants concerning the classes of a class diagram are attached to the diagram within
a note ( 8 ). For getters and setters of attributes we always assume the following implicit
postconditions which ensure that these operations behave as expected. Consider a class C
with an attribute a of type T. Then for the operations getA and setA the following holds.

context C : : getA ( )
post : r e s u l t = s e l f . a
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context C : : setA (myA:T)
post : s e l f . a = myA

Figure 3.5: Meta model for data types

Figure 3.5 shows the meta classes concerning data types. We distinguish three kinds of data
types:

• ordinary data types (represented by the class DataType) which may have attributes and
operations;

• enumeration types (Enumeration) representing a user-defined enumeration consisting of
a set of EnumerationLiterals;

• primitive types (PrimitiveType) representing primitive values like, e.g. boolean values,
integers or decimals.

3.1.2 Sequence Diagrams
The behavioural model in our methodology is given by a set of sequence diagrams. A be-
havioural model always corresponds to a structural model which defines types and associ-
ations. As “a sequence diagram describes an Interaction by focusing on the sequence of
Messages that are exchanged” ([Obj09, p. 506]), we identify a sequence diagram with the
interaction it describes. In Figure 3.6 a sequence diagram is shown which exemplifies the
features described in the following. Again the circled numbers in the text refer to those in the
diagram.
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sample3

[forAll b in b1]

opC()

Figure 3.6: Sample sequence diagram showing the most important modelling features (circled
numbers refer to explanations in the text)

The excerpt of the (adapted) UML meta model concerning interactions is depicted in Fig-
ure 3.7. Thus an Interaction possesses a name and a set of parameters and consists of a set
of Lifelines, a set of Messages and a (partially) ordered set of InteractionFragments. A lifeline
represents a ConnectableElement, i.e. an instance of a property of the containing classifier of
the interaction. The name of the lifeline is of the form

[<element-name>[‘[’<selector>‘]’]] : <class-name>,

where <element-name> is the name of the represented ConnectableElement , e.g. a role name
occurring in a class diagram, <selector> is the expression representing the selector ( 1 ), and
<class-name> is the name of the type referenced by the ConnectableElement. The selector
determines a particular instance in the case that there exist multiple instances of the corre-
sponding connectable element. If the selector is omitted an arbitrary instance is chosen. If
a lifeline represents an abstract class then its name is italicised. In this case for execution a
concrete subtype of the abstract class has to be substituted. A lifeline head of an active class
possesses two additional side-bars (analogous to the class symbol).

A Message is of a certain sort which is given by the enumeration MessageSort3. The dif-
ferent message sorts are depicted in the usual notation. A message of sort synchCall ( 2 ),

3Note that we omit the message sort asynchSignal as it is not necessary for our modelling purposes
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Figure 3.7: Meta model for interactions

asynchCall ( 3 ) and createMessage ( 4 ) is associated with an Operation expressed by the prop-
erty signature. In the case of a createMessage which is accompanied by the keyword new we
consider the constructor of the corresponding class as the associated operation. Moreover, a
message may carry a set of arguments which must correspond to the parameters of the oper-
ation (or the constructor respectively). A reply message which corresponds to an operation
with return type different from void is equipped with a variable containing the return value of
the operation; for convenience reasons often the type of the return value is displayed, too ( 5 ).

“An InteractionFragment is an abstract notion of the most general interaction unit. An
interaction fragment is a piece of an interaction. Each interaction fragment is conceptually
like an interaction by itself.” ([Obj09, p. 487]). Furthermore, an interaction fragment covers a
set of lifelines. As InteractionFragment is an abstract class (cf. Figure 3.8) we have to consider
its concrete subtypes for modelling: MessageEnd4, StateInvariant, CombinedFragment, and
InteractionUse. In the following we discuss those subtypes.
MessageEnd and StateInvariant are subsumed as basic interaction fragments as they cover

exactly one lifeline. A MessageEnd is associated to its corresponding message which in turn
defines the message ends as sendEvent and receiveEvent respectively. A message with a miss-
ing sendEvent is called found message and a message with a missing receive event is called lost
message. A special kind of a MessageEnd is a Gate which “is a connection point for relating a

4In the UML specification the class MessageEnd is abstract, but we prefer to use this class instead of its subclass
MessageOccurrenceSpecification
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Figure 3.8: Meta model for interaction fragments

Message outside an InteractionFragment with a Message inside the InteractionFragment“ ( 6 )
[Obj09, p. 482]. A StateInvariant defines a Constraint in terms of an OCL specification. In
our models a state invariant is depicted in curly braces on a lifeline.

Now let us consider the further kinds of interaction fragments which we call advanced
fragments, as they may cover more than one lifeline of an interaction and comprise a number of
basic interaction fragments. Advanced fragments are InteractionUse and CombinedFragment.

An InteractionUse ( 7 ) is nothing else than a (syntactic) placeholder for the interaction
it refers to. Hence an interaction containing one ore more interaction uses is also called a
hierarchical interaction. It is equivalent to the interaction which is gained by flattening, i.e.
by expanding the respective referred interaction at the place an interaction use. Hence with
an InteractionUse it is possible to decompose an interaction (cf.,e.g., [Bow06]), or, the other
way round, define hierarchical interactions by referencing a previously defined interaction. An
interaction use is displayed by a fragment (i.e. a rectangular box within the sequence diagram)
with the operator ref in the upper left corner, and the name of the referred interaction in the
middle of the box. The name is followed by a list of arguments which must correspond to the
parameters of the referred interaction. An interaction use covers all lifelines of the enclosing
interaction which appear within the referred interaction. If the interaction use has a set of
actualGates ( 6 ) then these gates must match the formalGates of the referred interaction.
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Figure 3.9: Meta model for combined fragments

The meta model excerpt concerning combined fragments is shown in Figure 3.9. A Com-
binedFragment has an interactionOperator which is one of the enumeration literals defined in
InteractionOperatorKind5. A combined fragment comprises one or more InteractionOperands,
each of which contains a (partially) ordered set of InteractionFragments and may be guarded
by an InteractionConstraint. The kind of operator defines the semantics of the fragment; for a
semantics definition we refer to the UML superstructure specification for an informal defini-
tion [Obj09, p. 470], and to Cengarle and Knapp [CKM09] for a formal definition.

The interaction operator also determines the number of interaction operands as well as the
kind of guards for the single operands. A par fragment does not allow for a guard at all;
an opt and a break fragment has exactly one operand with one guard in form of a Boolean
OCL expression. While an opt fragment represents an optional behaviour, a break fragment
is intended to capture an exceptional situation (like, e.g., a missing file). If the condition of
the break fragment results to true, the execution continues with the interaction within this
fragment, whereas the interactions after the fragment are ignored. Unlike the UML standard
we assume that the remainder of the whole interaction is ignored and not only the remainder
of the embedding interaction fragment. This approach of exception handling has been proven
to be sufficient for our purposes, because the execution of a simulation always terminates after

5In contrast to the UML specification we omit the operator kinds critical, neg, assert, strict, seq, ignore, and
consider which are not relevant for our modelling purposes.
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an exception is raised. A more sophisticated treatment of exceptions is, for example, proposed
in [HH06].

An alt fragment may have two or more operands each of them having a guard in form of a
Boolean OCL expression. The last operand may have the guard else which denotes the nega-
tion of the conjunction of all other guards of the fragment. We require that in each alt fragment
exactly one guard results to true; thus we avoid indeterminism. Finally we have to consider
the loop fragment which models sequential iteration of the contained interaction fragments. A
loop fragment comprises exactly one interaction operand. While the UML specification allows
only for specifying a lower and an upper bound for the number of iterations, we extend this by
allowing also OCL expressions as guards which iterate over a set or sequence of objects ( 8 ).
The number of iterations is then given by the size of the set or sequence respectively.

Combined fragments are presented in a sequence diagram by a rectangular box which
stretches across the lifelines covered by the fragment. The interaction operator is contained in
a pentagonal box in the upper left corner, a guard is presented within square brackets. Interac-
tion operands are separated by a dashed horizontal line.

Similar to other software development methodologies (like, e.g. there is one presented in
[Rum04]) we use OCL constraints within sequence diagrams in different situations. The con-
straints aim to enforce an unambiguous implementation of the operations from the model. In
our methodology OCL expressions may occur in the following situations.

• A state invariant ( 9 ) is typed in curly braces on a lifeline. An invariant concerning a
particular attribute or variable must hold for the remainder of the interaction or until a
new state invariant concerning the respective attribute or variable appears. A state in-
variant is seen as an instruction for the implementor of the corresponding operation; the
implementor is responsible to fulfil the state invariant (this should always be possible).

• A precondition (10) of an operation is written in curly braces above a call message with
the keyword pre. The caller of the message is responsible to fulfil the precondition. If the
precondition is not true, the operation is not blocked, but its behaviour is undefined and
may lead to divergence. This conforms to the classical interpretation of preconditions,
like, e.g. in Z (cf. [MBD00]).

• A postcondition (11) is placed on a lifeline typically before the respective operation call
returns. To distinguish a postcondition from a state invariant it carries the keyword post.
The usage of extended OCL expressions (including @pre) is allowed in postconditions.
A postcondition directly below the head of a lifeline is supposed to be the postcondition
of the constructor of the object (12).

• An enable condition (13 , for a definition see above) is also placed on the lifeline, typi-
cally at the beginning of an operation call; it is marked with the keyword enable. The
implementor of the operation is responsible to block the execution of the operation until
the enable condition becomes true.
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In general there exists no dependency between the precondition and the enable condition of
an operation. The keyword enable is borrowed from CSP-OZ [Fis97], where an operation may
comprise an enable schema which defines the guard of the operation; i.e. the operation call is
blocked if the enable condition is false. This conforms to our interpretation of the enable con-
dition. However, as the sequence diagrams in our approach are more implementation-oriented
(rather than specification-oriented) the enable condition is positioned after the message call
on the lifeline where the operation is executed. That means, the operation may be called, but
is immediately blocked if the enable condition is false. In contrast, in a process-algebraic
specification the transition corresponding to the message call is blocked.

op():Tm()

BA
ba

cd ex1
b:Ba:A

m() op()

t:T

ex2sd

Figure 3.10: Example for specifying a synchronous message call by means of a sequence
diagram

In the end let us say some words about specification of behaviour with OCL. Although it is
possible to express calling (and returning) of a (synchronous) message in a postcondition this
is quite involved as the following example shows. Consider the situation in the class diagram
on the left hand side of Figure 3.10. If we want to specify that the operation op of class B
is called within the operation m, and op returns a value t of type T, we do this by means of
the sequence diagram on the right hand side of the figure. While an asynchronous message
call can be specified by means of the OCL isSent operator (denoted as ˆ), for a synchronous
message call the OCL message operator (ˆˆ) is necessary (cf. [FM04]). An OCL specification
utilising this operator and expressing the situation of Figure 3.10 then could read as follows:

context A : :m( )
post : l e t messages : Sequence ( OclMessage ) = b^^op ( ) i n

messages−>s i z e ( ) = 1 −− op was s en t once
and

messages−> f i r s t ( ) . hasReturned ( ) −− op r e t u r n e d
and

messages−> f i r s t ( ) . r e s u l t ( ) = t −− t i s the r e t u r n v a l u e

3.1.3 Component and Package Diagrams
On the components level we introduce components and packages for structuring the classes
of the design model in order to obtain a component-based system architecture. A component
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is depicted in a component diagram by a rectangular box with the stereotype «component»
and the UML component symbol; a package is notated in the usual UML notation within a
package diagram. Figure 3.11 shows an example of a component and a package diagram.
The features denoted by circled numbers will be explained in the following by means of the
UML meta model. Rules for the creation of component diagrams within our methodology are
provided in Section 3.2.3.

D

{from p}

<<component>>

cmp K

<<components>>

1

2 3

4

5

6 6

7

8

8

<<component>>

<<component>>

...

* *

K1

IA1

opA()

IB

opB1()

K

IC2

IA2 IC1

c1

L

IA1

b1

IB

A

p

D

...

...
...

<<components>>

ppkg

Figure 3.11: Sample component (left) and package (right) diagram

The UML specification distinguishes between two kinds of components, basic components
and packaging components. While the first one is intended to model executable elements of
a system, the latter one focuses on defining a component as a coherent group of elements and
is therefore our means of choice. The excerpt of the UML meta model defining packaging
components is depicted in Figure 3.12. A Component has a name and consists of a set of
PackageableElements. See Figure 3.13 for some concrete subtypes of this abstract class; no-
tice that Component is a subtype of Class and hence a subtype of PackageableElement which
permits the definition of hierarchical (or nested) components. Moreover, a component may
import elements – modelled by the set of ElementImports, each of which referencing again
a packageable element. That means, that each element referenced by a component is either
owned by this component or imported. However, we permit only importing from packages
that are defined outside of a component. An element which is imported from a package p is
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Figure 3.12: Meta model for components

denoted by the property {from p} ( 1 ). Elements of other components may only be accessed
via the interfaces of the component.

A component possesses a set of provided ( 2 ) and required ( 3 ) Interfaces, each interface
defining a set of Operations. Furthermore, a component comprises a set of Connectors; there
are two kinds of connectors, assembly connectors and delegation connectors. While an assem-
bly connector associates the provided or required interfaces of a component with a required or
provided interfaces of another component on the same hierarchy level ( 4 ), or with elements
of the enclosing component ( 5 ), a delegation connector connects the provided or required
interfaces of a component to the elements of this component that realize or require them re-
spectively ( 6 ).6

In our setting a connector has always two ConnectorEnds (the UML standard permits two
or more). A connector end may be equipped with a multiplicity ( 7 ) like an association end
(default value is 1); we require that the multiplicity is equal for each connector end which is
attached to the same connectable element. As an extension to the UML standard we permit to
attach a role name to a connector end ( 8 ). Within our methodology this is for example useful
for tracing back a connector to the association it originates from.

Of course there is a relationship between the connectors and the provided and required inter-
faces of a component. To achieve consistency of a component model, the following conditions
must hold (the diagrams illustrate the preceding condition):

• for each provided (required) interface of a component C there is a delegating connector
from (to) an element of the component which realises (uses) the interfaces;

6Unfortunately the modelling tool MAGICDRAW which is used for creating most of the UML diagrams in the
thesis does not allow for drawing delegating connectors like in Figure 3.11 – except for ports which we do not
use. In this case we help ourselves by connecting a provided or required interface of the component directly
with the internal element which realises or uses the interface.
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A B

C

I1 I2

I1 I2

C

⇒

• if an interface I is a provided interface of a component C and also a required interface
of a component D then there is an assembly connector between the components C and
D defined by the interface I;

C I

D I

C D

I
⇒

• if I is a provided (required) interface of a component C1 which is a subcomponent of a
component C then there is

– either an assembly connector between C1 and an element of the containing com-
ponent C,

– or I is also a provided (required) interface of C and there is a delegating connector
to (from) C1 from (to) I.

A

I

C1

C

C1

I

C

C1 I⇙ ⇘

Packages (cf. Figure 3.13) are – similarly to packaging components – intended to group
coherent model elements, but – in contrast to components – do not possess interfaces and
connectors.

3.1.4 OCL Enhancements
In this section we define some OCL operations which we will use later in order to express
a kind of reflection within OCL. The operation getType on the type OclAny shall return the
concrete type of an instance of OclAny and is defined as follows.

context OclAny
de f : getType ( ) : OclType

= OclType . a l l I n s t a n c e s ()−>any ( t :OclType | s e l f . o c l I sTypeOf ( t ) )
Moreover, we introduce the operation getName():String on the type OclType which shall pro-
vide the name of the given type.
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Figure 3.13: Meta model for packages and packageable elements

3.2 Abstraction Levels and Refinement
In this section we describe the abstraction levels used by the methodology which involve the
following refinement steps (denoted by ↝):

requirements↝ design↝ components

It is out of the scope of this thesis to provide a formal refinement relation between the different
levels; instead we use an intuitive notion of refinement.

The following sections are separated into several parts: first, we describe the modelling
constraints of the respective level, then the consistency conditions between structural and be-
havioural models and, finally (except for the requirements level) the refinement relation from
the previous level to the actual one.

3.2.1 Requirements
On the requirements level the concepts and requirements of the respective view are stated in
terms of class diagrams and sequence diagrams.

Modelling Constraints

Structural Model. The structural model consists of a set of classes and associations. As
the requirements level is the most abstract level in our methodology we do not have to specify
many details. Usually we do not model attribute types and visibility, navigability of associa-
tions (all association ends are considered navigable), inheritance, operations, abstract or active
classes, but we may specify invariants which the requirements classes must adhere to. As an
example for a class diagram on the requirements level consider the class diagram on the top
of Figure 3.14.
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Behavioural Model. The requirements for the behaviour of the classes are given by inter-
actions in terms of sequence diagrams. On the requirements level we usually do not specify
OCL constraints; the names of lifelines consist only of the type of the represented class. Ac-
tivation bars are not shown to simplify matters. For an example of a sequence diagram on the
requirements level consider the upper diagram in Figure 3.15.

Consistency between Structural and Behavioural View

The problem of consistency between structural and behavioural view is treated only informal
here: we say that a behavioural model is consistent with its corresponding structural model
(on the requirements level) if

• the type of each lifelines in a sequence diagrams corresponds to a class of the structural
model, and

• messages are exchanged only between lifelines the corresponding classes of which have
an association in between.

A formal approach dealing with the consistency between class and sequence diagrams can be
found in [BB07] or in [EEEP08].

3.2.2 Design
On the design level the models from the requirements level are refined. The design model is
again expressed in terms of class diagrams and sequence diagrams for the structural and the
behavioural view respectively.

Modelling Constraints

Structural View. For the structural view we have the following constraints. A type must
be specified for each attribute of a class (including multiplicity, default is 1), each association
must be directed (bidirectional associations are directed in both directions) and for each asso-
ciation end a multiplicity (default 1) and for each navigable association end a role name must
be specified. Role names have to be distinct in the sense that all association ends with the
same role name are attached to the same class.

Query operations, i.e. operations which do not change the state of its object, are marked
with the property {query}. Moreover, a visibility has to be specified for each element of a
class (default is private for properties and public for operations).

To improve readability often an overview diagram is provided which shows the classes
(without details) and their relations. The details of the classes are then depicted in separate
diagrams.
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Behavioural View. For sequence diagrams the following modelling constraints hold. The
kind of each message call must be specified by an appropriate arrow type (either asynchronous
call, synchronous call, create, delete or reply). A synchronous message call is always followed
by a corresponding reply message. Activation bars are displayed on the design level.

Pre- and postconditions of operations can be attached to the diagram in a note, or directly
inserted into the diagram (cf. Figure 3.15). Remind that we stated implicit postconditions of
getters and setters. The return value (including its type) is attached to a reply message. The
name of a lifeline must contain an object name (usually derived from a role name of a class
diagram).

Consistency between Structural and Behavioural View

Consistency conditions are the following. The types of the lifelines must correspond to the
classes of the design level structural model. The object name of a lifeline is derived from
the (distinct) role name in the class diagram. As already stated for the requirements model,
messages are exchanged only between lifelines the corresponding classes of which have an as-
sociation in between, but additionally, the signatures of operation calls must fit to the operation
signatures in the class diagrams.

Refinement

The refinement relation between the requirements and the design level is described informally
and illustrated by means of an example.

Structural View. A structural model SM2 is a refinement of a structural model SM1, de-
noted by SM1↝ SM2, if

• for each class A in SM1 there exists a non-empty set CorA of corresponding classes in
SM2,

• for each attribute of a class in SM1 there is a corresponding attribute in one of the refining
classes of that class,

• for each association in SM1 between two classes A and B there exists an association in
SM2 between two classes in CorA and CorB respectively, and

• for each invariant Inv there exists an invariant Inv′ with Inv′⇒ Inv.

For associations additionally the following condition must hold: if a multiplicity was al-
ready specified in SM1, then its value in SM2 may not be contradictory. Note that the re-
finement relation as defined above in particular allows for the renaming and the splitting of
classes, as well as for the specification of new classes and associations in SM2. The refine-
ment relation between class diagrams is given by the restriction of the above definition to the
elements of the structural model contained in the class diagram.
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As an example consider the class diagrams in Figure 3.14 where the lower diagram is a
(possible) refinement of the upper one. The dashed arrows denote the corresponding classes,
associations and invariants. Obviously the refinement relation as defined above is fulfilled.

The operations of the classes in the lower diagram are mainly derived from the sequence
diagrams of the requirements level (like e.g. opA, opB, opB1) or are getters and setters for
attributes (getX, getY). The association between the requirements classes A and B has been
refined to a qualified association between A and B1. Note that a qualifier reduces the multi-
plicity on the opposite end to 0..1.

inv: Inv’

inv: Inv

B

id{key}
z

A

x
y

id:String
1

b2

−n:Integer

+C(a:A)

+opC()

+opC1():Integer

−z:Real

+opB1(i:Integer)
b1

0..1
−id:String{key}

B1

*

0..1 c

C

+opB(c:C)

1

a

0..1

c

−y:Integer
−x:Integer

+opA()
+getX():Integer{query}
+getY():Integer{query}

A
1

*

cd sampleCD1
<<requirements>>

<<design>>

sampleCD2cd

B2

«

Figure 3.14: Example of a class diagram refinement

Behavioural View. Let SD1 and SD2 be sequence diagrams with corresponding structural
models SM1 and SM2 respectively. Then SD2 is a refinement of SD1, denoted by SD1↝ SD2,
if

• SM1↝ SM2,
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• for each lifeline L in SD1 with type A ∈ SM1 there is a non-empty set CorL of corre-
sponding lifelines in SD2 where the type of each L′ ∈CorL is in CorA , and

• for each interaction fragment in SD1 exists a corresponding interaction fragment in SD2,
and the (partial) order of the interaction fragments of SD1 is reflected by the (partial)
order of the corresponding interaction fragments in SD2.

c:C a:A

:A :B

b1:B1

b2:B2

opA()

opB(c)

opC()

{self.c=c}

{post: self.z=0.0}

{pre: i>0}

{post: self.n=n@pre+1}

opB1(i)

<<design>>

sd sampleSD2

opB()

opA()

opB1()

<<requirements>>

sampleSD1sd

opC1() {self.b2=b2}

i:Integer
{enable: self.n>10}

{post: result=self.n}

«

Figure 3.15: Example of a sequence diagram refinement

An example of a sequence diagram refinement is depicted in Figure 3.15. The sequence
diagrams in this figure correspond to the class diagrams in Figure 3.14. The dashed arrows
denote again the refinement relation of the single entities. It is easy to proof that the refinement
conditions stated above are fulfilled by these diagrams. Note that in sampleSD2 there are two
lifelines b1:B1 and b2:B2 which are a refinement of the lifeline :B.
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Several approaches for refinement of sequence diagrams can be found in the literature, most
of them expressing refinement on the semantics level (like, e.g., the approach of Cengarle and
Knapp [CKM09], or the STAIRS approach [HS03, HHRS05]).

3.2.3 Components
On the components level we introduce components and packages as structural elements to
which the elements of the design level are assigned.

Modelling Constraints

For the modelling on the components level we utilise the partitioning of the systems by (hier-
archical) components. That means, that for each component occurring in the system a compo-
nent diagram is depicted which shows

• the component as a rectangular box with the stereotype «component», the UML com-
ponent symbol and the component name,

• the provided and required interfaces in ball-and-socket notation attached to the compo-
nent,

• the internal structure of the component given by a component diagram, comprising sub-
components without their internal structure,

• the connectors between the provided and required interfaces of the component and the
internal elements which realize or utilise them respectively.

• Moreover, the interfaces which occur in assembly connectors in the internal structure
are shown in detail within the component diagram.

For each package of the system a package diagram is depicted showing the internal structure
of the package. For component diagrams as well as for package diagram the following holds:
usually classes are depicted with details, but if the diagrams thereby would grow too large, the
details of a class are depicted in a separate diagram.

The whole system can be modelled, when we apply the following top-down approach. We
consider the system itself as a component of the top-most level (we omit the component frame
for the system). The internal structure of this component comprises the system architecture.
Then recursively each subcomponent is depicted in a separate diagram. As an example con-
sider Figures 3.16 and 3.17. While the former diagram shows a possible system architecture,
consisting of the components K and L, the latter diagram shows the details of component K.
For modelling the entire system we would also have to detail the components L, K1 and each
possible subcomponent of them. We omit this for lack of space here.
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Figure 3.16: Sample architecture component diagram
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Consistency between Structural and Behavioural View

The transition from the design to the components level in the structural view is just a parti-
tioning of the design level elements into components and packages (see the refinement section
below), i.e. no new modelling elements are introduced which would have influence on the
behaviour. Therefore we can reuse the sequence diagrams from the design level, and the
consistency problem is reduced to the consistency problem of the design level. To build a
component level sequence diagram one would just have to replace the class type of a lifeline
with an interface type where necessary.

Refinement

We define the refinement relation between the structural model SM of the design level and
the component model CM which consists of a set of components and packages. CM is a
refinement of SM, denoted by SM↝CM, if

• for each class of SM there is an equivalent class (for a definition see below) in either a
component or a package of CM,

• for each association between two classes A and B in SM there is

– an equivalent association (for a definition see below) in CM, if the equivalent
classes of A and B both reside in the same component, or at least one of them
reside in a package;

– a sequence of connectors between the equivalent classes of A and B if these classes
reside in different components (cf. Figure 3.18; the operations of the interfaces are
derived from the messages exchanged between A and B)

We still have to provide the definition of equivalent classes and associations. Two classes
A and B are equivalent, if they have the same name, the same attributes, operations and asso-
ciations, at which, however, an association may be replaced by a connector in the following
way:

• in the case of a navigable association (i.e. the association end at B is navigable) by
a connector associated to a required interface which specifies at least the operations
called from A on B;

• in the case of a non-navigable association (i.e. the association end at A is navigable)
by a connector associated to a provided interface which specifies at least the operations
called from B on A; in this case A implements this interface.

Two associations are equivalent if their respective ends have the same multiplicity, navigability
and role name.

For an example of a refinement between the design level and the components level consider
Figure 3.19. Obviously the refinement relation defined above is fulfilled by the two diagrams.
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Figure 3.18: Refinement of associations by connectors taking into account role names (myA,
myB), multiplicities (m, n) and navigability

The refinement of the associations which result in connectors are pointed out by the dashed
arrows. Note that the depiction in this Figure does not match the rules stated by the modelling
constraints, as too many details are displayed within the components.

The main tasks of the system developer on the component level are first to identify appropri-
ate components and packages and then assign each class and each interface7 of the class design
level to one of the components or one of the packages. The rule to decide whether a class has
to be put into a component or into a package is the following: classes which represent data are
put into packages, all other classes and interfaces into components. An interface which has no
implementor within the component becomes a required interface of the component.

Once this has been done, the transition from the class design to the component design level
is straight forward: each association between classes assigned to different components has to
be resolved by appropriate connectors; all other relations remain unchanged and are assigned
to the respective component.

In the end let us say some words about the advantages of using components in our approach,
although the system seems to be fully specified already on the design level. The main advan-
tages are first, that we obtain a clear picture of the system architecture of the complex system
under development, and second, that a single component can easily be replaced by another
component with the same interfaces. Furthermore, by using interfaces between components
the access to the public operations of classes can be restricted, which is not the case when
using associations only.

7Interfaces obtained from the class design level may not be confused with the provided/required interfaces of
the component
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Figure 3.19: Example of a refinement from the design to the components level
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3.3 View-based Development by Extension
In this section we sketch how we develop a complex system by considering different views of
the system on the abstraction levels discussed in the previous section. Regarding to Figure 3.1
on page 22, this means that we now consider the extension relation ↪ where the base view is
on the left hand side. As mentioned before, the relation A↪B denotes an extension of A by B,
where A and B are each a structural or a behavioural model element.

The idea of this development method is, that we first construct a base architecture of the
system under consideration by analysing some basic system use cases and stating some ba-
sic requirements, and then, emanating from this, develop an architecture for each identified
view of the system. Of course, in order to be able to obtain a system architecture by simply
integrating the different views, some prerequisites have to be considered when identifying the
base and the different views, hence this is one of the crucial tasks of system development.

In short, the extension relation is a special kind of refinement. In contrast to the refinement
relation defined in the previous section it does not permit renaming and splitting of classes,
thus allowing only for introducing new classes and associations or extending the existing ones
by adding new attributes, associations or operations. Moreover, operations may be extended
by increasing their parameter list. These restrictions of the general refinement relation are
necessary in order to facilitate the integration of the views later on.

In the remainder of this section we define the extension relation for the structural, be-
havioural and component model respectively and sketch the methodology by means of an
example where a base model is extended into two different views V 1 and V 2 on each abstrac-
tion level. The integration of the views will be discussed in Section 3.4.

As the extension relation is quite more restrictive than the refinement relation we can be
a bit more precise when providing a definition. We thereby regard the UML meta model
presented in Section 3.1. In the following we use the dot notation known from OCL to refer
to properties of modelling elements (e.g. C.name to refer to the name of class C). All used
properties are defined in the meta model. If the multiplicity of a property is greater than one,
then the reference to it denotes a set of the respective type (e.g. C.attribute denotes the set of
attributes of class C).

3.3.1 Structural Model
According to the UML meta model presented in Section 3.1.1 we have to consider classes,
data types and associations for defining the structural model. Properties are either attributes
of classes or association ends. The generalisation relation is implicitly given by the superclass
property of a class. The structural model hence consists of a set of classes C, a set of data types
D, and a set of associations A. In the following we define the extension relation of structural
models.

Definition 3.1. A structural model SM2 = (C2,D2,A2) is an extension of a structural model
SM1 = (C1,D1,A1), denoted by SM1↪ SM2, if
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• for all classes C ∈ C1 there exists exactly one class C′ ∈ C2 with C↪C′ which means that

– C.name =C′.name,

– C.isAbstract =C′.isAbstract,

– C.isActive =C′.isActive,

– C.superclass.name =C′.superclass.name,

– C.attribute.name ⊆C′.attribute.name8

– for all attributes a ∈C.attribute and a′ ∈C′.attribute the following holds: a.name =
a′.name⇒ a = a′ (for the definition of equality on properties see below)

– C.operation.name ⊆C′.operation.name

– for all operations o ∈C.operation.name and o′ ∈C′.operation.name the following
holds: o.name = o′.name⇒ o↪ o′ (for the definition of extension of operations see
below),

• for all data types D ∈ D1 there exists exactly one data type D′ ∈ D2 with D.name =
D′.name and if D is a(n)

– ordinary data type then D′ is an ordinary data type and D ↪ D′ as defined for
classes;

– enumeration type then D′ is an enumeration type and D.literal ⊆D′.literal;

– primitive type then D′ is a primitive type.

• for all associations A ∈ A1 there exists exactly one association A′ ∈ A2 with A.endi =
A′.endi, i ∈ {1,2}, where endi denote the association ends (for the definition of equality
on properties see below).

We still have to provide the definition of equality on properties.

Definition 3.2. A property p is equal to a property p′, denoted p = p′ if

• p.name = p′.name

• p.type = p′.type

• p.lower = p′.lower

• p.upper = p′.upper

• p.isKey = p′.isKey

• p.visibility = p′.visibility

8C.attribute.name is an abbreviation for {a.name∣a ∈C.attribute}
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• p.qualifier is equal to p′.qualifier

A set P of properties is equal to a set P′ of properties, if ∣P∣ = ∣P′∣ and for each p ∈P there exists
a p′ ∈ P′ with p = p′.

The extension relation on structural models also requires an extension relation on operations
which we provide in the following.

Definition 3.3. An operation o′ is an extension of an operation o, denoted by o↪ o′, if

• o.name = o′.name

• o.type = o′.type

• o.lower = o′.lower

• o.upper = o′.upper

• o.isQuery = o′.isQuery

• o.isAbstract = o′.isAbstract

• o.visibility = o′.visibility

• o′.preCondition⇒ o.preCondition

• o′.postCondition⇒ o.postCondition

• o′.enableCondition⇒ o.enableCondition

• o.parameter.name ⊆ o′.parameter.name,

• for all parameters p ∈o.parameter and p′ ∈o′.parameter the following holds: if p.name=
p′.name then

– p.type = p′.type,

– p.lower = p′.lower,

– p.upper = p′.upper,

In other words, an operation may be extended only with respect to its parameter list.

As an example for the extension of class diagrams on the requirements level consider Fig-
ure 3.20. The diagrams are arranged so that the base is on the top of the figure and the views
V1 and V2 on the bottom left and bottom right respectively. Moreover, the new elements are
coloured in the view diagrams: blue in view V1 and red in view V2.

Note that the diagrams are related to the base or one of the views by their names in that
ˆbase, ˆV1 or ˆV2 is contained in the name. A diagram name like sample1ˆV1 should be read
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cd sample1^base
<<requirements>>
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sample1^V1cd cd sample1^V2

Figure 3.20: View-based development on the requirements level – structural view

as “diagram sample1 under the view V1”. One can easily proof that the extension relation ↪
is fulfilled for the respective diagrams.

Figure 3.21 shows a possible extension of class diagrams on the design level. Unfortunately,
due to their size, they cannot be arranged similarly to the requirements models, but rather one
below the other. Again the elements added or extended in the different views are coloured, ad-
ditionally new or extended elements are marked with the property {new} or {ext} respectively.
While the colouring is only done for explanation purposes here the marking with properties is
also used in the application of the methodology. The properties facilitate the integration of the
views as we will see later.

Finally note that in the example, besides the extension relation which relates the diagrams
on a particular abstraction level, the refinement relation defined in the previous section relates
corresponding diagrams on different views.

3.3.2 Behavioural Model
The behavioural model is given by a set of interactions, where an interaction is described by a
sequence diagram.

Definition 3.4. A behavioural model BM2 is an extension of a behavioural model BM1 if

• the corresponding structural models are in extension relation, and

• each sequence diagrams describing an interaction of BM1 has a corresponding extended
sequence diagram in BM2.
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Figure 3.21: View-based development on the class design level – structural view
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A sequence diagram SD consists of (cf. Figure 3.7)

• a set L of lifelines representing the instances taking part in the interaction,

• a setM of messages, and

• a (partially) ordered set F of interaction fragments.

An interaction fragment F ∈F (cf. Figure 3.8) is either

• a message end (i.e. a send event or a receive event),

• a state invariant,

• a combined fragment which in turn consists of a set of interaction operands each refer-
ring to a (partially) ordered set of interaction fragments, or

• an interaction use.

With these preliminaries we are able to define the extension relation on sequence diagrams.

Definition 3.5. A sequence diagram SD′ = (L′,M′,F ′) is an extension of a sequence diagram
SD = (L,M,F), denoted by SD↪ SD′, if

• L↪L′, that means for each L ∈L there exists an L′ ∈L′ with

– L.name = L′.name,

– L.selector = L′.selector, and

– L.represents↪ L′.represents (where ↪ is the extension relation on classes as de-
fined above);

• M↪M′, that means for each message M ∈M there exists a message M′ ∈M′ with

– M.sort =M′.sort

– if M.signature exists, then M′.signature exists and M.signature ↪ M′.signature
(where ↪ denotes the extension relation on operations as defined above);

• F ↪F ′, that means for each interaction fragment F ∈F there exists an interaction frag-
ment F ′ ∈F ′ with F ↪F ′ (for the definition of↪ see below) and↪ preserves the partial
order of F , i.e. if F1 ≤ F2 in F , and F1↪ F ′

1 , F2↪ F ′
2 then F ′

1 ≤ F ′
2 in F ′.

The extension relation ↪ on interaction fragments is defined as follows. F ↪ F ′ if F and
F ′ are of the same type (message end, state invariant, combined fragment, or interaction use),
F.covered ↪ F ′.covered (i.e. the set of covered lifelines are in extension relation as defined
above) and if F is a(n)

• message end, then F.message↪ F ′.message,
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• state invariant, then F ′⇒ F ,

• combined fragment, then

– F.interactionOperator = F ′.interactionOperator,

– for each o ∈ F.operand exists an o′ ∈ F ′.operand with

* ∀ f ∈ o.fragment ∃ f ′ ∈ o′.fragment ∶ f ↪ f ′, and

* o′.guard⇒ o.guard,

• interaction use, then F.refersTo↪ F ′.refersTo.

Note that in the case of combined fragments and interaction uses the definition is recursive.
The property refersTo of an interaction use refers to an interaction, i.e. a sequence diagram.

As an example for the extension of sequence diagrams consider Figure 3.22.Again, the
different colours denote the extensions made in the different views.

3.3.3 Component Model
A component model CM is given by a set of components K9 and a set of packages P . We as-
sume that the consistency conditions concerning connectors and provided/required interfaces
of components stated in Section 3.1.3 hold.

Definition 3.6. A component model CM′ = (K′,P ′) is an extension of a component model
CM = (K,P), denoted CM↪CM′, if

• for each component C ∈K there is a component C′ ∈K′ with C↪C′, which means

– for each element p ∈C.packagedElement there exists p′ ∈C′.packagedElement with
p↪ p′ (where ↪ is the extension relation for the specific type of p),

– for each imported element i ∈C.elementImport there is an imported element i′ ∈
C′.elementImport with i ↪ i′ (where ↪ is the extension relation for the specific
type of i),

– for each provided interface ip ∈C.provided there exists ip′ ∈C′.provided with ip↪
ip′ (for the definition of ↪ see below),

– for each required interface ir ∈C.required there exists ir′ ∈C′.required with ir↪ ir′,

– for each connector c ∈C.connector there exists a connector c′ ∈C′.connector with
c.kind = c′.kind and the respective connector ends of c and c′ are in extension
relation;

9We use K for the set of components, because C is already occupied for the set of classes.
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Figure 3.22: Extension of sequence diagrams – on the requirements level (top) and on the
design level (bottom)
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• for each package P ∈ P there is a package P′ ∈ P ′ with P↪ P′ which means that for
each element p ∈ P.packagedElement there is an element p′ ∈ P′.packagedElement with
p↪ p′ (where ↪ is the extension relation for the specific type of p).

The extension relation ↪ on interfaces is a restriction of the extension relation on classes
considering operations only.

As an example for the extension relation of components consider Figures 3.23 and 3.24.
While the former shows an architecture diagram which is extended in the views V1 and V2, the
latter focusses on the extension of the component K. Again, the extensions are coloured blue
(view V1) and red (view V2) respectively.

IC1IA IC2
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opC()
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getY():Integer
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getX():Integer opD()

ID

M

ID

cmp architecture^base

cmp architecture^V1 cmp architecture^V2
<<components>> <<components>>

<<components>>

KK

K

Figure 3.23: View-based development on the components level – architecture view

3.4 Integration of the Views
In this section we explain how the models of different views are integrated under consideration
of their common base. The basic idea is to embed the component model of each view into an
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integration component model in an appropriate way, so that the integration is an extension of
each view:

base
L l

zz

� r

$$

V1 � r

$$

V2L l

zz

integration

Note that this construction corresponds to a push-out in category theory. Hence the integration
procedure is automatable and its result is unique except for renaming. In the case of more than
two different views integration is performed step-by-step, i.e. the first view is integrated with
the second, the third with the integration of the first and the second and so on. Thereby the
order of integration does not matter as we will see later.

In the following the structural integration of component diagrams (Section 3.4.1) and the
behavioural integration of sequence diagrams (3.4.2) is defined and illustrated by means of
the example elaborated in the previous sections. Finally we briefly discuss the problem of
integrability.

3.4.1 Structural Integration
In the structural view we have to integrate two component models CM1 and CM2 with a
common base model CM0, i.e. we have to integrate components, packages and their respective
elements. The integration process described in the following is widely adopted from the UML
package merge procedure which is explained, e.g. in [HKKR05]. The integrated component
model corresponds to the effective contents of the receiving package in a package merge, while
the component models of the views to be integrated regard to a merged package each.

Suppose we want to integrate two models M1 and M2 under a common base model M0, i.e.
we have M0 ↪M1 and M0 ↪M2. Then for the integration we have to consider in particular
equal elements of M1 and M2, and the elements of M0 which are extended by corresponding
elements of M1 and M2 respectively. While the first matter can be coped with renaming of
equal elements, the second matter has to be treated individually.

Having this in mind, the integrated model Mint consists of

• the elements which have been added in M1, i.e. M1∖M0,

• the elements which have been added in M2 and are different from those of M1, i.e.
M2∖M1,

• renamed equivalents of the elements of M2
10 which are equal to elements of M1, i.e.

M2∩M1∖M0, and
10One could also rename the elements of M1 instead of those of M2.
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• the elements of M0 integrated with their corresponding elements in M1 and M2.

In the following we provide a mathematical definition for the integration of sets, which is
useful for defining the integration of modelling elements later on.

Definition 3.7. Let A0, A1 and A2 be subsets of a domain D with A0 ⊆ A1 and A0 ⊆ A2. Then
we define the integration of A1 and A2 under the common base A0 by

Aint ∶= A1
A0⊎ A2 ∶= A1∖A0∪A′2∪A′0,

where
A′0 ∶= {µ(a) ∣ a ∈ A0},

µ ∶A0→D is an injective mapping which is specifically defined for each kind of set (called the
integration mapping),

A′2 ∶= A2∖A1∪{ρ(a) ∣ a ∈ (A1∩A2)∖A0},
and ρ ∶D→D denotes an injective renaming function so that ρ(a) ∉ A1∩A2 for all a ∈ A1∩A2.

We are now able to define the integration of components, packages and their elements
(classes, interfaces, associations). To facilitate the notation let in the following i ∈ {0,1,2}
be an index variable and for each i-indexed element Ei hold that E0↪ E1 and E0↪ E2.

Components. Let Ki be sets of components. Then the integrated set Kint is given by

Kint ∶=K1
K0⊎ K2,

where the integration mapping µ is defined for each C0 ∈K0 as follows.

• µ(C0).name =C0.name,

• µ(C0).required = Ireq
1

Ireq
0⊎ Ireq

2 , where Ireq
i ∶=Ci.required,

• µ(C0).provided = Iprov
1

Iprov
0⊎ Iprov

2 , where Iprov
i ∶=Ci.provided,

• µ(C0).connector =C0.connector,

• µ(C0).packagedElement = P1
P0⊎ P2, where Pi ∶=Ci.packagedElement,

• µ(C0).elementImport =O1
O0⊎ O2, where Oi ∶=Ci.elementImport,

Packages. For the integration of packages we resort to the integration of components re-
stricted to the name and the packaged elements (first and fourth item in the above definition).
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Classes. Let Ci be sets of classes. Then the integrated set Cint is given by

Cint ∶= C1
C0⊎ C2,

where the integration mapping µ is defined for each C0 ∈ C0 as follows.

• µ(C0).name =C0.name,

• µ(C0).superclass =C0.superclass,

• µ(C0).attribute = A1
A0⊎ A2, where Ai ∶=Ci.attribute and the integration mapping on at-

tributes is the identity,

• µ(C0).operation =O1
O0⊎ O2, where Oi ∶=Ci.operation and the integration mapping µo is

defined for each o0 ∈C0.operation as follows.

– µo(o0).name = o0.name,

– µo(o0).type = o0.type,

– µo(o0).lower = o0.lower,

– µo(o0).upper = o0.upper,

– µo(o0).isQuery = o0.isQuery,

– µo(o0).isAbstract = o0.isAbstract,

– µo(o0).visibility = o0.visibility,

– µo(o0).preCondition = o1.preCondition∧o2.preCondition,

– µo(o0).postCondition = o1.postCondition∧o2.postCondition,

– µo(o0).enableCondition = o1.enableCondition∧o2.enableCondition,

– µo(o0).parameter = P1
P0⊎ P2, where where Pi ∶= oi.parameter and the integration

mapping is the identity.

Interfaces. For the integration of interfaces we resort to the integration of classes restricted
to the name and the operations (first and fourth item in the above definition).

Associations. Let Ai be sets of associations. The integrated set Aint is then given by

Aint =A0∪A1∪A2.
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With the definition above we have in fact that integrated component model CMint is an
extension of CM1 and CM2, i.e.

CM0
M m

{{

� q

##

CM1 � q

##

CM2
M m

{{

CMint

which can be easily proven by applying the definition of extension provided in Section 3.3.
The integration process is exemplified in Figure 3.25 for an architecture diagram and in

Figure 3.26 for an individual component which contains classes and interfaces. The elements
which have been added or extended in different views are coloured blue (for view V1) and red
(for view V2) respectively. To get the full picture (including extension of the base) one has to
consider Figure 3.23 and Figure 3.24 respectively.
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Figure 3.25: Integrated component architecture

3.4.2 Behavioural Integration
Concerning the behavioural view we have to define how two sequence diagrams SD1 and SD2
which extend a common base sequence diagram SD0 are integrated. Note that in our approach
no separate sequence diagrams are constructed on the components level as the ones from the
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Figure 3.26: Integrated sample component K

design level can be reused (cf. Section 3.2.3). Hence in the following the sequence diagrams
correspond to a structural model of the design level.

The integrated sequence diagram SDint is defined as follows:

• the corresponding structural model of SDint is the integration of the structural models of
SD1 and SD2 as defined in the previous section;

• The set of lifelines of SDint is given by

Lint =L1
L0⊎ L2;

• the set of messages of SDint is given by

Mint =M1
M0⊎ M2;

• the set of interaction fragments of SDint is given by

Fint =F1
F0⊎ F2

and the partial order defined on Fint (if existing, see below) preserves the partial orders
on F1 and F2.

According to the definition above, an integrated sequence diagram comprises the lifelines,
messages and interaction fragments of its constituent parts. The order of interaction fragments
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is constructed as follows in order to comply with the requirement of preserving the partial
orders: the interaction fragments of the base diagram act as synchronisation points whereas
the other interaction fragments of the extension diagrams are arranged in separate operands of
a par fragment between the interaction points.
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opB(c)

par

par

d:D
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Figure 3.27: Integrated sequence diagram on the design level

As an example consider the sequence diagram sample1ˆintegration in Figure 3.27 which
integrates the sequence diagrams in Figure 3.22 (bottom). Note that the colours used for
depicting the extensions of different views are retained in the integration in order to illustrate
the integration process. While the black elements denote the synchronisation points, i.e. the
elements of the base diagram, the blue and red elements are extensions added in the views. If
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there is an extension in both views between two consecutive synchronisation points then these
extensions are put in different operands of a par fragment.

We still have to settle the matter of integrability. We say that two sequence diagrams SD1
and SD2 are integrable under a common base diagram SD0 if the resulting sequence diagram
SDint as defined above is well-formed, i.e. there exists a partial order on the set of interaction
fragments.
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Figure 3.28: Example of a not well-formed integration

Note that the integration of two well-formed sequence diagrams is not always well-formed,
as the counterexample in Figure 3.28 demonstrates (cf. [KCH04]): obviously the order of
interaction fragments in the resulting diagram is not a partial order. It is out of the scope
of this thesis to provide necessary and sufficient conditions for the integrability of sequence
diagrams. Instead we refer to the relevant literature.

For instance, in [KCH04] the integration of Message Sequence Charts (MSCs, cf. [ITU96])
which are a kind of predecessor of UML sequence diagrams is discussed. This approach
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has been adapted to sequence diagrams in [KFJ07] in the context of aspect orientation. The
integration of two sequence diagrams is formally described by means of an amalgamated
sum there, but conforms largely with our approach: the diagrams there defined as point-cut
correspond to the base view in our approach, while the base and advice diagrams are related
to the views. The resulting diagram is then the counterpart of our integration model.

An integration process similar to ours, but without using a common base defining the syn-
chronisation points is presented in [BB07]. The approach is based on a categorical construc-
tion using labelled prime event structures [WN95]: the synchronisation points of two (prob-
ably independent) sequence diagrams are calculated as a pull-back, and the integration as
push-out.

Finally we want to note that the order of integration does not influence the integrated model.
This is due to the fact that the interaction operator par is associative and commutative, which
has been proven for example in [MB09] by means of a co-algebraic semantic framework for
interactions.

3.5 Application of the Methodology within the Thesis
The subject of this thesis is a generic framework for integrative environmental simulations.
For this kind of system, considering the requirements of the enclosing research project, the
following fundamental system aspects were identified each of them giving rise to a particular
system view in the sense of our development methodology:

• Data exchange between simulation models,

• consistent treatment of simuation space, and

• time coordination for parallel running simulation models with individual time steps.

Each single view extends a base architecture which describes a fundamental simulation frame-
work for the parallel execution of a number of (independent) simulation models. The devel-
opment methodology described in this section is applied to the generic simulation framework
as shown in Figure 3.29. In this figure all necessary extension and refinement arrows are de-
picted. In the remainder of this thesis we describe the single steps from the base architecture
(Chapter 4) over the different views (Chapters 5, 6, and 7) to the integration (Chapter 8) which
comprises the complete architecture of the framework.
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base

data space time

integration

req ↝ des ↝ cmp

req ↝ des ↝ cmp req ↝ des ↝ cmp req ↝ des ↝ cmp

cmp

Figure 3.29: Application of the methodology to the generic simulation framework
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System Use Cases and Base

Architecture of the Simulation
Framework
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data
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With this chapter the course through our development methodology starts with elaborating
a base architecture of the framework. In the above figure, the red label of the uppermost el-
lipse denotes the task under consideration. In the remainder of this chapter we first describe
the system use cases (Section 4.1) and then develop a base architecture of the simulation
framework. The development of the architecture is structured according to the methodology
described in Chapter 3: the requirements are specified in Section 4.2, a design model is pre-
sented in Section 4.3, and the component architecture derived from the design model is shown
in Section 4.4.
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4.1 System Use Cases
The only system use case executeSimulation of the simulation framework is depicted in Fig-
ure 4.1. The actors which are connected to this use case are a (graphical) user interface on
the one hand, and a number of simulation models on the other hand. The framework, the user
interface and the models form the integrative simulation system. In the remainder of this thesis
we focus on the simulation framework and show how the other actors can be connected.

Figure 4.1: System Use Case for the Simulation Framework

4.2 Requirements
We introduce the concept of an integrative simulation (in the following often called simulation
for short) by the class Simulation which is associated to a set of participating simulation mod-
els; an arbitrary simulation model (in the following often called model for short) is represented
by the class Model (cf. Figure 4.2). A simulation or a model can be identified by a unique sim-
ulationId or a modelId respectively (cf. Section 3.2.2 for the meaning of the property {key}).

The sequence diagram in Figure 4.3 shows the typical course of action when an integrative
simulation is started. By means of an appropriate user interface a Simulation is created and
started. Then instances for all participating models have to be created and started as well (de-
noted within the loop fragment). Typically, after a model is started it first has to be initialised
(cf. message init) and then performs its computation (compute). Before terminating, some fi-
nal actions like, e.g., closing of open files or database connections, may be executed (finalize)
and the Simulation object is notified that the model has finished its course of action. If this
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Figure 4.2: Concepts Class Diagram

notification has arrived from all participating models the end of the simulation is signalled to
the UserInterface by the message finished as well.

4.3 Design
In this section we develop a structural and a dynamic design model from the requirements
model presented in the previous section.

4.3.1 Structural Design Model
An overview of the structural design model is depicted in Figure 4.4. Let us first explain
how the classes of the design model emerged from the requirements model and show that
the design model is a refinement of the requirements model according to our methodology
(cf. Section 3.2). The requirements class Simulation was split into the two classes Simu-
lationAdmin and SimulationConfiguration, i.e. the set of corresponding classes is given by
CorSimulation = {SimulationAdmin,SimulationConfiguration}. While a SimulationAdmin in-
stance is supposed to act as a management entity for an integrative simulation (and is therefore
designed as an active class), the class SimulationConfiguration covers the description of the
simulation (like, e.g., the identifier simulationId). This complies with the refinement require-
ment that there exists a corresponding attribute in one of the corresponding classes.

The concept class Model has been split into the design classes ModelCore, AbstractModel
and ModelMetadata, i.e. CorModel = {ModelCore,AbstractModel,ModelMetadata}. While
ModelMetadata is a class for storing meta data of a simulation model (like, e.g., the model
identifier modelId, the classes ModelCore and AbstractModel represent a simulation model
itself. The dispartment into two classes results from the framework principle explained in
Section 2.2: while ModelCore belongs to the framework core and implements the (general)
life cycle of a simulation model within the method start (and therefore is designed as an ac-
tive class), the class AbstractModel is part of the developer interface of the framework. It
constitutes a base class (depicted by the corresponding stereotype) for the development of an
individual simulation model by (object oriented) inheritance.
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Figure 4.3: Concepts Sequence Diagram
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Figure 4.4: Design model of the base view (overview)

The association between Model and Simulation the requirements model has been refined
to several associations between corresponding classes. As the association between Simula-
tionAdmin and ModelCore is no longer navigable at the SimulationAdmin end, but the Model-
Core (and AbstractModel) instances have to know about the actual SimulationConfiguration,
new (directed) associations between these classes are necessary. The directionality of the as-
sociation between ModelCore and AbstractModel evolves from the framework principle: a
framework core class should never be navigable from a base class.

The abstract class UserInterface has been introduced as a new class and represents the user
interface for the simulation system which is not part of the framework. It is modelled as an
abstract class (instead of an interface) because it does not only receive messages from the
SimulationAdmin, but also sends messages to it.

Note that in the design model (as well as in the components model) all classes which belong
to the developer interface are marked with an appropriate stereotype (either «base class», «base
interface», or «data type»). This is the only possibility to distinguish the developer framework
classes from those of the framework core, as the separation of the framework into core and
developer interface is only a logical separation which is not reflected by the components later
on.
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Figure 4.5: Details of the class AbstractModel

The classes depicted in Figure 4.4 are detailed in Appendix A.1.1. In the following we
describe only the base class AbstractModel (cf. Figure 4.5) which represents a generic simu-
lation model. As a base class – which is denoted by the corresponding stereotype – it belongs
to the developer interface and has to be extended in order to implement a concrete simulation
model. The class holds references to the actual SimulationConfiguration and ModelMetadata
which can be set by appropriate setters. The setters are package private1 in order to prevent
simulation model developers from changing the actual values by calling these setters within
their model implementation – this should only be done by the corresponding ModelCore in-
stance. Access to the SimulationConfiguration and ModelMetadata objects is granted by the
respective public queries getSc and getMmd.

Operations of design level classes are mainly derived from the behavioural requirements
model or are setters and getters of attributes. In a base class the operations which are dedicated
to a simulation model developer – either plug-points or queries – are listed in the operations
department headed by the respective stereotype. The class AbstractModel provides three plug
points in form of the abstract operations compute, finalize, and init. The plug-points have to be
implemented appropriately in a concrete subclass. The visibility of plug-points is protected,
because plug-points are designed to be overridden in a subclass. Finally, all queries of Ab-
stractModel are public so that all classes of a model implementation can access the conveyed
information.

We have shown that the structural model of the design level (cf. Figure 4.4) is indeed a
refinement of the structural model of the requirements level (cf. Figure 4.2).

1Although components and packages are not modelled on the design level, we assume that classes representing
a concrete simulation model reside in a component or package outside the framework
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4.3.2 Behavioural Design Model
An overview of the behavioural design model is depicted in Figure 4.6 in an interaction
overview diagram.

Figure 4.6: Interaction overview diagram in the base view

The single diagrams referenced in Figure 4.6 are detailed in Appendix A.1.2. In the fol-
lowing we briefly describe the interactions contained in the single diagrams. The course of
interactions starts with the diagram executeSimulationˆbase in which a SimulationConfigura-
tion object and a SimulationAdmin instance are created. The creation of the SimulationAdmin
is guarded by a precondition which says that the SimulationConfiguration object which is
passed as parameter to the constructor has to be valid, i.e. its query isValid has to result to true.
The result of the query isValid is given by the following postconditions:

context S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . s i m u l a t i o n I d <> ""

and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n gMod e l s −>f o r A l l (m | m. i s V a l i d ( ) )

context ModelMetadata : : i s V a l i d ( )
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pre : t r u e
post : r e s u l t = s e l f . mode l Id <> "" and s e l f . mode lC la s s <> ""

Informally speaking, a SimulationConfiguration is valid if their attribute simulationId does
not equal to the empty string, the property participatingModels is not null and the for each
element of the set of participating models the respective ModelMetadata object is valid, too.
A ModelMetadata object is again valid, if its attributes modelId and modelClass are not equal
to the empty string.

After creating the SimulationAdmin instance and calling the operation start the interactions
are specified by the diagram runSimulationˆbase. This diagram contains a loop in which
the diagram createAndRunModelˆbase is referenced for each ModelMetadata object which
is referenced by the current SimulationConfiguration. Note that the loop is denoted in the
interaction overview diagram (Figure 4.6) by the guard forAll mmd in sc.participatingModels.

As the diagram createAndRunModelˆbase is the most interesting diagram of the current
view, it is depicted in Figure 4.7). In the following we go into the details of this diagram.

The first event in this diagram is to create a ModelCore instance. As there are several
instances of ModelCore in the system, we use the model identifier modelId defined in the
ModelMetadata object as selector. Note that the following start message is asynchronous
so that the SimulationAdmin gets back control flow after this message and can continue with
the creation of the other models of the current simulation configuration (remember that the
interaction createAndRunModel is performed within a loop fragment). After the start message
has been received by the ModelCore instance it creates an AbstractModel instance. Of course,
the abstract class AbstractModel cannot be instantiated, but a concrete subclass that represents
a particular simulation model. The type of this class is given by the attribute modelClass of
ModelMetadata and the state invariant self.base.getType().getName()=mmd.modelClass on
the lifeline of the ModelCore object shall ensure that an object of the correct type has been
created.

As it is possible that this condition might not have been fulfilled (e.g. when the required type
could not be found), but its validity is crucial for the continuation of the simulation, it is nec-
essary to check the condition within the following break fragment. In the case that the object
base is not of the required type, the course of actions continues with the interactions specified
in handleException. Note that we deviate from the UML standard in two ways when using a
break fragment. Firstly, in our approach a break fragment covers only the lifeline on which
the break condition is evaluated instead of all lifelines of the enclosing interaction; secondly,
we consider the remainder of the whole interaction after a break fragment as ignored, and not
only the remainder of the enclosing interaction. Taking this into account, the system behaves
in the case the condition of the break fragment evaluates to true as follows. The ModelCore
instance sends the message exception to the actual gate of the interaction use handleException
(cf. Figure 4.8). This diagram shows that this message will be received by the SimulationAd-
min which in turn sends the message error to the user interface. In this case the simulation
terminates with an error. We will reuse the diagram handleException for exception handling
later in this thesis.
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Figure 4.7: Sequence diagram createAndRunModel in the base view
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Figure 4.8: Interaction handleException

Finally, in the diagram runModelˆbase we find the typical actions a model performs within a
simulation which have already been stated in the concepts model: first, the simulation model is
initialised, then executes its computation and finally, performs a finalisation (e.g. closing open
files). In contrast to the concepts model where these actions have been called from the model
on itself, on the design level the calls stem from the ModelCore instance and are executed on
the AbstractModel instance, i.e. on the concrete simulation model instance at run time.

It is easy to proof, although not evidently, as one has to consider a couple of nested sequence
diagrams, that the behavioural design model is a refinement of the behavioural requirements
model.

4.4 Components
In this section we provide the component design which provides the basic architecture of the
generic integrative simulation framework under consideration. The architecture is given by
the component diagram in Figure 4.9. Two components have been identified, the component
Simulation on the one hand, and the component Model on the other hand. The former covers
the concepts of an integrative simulation, while the latter represents a generic2 simulation
model. Note that the connector ends at the component Model exhibit multiplicity * which
indicates that at run time arbitrary many instances of this component may exist.

2generic means that at run time a concrete model instance has to be bound to this component
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Figure 4.9: Architecture of the base view

The components provide and require several interfaces which are also depicted in Fig-
ure 4.9. The interfaces depicted above the component Simulation serve the connection with
the user interface; while the provided interface SimulationAccess receives calls from the user
interfaces, like e.g. start, the required interface UserInterface notifies the user interface about
changes in the system state by calling finished or error. Note that an implementation of a
user interface is not part of the framework, hence the interfaces to the user interfaces remain
without a counterpart.

The remaining interfaces, ModelAccess and ExceptionHandler, are intended for the commu-
nication between the administrative component Simulation on the one hand and the simulation
models represented by the component Model on the other hand. For the details of the compo-
nents Simulation and Model we refer to Appendix A.1.3.
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4.5 Conformance with the Development Methodology
In order to show that the architecture developed so far conforms with the development method-
ology presented in Chapter 3, we have to show that

reqbase↝ desbase↝ cmpbase,

where lv denote the models of abstraction level l under the view v (using abbreviations for
level and view names). The refinement step from requirements to design has already been
considered in Section 4.3. In the following we concentrate on the refinement from the design
to the components level.

According to the rules stated in Section 3.2.3 we have to show that for each class of the
design model there exists an equivalent class in one of the components or packages of the
component model (except for the abstract class UserInterface which is by definition not part of
the framework). The following table summarises, where the equivalent classes can be found
in the component model.

The class has an equivalent class in
SimulationAdmin component Simulation
AbstractModel component Model
ModelCore component Model
SimulationConfiguration package metadata
ModelMetadata package metadata

As each class of the design model possess an equivalent class in one of the components
or packages of the component model we still have to show that each association of the de-
sign model is represented in the component model by either an equivalent association, or by a
sequence of connectors between equivalent classes. In order to be able to examine the associ-
ations properly we revisit the structural design model given in Figure 4.4. In Figure 4.10 this
diagram is shown again, but with numbered associations.

With this numbering in mind, we can state the following.

• The bidirectional association 1 is represented in the components model by two se-
quences of connectors, comprising the interfaces SimulationAccess and UserInterface
respectively. In fact, as one of the associated classes does not belong to the framework
(by definition), the assembly connectors containing the interfaces SimulationAccess and
UserInterface are incomplete in the components model. This situation fulfils the require-
ments for refinement anyhow.

• The bidirectional association 2 is represented in the components model by two se-
quences of connectors, comprising the interfaces ModelAccess and ExceptionHandler
respectively.

78



4.6 Discussion

4

8

92

1

6

7

5

3

Figure 4.10: The design class model revisited

• The associations 3 to 9 possess an equivalent association in the components model,
as the associated classes either reside in the same component or package (associations
3 and 9 ), or one of the associated classes belongs to a package and is imported into a

component (associations 4 to 8 ).

This completes the proof of the refinement step.

4.6 Discussion
Finally we want to discuss our framework approach in the context of other frameworks in the
field of environmental simulation and modelling.

The usage of (abstract) base classes to facilitate the implementation of simulation models
is a common approach in environmental modelling frameworks. For instance, this approach
is used in OMS (cf. [KKO05]) and TIME (cf. [RSP+03]), while in ModCom (cf. [HBvEL03])
and OpenMI (cf. [GGW07]) just interfaces are defined which must be implemented in order
to make an entity compliant with the framework. Moreover, ModCom provides components
offering numerical services like integrators which can be uses when a simulation model is
given in form of ordinary differential equations.
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The particular advantage of our approach is the strict separation of the framework core
and the developer interface which alleviates the task of the model developer significantly as
he or she is only concerned with the absolutely necessary code (and documentation) for the
development purpose.
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In this chapter we discuss the view “Data exchange between simulation models” according
to the development methodology provided in Chapter 3. Hence, in Section 5.1 we state the
concepts and requirements of this view, after that, in Section 5.2 a class design is developed
from the requirements model. The component model of the view is provided in Section 5.3.
The chapter closes with a brief discussion of related approaches for data exchange between
simulation models in Section 5.5.
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Figure 5.1: Requirements model for data exchange

5.1 Requirements
The coupling of simulation models in our approach is based on interfaces. Interfaces for data
exchange specify data queries. We distinguish between provided interfaces specifying queries
for data that is provided by a simulation model, and required interfaces specifying queries for
data that is needed by a simulation model for its own computation. The general requirements
concerning data exchange are modelled in the UML class diagram in Figure 5.1 which is
an extension of the base class diagram in Figure 4.2. It says that a simulation may involve
arbitrarily many simulation models, which play the role of the models for the simulation, and
that a model may have arbitrarily many interfaces, playing the role of provided or required
interfaces.

The usage of interfaces has several advantages. First of all, low coupling between the simu-
lation models is achieved, i.e., one model does not need to know about implementation details
of the other, but only knows the public interface. This leads directly to the advantage that
simulation models can easily be exchanged as long as they provide and require the same in-
terfaces. Furthermore, an interface always specifies a contract. The model which implements
an interface is obliged to comply with the contract (i.e. implement all methods of the inter-
face), and the model that uses an interface can rely on the contract (i.e. only use methods that
are specified in the interface). Thus, for the model developers and scientific researchers the
interface is the point for discussions about the data to be exchanged.

A concrete example of a provided and required interface is given later on when we illustrate
the application of the framework in Chapter 9. The following invariant expresses a consistency
requirement for data exchange which must be satisfied for any integrative simulation.

Invariant for data exchange

• In an integrative simulation, for each required interface of each participating model there
exists exactly one participating model which provides that interface.

This invariant can be formalised in terms of the following OCL-expression:

context S imu l a t i o n inv :
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Figure 5.2: Dynamic concepts model for data exchange
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s e l f . p a r t i c i p a t i n gMod e l s . f o r A l l (m |
m. r e qu i r e d −>f o r A l l ( r |

s e l f . p a r t i c i p a t i n gMod e l s −>one ( n |
n . p rov ided −>i n c l u d e s ( r ) ) ) )

Of course, besides the static concepts model, we have also to extend the dynamic concepts
model in order to consider data exchange. As the simulation models are equipped with pro-
vided and required interfaces, it is task for the simulation to link these interfaces correctly.
For this purpose, the message linkModels has been included into the dynamic model (cf. Fig-
ure 5.2) just after creation of all participating models and before the life cycle of the single
models is activated by the start message.

5.2 Design
In this section we provide a design model for the view “data exchange” which evolved from
the requirements model.

5.2.1 Structural Design
An overview diagram of the static design model is depicted in Figure 5.3. In the diagram the
classes which have been added in the view “data exchange” are denoted by the property {new}
whereas the classes which have been extended with respect to the base are denoted with the
property {ext}. All other classes remained unchanged with respect to the base view.

New elements are the class LinkAdmin and the interface DataInterface which is marked with
the stereotype «base interface» to denote that this interface belongs to the developer interface
of the framework. All other classes in Figure 5.3 except for UserInterface have been extended
in a way.

The interface DataInterface is just a marking interface (i.e. it does not define own opera-
tions) to provide a common supertype for all interfaces destined for data exchange. In the fol-
lowing we concentrate on the classes AbstractModel, LinkAdmin and ModelMetadata which
are the most interesting ones of the current view. All other classes depicted in Figure 5.3 are
detailed in Appendix A.2.1.

AbstractModel

The class AbstractModel (cf. Figure 5.4) is extended by a qualified association to the interface
DataInterface. The associated set of objects of type DataInterface is the set of objects which
provide import data for the particular simulation model. Each object is qualified by the name
of the interface which defines the data to be exchanged. For setting an import object for a
particular interface name, the operation setImport is provided. The visibility of this operation
is package private because it is designed to be called from framework classes only. In contrast,
the corresponding query getImport which expects an interface name as parameter and delivers
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Figure 5.3: Overview of the class design model in the view “Data Exchange”
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Figure 5.4: Details of the class AbstractModel
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the respective import object has public visibility. In order to obtain a valuable result from this
query, the following precondition must hold:

context Abst ractMode l : : g e t Impo r t ( i n t e r f aceName : Str ing )
pre : s e l f .mmd. imp o r t I n t e r f a c e s −>e x i s t s ( s | s = in te r f a ceName )
post : r e s u l t <> n u l l

and r e s u l t . getType ( ) . getName ( ) = in te r f aceName

In other words, the interface name for which an implementing object is requested must be
contained in the list of import interfaces of the respective ModelMetadata object.

In the view “data exchange” the optional1 plug point getImplementor is introduced. The
plug point is called from the framework core to obtain an implementing object for an export
interface of the particular model.

LinkAdmin

Figure 5.5: Details of the class LinkAdmin

The class LinkAdmin is designed for managing the correct linking between simulation mod-
els for data exchange. For this purpose it provides the operations registerExportInterface and
retrieveImportInterface. The procedure of linking data interfaces is described in detail in Sec-
tion 5.2.2 where the behaviour of the classes is considered.

1A plug point is optional if a default implementation is provided by the framework.
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ModelMetadata

Figure 5.6: Details of the class ModelMetadata

The class ModelMetadata has been extended by the attributes exportInterfaces and import-
Interfaces, both of type String[*], and their respective getters. Of course, the parameter list
of the constructor has been also extended to carry values for these attributes. The values of
the attributes provide the names of the export and import interfaces of the simulation model
respectively. The attributes play a role for the validity of the SimulationConfiguration which
is stated by the following postcondition of the query isValid:

context S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s im u l a t i o n I d <> ""

and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n g . Models−>f o r A l l (m | m. i s V a l i d ( ) )
and s e l f . p a r t i c i p a t i n gMod e l s . f o r A l l (m |

m. imp o r t I n t e r f a c e s −>f o r A l l ( i |
s e l f . p a r t i c i p a t i n gMod e l s −>one ( n |

n . e x p o r t I n t e r f a c e s −>i n c l u d e s ( i ) ) ) )

context ModelMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . mode l Id <> ""

and s e l f . mode lC la s s <> ""
and s e l f . e x p o r t I n t e r f a c e s <> n u l l
and s e l f . i m p o r t I n t e r f a c e s <> n u l l
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Note that if the query isValid results to true then obviously the invariant for data exchange
stated in Section 5.1 is fulfilled.

5.2.2 Dynamic Design Model

Figure 5.7: Interaction overview diagram of the view “Data Exchange”

The dynamic design model for the view “data exchange” is given by the interaction overview
diagram in Figure 5.7. The most important extension with respect to the base view is the
additional sequence diagram initModelˆdata referenced within the diagram createAndRun-
Modelˆdata. In the following we will detail about this diagram, whereas the details of the
remaining diagrams can be found in Appendix A.2.2.

So let us consider the interactions in the diagram initModelˆdata (cf. Figure 5.8). The task
described by the interactions contained in this diagram is to register an implementing object
for each export interface of the respective simulation model to the link administration and
then to request an implementing object for each import interface from the link administration.
Within the referenced diagrams retrieveExportInterfaces and retrieveImportInterfaces the set
of names of export interfaces and import interfaces is requested from the ModelMetadata
object mmd respectively. The diagram is quite self-explanatory, but we want to point out the
following details.

Firstly consider the break fragment on the lifeline of ModelCore. This fragment is necessary
as it might be possible that an interface type cannot be resolved (e.g., when it is misspelled
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Figure 5.8: Sequence diagram initModelˆdata in the view “Data Exchange”
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in the model meta data). In this case the result of the plug-point call getImplementor is null
and the condition of the break fragment holds. The course of action continues with calling
the formal gate exception on the interaction use handleException which has been introduced
in Section 4.3 (cf. Figure 4.8). Note that according to our semantics of a break fragment the
system terminates with the execution of the interaction use handleExecption.

Secondly note that the lowermost activation on the lifeline of LinkAdmin is guarded by an
enable condition, i.e. the caller of the operation retrieveImportInterface is blocked until the
condition implementors[name]<>null results to true. Remember that the interactions of this
diagram are performed for each participating simulation model, but the LinkAdmin object is
always the same in each diagram. Hence it is guaranteed by the isValid property of Sim-
ulationConfiguration which has been checked before creating the SimulationAdmin that the
enable condition once results to true.

5.3 Components
The component architecture of the view “data exchange” is depicted in Figure 5.9. With re-
spect to the base view the architecture newly comprises the component ModelLinking which
is connected to the component Simulation by the interface ModelLinkingAccess and to the
component Model by the interface LinkHandler.2 The latter interface provides the operations
registerExportInterface and retrieveImportInterface by which the data links between simula-
tion models are established as described in Section 5.2.2. The details of the components
Simulation, ModelLinking and Model can be found in Appendix A.2.3.

5.4 Conformance with the Development Methodology
After elaborating the architecture of the view “Data Exchange between Simulation Models”
(or data view for short), we consider again our development methodology. In the current
chapter the following extension and refinement steps have been performed.

reqbase ↝ desbase ↝ cmpbase

; ; ;
reqdata ↝ desdata ↝ cmpdata

In Section 4.5 we have already considered the refinement steps of the base view (the uppermost
line in the above diagram). Hence it remains to prove that,

1. the abstraction levels of the data view are in refinement relation, and

2Correctly speaking, the components are connected by assembly connectors which refer to the respective inter-
face.
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5 View “Data exchange”

2. each abstraction level of the data view is an extension of the respective level of the base
view,

in order that the above diagram commutes.
We leave the proof of (1) to the reader, as it is similar to the one in Section 4.5, and con-

centrate on (2) in the following. Of course we could use the mathematical notation introduced
in Chapter 3 for the proof, but this would soon lead to an overwhelming effort. So we restrict
ourselves to an informal argumentation.

• reqbase↪ reqdata.

For the structural models this is obvious, as omitting the interface DataInterface and its
associations from the data view requirements model results in the requirements model
of the base view.

Considering the behavioural models, one can find that the model of the data view (given
by the sequence diagram executeSimulationˆdata in Figure 5.2) covers the same life-
lines as the corresponding model of the base view (Figure 4.3) and is extended by ex-
actly one interaction fragment, namely the recursive message call linkModels on the
lifeline of type Simulation. Note that, although the loop fragment is split into two parts,
the partial order of the interaction fragments of the base view diagram is preserved in
the data view diagram, so that we have in fact an extension here.

• desbase↪ desdata.

Let us first consider the structural model. Looking at the respective overview diagrams,
Figure 4.4 for the base view and Figure 5.3 for the data view, one can see, that the
former is extended by the class LinkAdmin and the interface DataInterface and their
related associations. We still have to show that the remaining classes in the data view
model are extensions of the respective classes of the base view model. The class Ab-
stractModel is extended by the operation setImport, the plug-point getImplementor and
the query getImport. In the class ModelCore the parameter list of the constructor has
been extended by an entry linkAdmin:LinkAdmin. Finally, the class ModelMetadata
is extended by the attributes importInterfaces and exportInterfaces and their respective
queries. Likewise the parameter list of the constructor of this class is extended to incor-
porate values for the new attributes.

Concerning the behavioural model, we have to look at the nested sequence diagrams
executeSimulation in either view. The respective interaction overview diagrams, Fig-
ure 4.6 for the base view and Figure 5.7 for the data view, differ only in the diagram
initModelˆdata which is additional to the data view. Hence, in order to verify the ex-
tension properties for the whole diagram, it is sufficient to show them for the single
corresponding interaction uses in the nested sequence diagram. We do this from inside
to outside.

The innermost diagram is named runModel, and these diagrams coincide in each view.
The next diagram in the hierarchy to consider is createAndRunModel. Here the creation
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of the ModelCore instance is equipped with an additional parameter in the data view.
Moreover, the interaction use initModelˆdata is additional to the data view diagram (as
already mentioned before). In the diagram runSimulation one can find the creation of
a LinkAdmin instance in the data view as an extension of the base view. The outermost
diagram, executeSimulation is again equivalent in both views.

In summary we have seen, that the design model of the data view is indeed an extension
of the design model of the base view.

• cmpbase↪ cmpdata.

We consider the architecture diagrams of the components level of each view. Obviously,
by omitting the component ModelLinking and its attached assembly connectors from the
data view model (cf. Figure 5.9), we obtain the corresponding model of the base view
(Figure 4.9). It remains to prove that the components Simulation and Model of the data
view are extensions of the corresponding components of the base view, but this can
be reduced to the proof on the design level, as the transition from the design to the
components level is only a structural refinement step.

This completes the proof.

5.5 Discussion
In principle there exist several approaches to define data exchange between simulation models.
Our approach makes use of dedicated interfaces to specify data exchange. Each interface plays
two roles; it acts as export interface for the one, and as import interface for the other model.
Hence it is easy to check whether a simulation configuration is complete, i.e. for each import
interface exists a simulation model offering the same interface as export interface. It is also
possible to group coherent exchange parameters together in one interface in order to augment
clarity.

Another approach of connecting simulation models is the usage of generic interfaces, like,
e.g. within OpenMI (cf. [GGW07]) and ModCom (cf. [HBvEL03]). For instance, within
OpenMI an interface IQuantity requires that an exchange item defines properties like ID,
description, value type, and dimension. The linking of corresponding output and input ex-
change items is done – which is also the case within ModCom, OMS (cf. [KKO05]) and
TIME (cf. [RSP+03]) – by means of a graphical user interface at run time. For each exchange
item a separate link has to be established.
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5 View “Data exchange”

Figure 5.9: Architecture in the view “Data Exchange”

94



6
View “Modelling of the Simulation

Space”

base
req ↝ des ↝ cmp

data
req ↝ des ↝ cmp

space
req ↝ des ↝ cmp

time
req ↝ des ↝ cmp

integration
cmp

In an integrative environmental simulation the consistent treatment of the underlying simula-
tion space is crucial. Hence in this chapter we discuss the view “Modelling of the Simulation
Space” again according to our development methodology. We begin with stating the require-
ments and concepts in Section 6.1, and then move on to develop a class design model in
Section 6.2. The component model of this view is presented in Section 6.3, before the chapter
is concluded with a brief discussion about related approaches for spatial modelling.
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6 View “Simulation Space”

Figure 6.1: Requirements model for the view “simulation space”

6.1 Requirements
It is obvious that in spatially distributed simulations one needs geographical units, which in the
following will be called proxels. The term proxel (cf. [TK99]) stems from process pixel and
suggests that a proxel does not only model a structural element of the simulation space, but
it shows also dynamic behaviour by simulating the environmental processes on this particular
geographical unit. The entire simulation area is then modelled by a set of (non-overlapping)
proxels.

The spatial requirements of an integrative simulation are described by the UML class di-
agram in Figure 6.1. It says that a simulation concerns always exactly one simulation area
which, in turn, consists of a set of proxels. The class Proxel requires that each proxel has a
unique identifier pid and an operation computeProxel() to compute the next state of a proxel
in each time step. Moreover, each proxel can have a number of properties which must be
common to all simulation models, like, e.g., geographical coordinates, elevation, land use
(cf. [Bra06]), etc.

On the other hand, each simulation model has a set of proxels, on which it operates. The
following invariant requires that the models participating in an integrative simulation agree on
the set of proxels determined by the area of the simulation.

Invariant for the simulation space

• In an integrative simulation, all participating models operate (only) on proxels which
belong to the simulation area of the simulation.

This requirement is expressed in terms of an OCL constraint as follows.
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context S imu l a t i o n
inv a r ea :

models−>f o r A l l (m |
m. p r o x e l s . p id−>asSe t ( ) = s e l f . a r ea . p r o x e l s . p id−>asSe t ( )
and m. p r o x e l s −>f o r A l l ( p1 , p2 |

p1 . p i d = p2 . p i d imp l i e s p1 = p2 ) )

The basic structural properties of the denoted location in the simulation area (like e.g. geo-
graphical coordinates, elevation, area) are represented by the attributes property1, property2,
etc. The value of each property can be a scalar, a vector or an instance of a complex data struc-
ture. To ensure consistency we require that for all participating models, the proxels with the
same ID have the same value for each property defined for the respective simulation area. We
specify this requirement by an OCL expression too, assuming an appropriate equals relation
on each property type which is for simplicity expressed by = in the following OCL invariant.

context S imu l a t i o n
inv c o n s i s t e n c y :

models . f o r A l l (m1, m2 |
m1 . p r o x e l s −>f o r A l l ( p1 |

m2 . p r o x e l s −>f o r A l l ( p2 |
p1 . p i d = p2 . p i d imp l i e s

( p1 . p r op e r t y 1 = p2 . p r op e r t y 1 )
and p1 . p r op e r t y 2 = p2 . p r op e r t y 2 )
and . . . ) ) ) )

let us now consider how the proxel concept is taken into account in the dynamic model.
We observe in Figure 6.2 that the sequence diagram executeSimulationˆspace contains three
loop fragments concerning the lifeline of the type Proxel within the model execution loop
fragment. Each of the new loop fragments ranges over the set of proxels associated to the
simulation model. In the first loop the single proxel objects are created, in the second loop
they are initialised and in the third, the computation of the model is delegated to the single
proxels.

6.2 Design
In this section we present the class design model of the view “simulation space” which was
developed from the concepts model.

6.2.1 Structural Design
Let us first take a look at the structural design model an overview of which is given by the class
diagram in Figure 6.3. Several classes have been added in this view which we will describe
briefly in the following. The details of these classes – in the case they are not displayed below
– can be found in Appendix A.3.1.
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6 View “Simulation Space”

Figure 6.2: Conceptual sequence diagram for the view “simulation space”98



6.2 Design

Figure 6.3: Class design model in the view “simulation space” (overview)
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6 View “Simulation Space”

We start on the top of the left hand side of the class diagram in Figure 6.3. The abstract
base class ResourceHandler is responsible for loading data resources (like e.g. spatial initiali-
sation data) into the system. An implementation of this class has to implement the plug-point
loadResource which yields a DataTable object from a ResourceMetadata instance. The us-
age of the abstract base class ResourceHandler leaves undetermined from which place the data
resources are loaded in a concrete system. This place might be a data base or just a file system.

The class BasedataAdmin provides a storage for the data resources used in the system.
The simulation models can query this data by calling the operation getBasedata. The set of
resources to be stored is determined by the respective SimulationConfiguration.

Figure 6.4: Details of the class ProxelTable

The class ProxelTable (cf. Figure 6.4) is one of the central classes of the view “simulation
space” as it is responsible for the initialisation of the spatial part of a simulation model. The
initialisation process is described in the following section. Each simulation model possesses
exactly one ProxelTable instance. Moreover, the class ProxelTable stores a set proxels of Ab-
stractProxel objects which may be queried by the simulation model to execute a computation
on the specific proxel or to set or retrieve values of proxel properties. The cardinality of this set
is determined by the property nrProxels of the class AreaMetadata which is, in turn, a property
of a SimulationConfiguration, and hence has the same value for all participating models of the
respective simulation. In particular that means that the operation getProxel yields a proxel
object only if the parameter value is between zero and the number of proxels of the respective
area. We express this by the following OCL condition:
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6.2 Design

context Proxe lTab l e : : g e tP r o x e l ( p i d : Integer ) : Ab s t r a c tP r o x e l
pre : p id >0 and pid<=area . n rP r o x e l s
post : r e s u l t <>n u l l and r e s u l t . p i d=p id

Figure 6.5: Details of the class AbstractProxel

The base class AbstractProxel represents an (abstract) unit of the simulation space (which
we call proxel; cf. Section 6.1). The spatial unit is abstract in that sense that each simulation
model has to define a concrete subclass of AbstractProxel to which it may add the spatial
properties relevant for the specific model (see Section 9.3 for an example). In a concrete
subclass the plug-point computeProxel has to be implemented appropriately.

There are two more classes shown on the left hand side of Figure 6.7, namely the classes
DataElement and DataTable. While the base class DataElement describes an abstract data
type (which has to be replaced by a concrete data type; see Section 9.2 for the use of data
types) the class DataTable is intended for storing a map of DataElements where each element
can be assigned to a certain proxel via the qualified association with the proxel identifier pid
as qualifier.

On the right hand side of Figure 6.3 we find some classes marked with the stereotype «new»
as well. The class ResourceMetadata describes a data resource (like, e.g. a file or a database
table) which is, in turn, contains the initialisation values for a certain AreaProperty. A simu-
lation area is described by the class AreaMetadata (cf. Figure 6.6), which contains besides an
identifier areaId and a description of the area the number of proxels (property nrProxels) and a
set of properties. Such a property might consist of, e.g., geographical coordinates, elevation,
etc. For each property a data resource containing initial values has to provided by the Sim-
ulationConfiguration, which is reflected by the following excerpt of the postcondition of the
query isValid:

context S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )

101



6 View “Simulation Space”

Figure 6.6: Details of the class AreaMetadata

. . .
post : s e l f . a r ea . p r o p e r t i e s −>f o r A l l ( p |

s e l f . r e s o u r c e s −>e x i s t s ( r | r . p r o p e r t y = p ) )
. . .

For the sake of completeness we provide the complete postcondition of the query isValid
and its dependent queries in the following.

context S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . s i m u l a t i o n I d <> ""
and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n g . Models−>f o r A l l (m | m. i s V a l i d ( ) )
and s e l f . a r ea . i s V a l i d ( )
and s e l f . r e s o u r c e s −>f o r A l l ( r | r . i s V a l i d ( ) )
and s e l f . a r ea . p r o p e r t i e s −>f o r A l l ( p |
s e l f . r e s o u r c e s −>e x i s t s ( r | r . p r o p e r t y = p ) )

context ModelMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . mode l Id <> ""

and s e l f . mode lC la s s <> ""
and s e l f . p r o x e l C l a s s <> ""

context AreaMetadata : : i s V a l i d ( )
pre : t r u e
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post : r e s u l t = a r e a I d <> ""
and d e s c r i p t i o n <> ""
and n rP r o x e l s > 0
and p r o p e r t i e s <> n u l l
and p r o p e r t i e s −>f o r A l l ( p | p . i s V a l i d ( ) )

context ResourceMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = r e s o u r c e I d <>""

and d e s c r i p t i o n <> ""
and r e sou r ceType <> ""
and r e s o u r c e L o c a t i o n <> ""
and p r op e r t y . i s V a l i d ( )

context AreaPrope r t y : : i s V a l i d ( )
pre : t r u e
post : name <> "" and type <> ""

6.2.2 Behavioural Design
An overview of the behaviour in the view “simulation space” is given in Figure 6.7. We notice
that with respect to the base view the diagram is extended by the two referenced sequence di-
agrams initBasedataAdminˆspace and initModelˆspace. We will detail on these two diagrams
in the following, while for the details of the other diagrams we refer to Appendix A.3.2.

The interactions of the sequence diagram initBasedataAdminˆspace in Figure 6.8 describe
how the data resources are loaded into the system. First, the necessary resources are queried
from the SimulationConfiguration. Then a new ResourceHandler object is created from which
– within a loop over all ResourceMetadata objects obtained from the simulation configuration
– the needed resources are requested by calling the operation loadResource. The return value
of this operation should be a DataTable object containing the requested data.

Of course it might occur that the requested resource does not exist or cannot be found. For
this case the postcondition of loadresource allows the return value to be null. This exceptional
situation is caught by the following break fragment which is executed under the condition
dt=null where dt denotes the return value of loadResource. In this case the course of action
continues (and terminates1) with the usual exception handling by means of the interaction use
handleException (cf. Figure 4.8).

Let us now consider the sequence diagram initModelˆspace depicted in Figure 6.9. It de-
scribes how the spatial aspects of simulation model are initialised. First, a ProxelTable instance
is created by the respective ModelCore. Then, within a loop ranging over the proxel identifiers
of the respective simulation area, a Proxel object is created for each proxel id. The postcondi-
tion of the constructor ensures that the created object is either null or of the correct type, i.e.

1Remember our semantics of a break fragment defined in Section 3.1.2.
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Figure 6.7: Interaction overview diagram on the view “simulation space”

the type specified by the property proxelClass of the ModelMetadata.

If the proxel object is null – this might be the case if the corresponding class definition can-
not be found – the course of action continues (and terminates) as defined by the break fragment
by calling the formal gate exception on the interaction use handleException (cf. Figure 4.8 in
Section 4.3.2).

In the normal case, i.e. when the proxel objects have been created correctly, the course of
action continues as follows. Within another loop – this time ranging over the properties of the
simulation area – the proxels are initialised with data. For each property p a DataTable object
dt is requested from the BasedataAdmin. Note that the object dt cannot be null, as this was
checked already when initialising the BasedataAdmin. Within a nested loop, again ranging
over the set of proxel identifiers, the values contained in dt are distributed over the proxels by
calling the setter setProperty. Note that the spatial structures of ProxelTable and DataTable
coincide, that means that a value of a DataTable stored under pid belongs to a proxel object
stored under the same pid in the ProxelTable.

Finally, the initialised ProxelTable object is stored as property proxelTable of ModelCore
(cf. the respective state invariant on the lifeline of ModelCore) as well as it is set as property
of AbstractModel by calling the setter setProxelTable.
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Figure 6.8: Sequence diagram initBasedataAdminˆspace

6.3 Components
The component architecture of the view “simulation space” can be found in Figure 6.10. The
details of the single components are depicted in Appendix A.3.3.

With respect to the base view the components Basedata and Proxel have been added. While
Basedata contains the classes regarding the initialisation of the data resources, the component
Proxel comprises the spatial aspects of a simulation model. Hence this component is designed
as a subcomponent of Model.

6.4 Conformance with the Development Methodology
In this chapter we have elaborated the architecture of the view “Modelling of the Simulation
Space” (or space view for short) which corresponds to the following extension and refinement
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Figure 6.9: Sequence diagram initModelˆspace
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Figure 6.10: Architecture in the view “simulation space”
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steps according to our development methodology.

reqbase ↝ desbase ↝ cmpbase

; ; ;
reqspace ↝ desspace ↝ cmpspace

Again, as the refinement of the base view has already been shown in Section 4.5, one has to
prove that

1. the abstraction levels of the space view are in refinement relation, and

2. each abstraction level of the space view is an extension of the respective level of the
base view.

In both cases we leave the proof to the reader as they can be produced analogously to those
provided in Sections 4.5 and 5.4 respectively.

6.5 Discussion
The spatial resolution is – beside the time step – one of the most important properties of a
simulation model. When coupling models with different spatial resolution the consistency of
exchanged data has to be taken into account.

There are several possibilities to ensure consistency. First, each model operates on its own
spatial resolution and either the export model, the import model, or a dedicated conversion
component is responsible for converting the spatial data to the appropriate resolution. In this
case one has to bear in mind that converting spatial data is not a trivial task, in particular when
converting from a coarse-grained resolution to a more fine-grained one Second, each model
operates – at least with respect to the data to be exchanged – on a common spatial model.

Our approach covers – on the demand of the underlying research project – a common spatial
modelling for the exchanged data with consistent initialisation of common base data handled
on framework level. This implies of course more effort for model developers in converting
spatial data to their appropriate resolution, but yields more reliable simulation results. The
approach of OMS (cf. [KKO05]) which uses so called Spatial Compound Components as
spatial units is the most similar approach to ours. In contrast, ModCom (cf. [HBvEL03])
does not support spatial modelling on the framework level at all, delegating this to the single
models. TIME (cf. [RSP+03]) mainly supports raster based spatial models, while OpenMI
(cf. [GGW07]) again uses a generic approach by defining an interface ElementSet which cov-
ers spatial properties.
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View “Time Coordination of

Integrative Simulations”

base
req ↝ des ↝ cmp

data
req ↝ des ↝ cmp

space
req ↝ des ↝ cmp

time
req ↝ des ↝ cmp

integration
cmp

An important characteristics of our problem domain is the concurrent execution of different
simulation models which iteratively exchange information at run time via their interfaces. In
order to guarantee the consistency of data exchange during a simulation run, the single sim-
ulation models must be appropriately coordinated with respect to the progressing simulation
time. The correct coordination is a non-trivial task since, in general, simulation models have
different, individual time steps determining the model time between two consecutive compu-
tations. Model time steps depend, of course, on the simulated processes which typically range
from minutes or hours, like in natural sciences, to months, like in social sciences. Hence a
precise, unambiguous specification of the coordination problem is mandatory.

In this chapter we provide such a specification by means of the process algebra Finite State
Processes (FSP) [MK06] which has been presented by the author in [HL05] and [HL06].
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The usage of FSP has several advantages: it permits a clear distinction between the (non-
constructive) specification of requirements and the specification of a design model; the formal
requirements can be validated with respect to the intuitive requirements by visualising them as
labelled transition systems; FSP comes along with a model checking tool Labelled Transition
System Analyser (LTSA) [LTS11] which allows for checking the correctness of the design
model with respect to the requirements. An example of a formalisation of the coordination
problem on a meta level using purely mathematical notations is given in [BK04].

This chapter is again organised according to our methodology provided in Chapter 3, hence
we have a section stating the requirements and concepts of the view (Section 7.1), one where
the class design is developed (Section 7.2) and finally there is a section presenting the com-
ponent design (Section 7.3). The chapter closes with a brief discussion of our and related
approaches for time coordination (Section 7.5).

7.1 Requirements
We first extend the static concepts model of the base given in Figure 4.2. The result of the ex-
tension is depicted in Figure 7.1 and explained in the following. A simulation model simulates
a physical or social process for a certain period of time which we call simulation time. The
simulation time is finite which means that there is always a begin and an end time, modelled
by the respective attributes of the class Simulation. As in our approach only time-discrete
simulation models are considered, we can represent the whole simulation period by a strictly
ordered, discrete set of points in time, at which data is provided by a simulation model. Each
model has an individual time step (cf. attribute timeStep of the class Model) which determines
the distance between two subsequent simulation points. For instance, a meteorological model
provides the air temperature every hour, while a groundwater model provides the amount of
groundwater withdrawal only once a day. We assume that the time step of a model remains
fixed during the whole simulation.

Figure 7.1: Concept model of the view “time coordination”

In contrast to a stand-alone simulation model, a coupled simulation model not only com-
putes data, but rather has to perform activities concerning data exchange. The general life
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cycle that a coupled simulation model must follow can be described as follows.

• provide initial data at the model’s provided interfaces

• while not at simulation end

– get data from the model’s required interfaces

– compute new data for the next time step

– provide newly computed data at the model’s provided interfaces

In the sequence diagram in Figure 7.2 the interaction executeSimulation of the base (cf. Fig-
ure 4.3) is extended by this life cycle, but without taking into account any coordination effort.
Before we address the problems arising from this naive approach of coupling models we de-
velop a formal description of a simulation model.

7.1.1 Formalisation of a Simulation Model
For the formalisation of a model’s life cycle we use the process algebra Finite State Processes
FSP [MK06] which is based on the process algebra Communicating Sequential Processes
(CCS) [Hoa85]. The (discrete) simulation time is modelled by natural numbers. The follow-
ing FSP process MODEL specifies the general behaviour of a simulation model. In order to be
generally applicable the process is parametrised with respect to the model’s time step. Note
that in the process definition we have to provide a default time step (e.g. Step = 1) which is
necessary according to the finite states assumption of FSP. For the same reason it is necessary
to model the simulation start and the simulation end by some predefined constants. The se-
quence of actions in line 8, getData[t ] −> compute[t+Step] −> provide[t+Step], is iteratively
performed with increasing time t and thus formalises the iteration in the informal description
of a model’s life cycle given above. Note that the computation of new data for time t+Step re-
lies on data obtained for time t. This time difference avoids deadlocks of concurrently running
models (in the case of feedback loops) but it may also lead to imprecisions whose relevance
must be analysed in concrete cases and, if necessary, can be solved by using smaller time
steps.

1 const S imSta r t = 0
2 const SimEnd = 6
3 range SimTime = SimSta r t . . SimEnd
4
5 MODEL( Step = 1) = ( s t a r t −> pro v i d e [ S imSta r t ] −> M[ S imSta r t ] ) ,
6 M[ t : SimTime ] =
7 i f ( t+Step <= SimEnd )
8 then ( getData [ t ] −> compute [ t+Step ] −> pro v i d e [ t+Step ] −>
9 M[ t+Step ] )

10 e l s e ( f i n i s h −> STOP) .
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Figure 7.2: Conceptual sequence diagram of the view “time coordination”
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In the above process description the (indexed) actions prov[x] represent providing of export
data which are valid at time x, the actions get[x] represent getting of import data which are
valid at time x and the actions compute[x] represent the computation of new data based on
import data which are valid at time x. Indeed the choice of the time dependent indices of
the actions is crucial for the behaviour of the whole system to be developed. To explain our
choice let us assume for the moment that the simulation time is a multiple of the model’s time
step. Then, according to the above process description, the last data that a model gets is valid
at time SimEnd −Step and the last data a model provides is valid at time SimEnd. For the
whole simulation, this means that imported data is considered to be last recently valid for the
computation of new export values to be valid at time t if the imported data is valid at time
t −Step.

Of course, there are other choices for the definition of last recently valid data. For instance,
the intuitively best choice would be to require that the imported values used for the compu-
tation of exported values to be valid at time t are also valid at time t (instead of being valid
at time t − Step). But then the analysis of any attempt to construct a design model for the
coordination problem will show that there is no deadlock-free solution (whenever there are, as
usual, mutually dependent export and import data).

To represent a particular instance of a simulation model we have to provide a model name
(model identifier) and the particular time step of the model under consideration. For specifying
model identifiers we use process labels and the time step of a model is determined by an actual
parameter. For instance, the FSP processes [1] ∶ MODEL(2) and [2] ∶ MODEL(3) represent
two simulation models, one with number 1 and time step 2 and the other one with number 2
and time step 3, resp. The behaviour of model 2 is illustrated by the LTS in Figure 7.3.

0 1 2 3 54 6 7 8

[2].start [2].prov[0] [2].get[0] [2].compute[0] [2].prov[3] [2].get[3] [2].compute[3] [2].prov[6]

Figure 7.3: LTS of a simulation model

7.1.2 The Coordination Problem
In an integrative simulation various simulation models work together by mutually exchang-
ing data via their import and export ports. Each of the participating models performs a local
simulation for the same overall time period (the global simulation time) but has usually a
different (local) time step. It is crucial for integrative simulations that each model gets, when-
ever needed, the last recently valid data from partner models. A first attempt to model an
integrative simulation could be to simply combine the processes which represent the single
simulation models by parallel composition. For instance, for the two simulation models from
above we would obtain the following composite process:

1 const NrModels = 2
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2 range Models = 1 . . NrModels
3
4 | | SYS = ( [ 1 ] :MODEL( 2 ) | | [ 2 ] :MODEL(3 ) )/{ s t a r t / [ Models ] . s t a r t }

The relabelling clause { start /[Models]. start } ensures that the processes synchronise on the
start action. Let us now consider some possible execution traces of the composite process
which illustrate three characteristic problems that we have to take into account when we want
to specify the desired safety properties for the system.

1. Missing import data

start→ [1].prov[0]→ [1].get[0]→ . . .

Model 1 gets data while model 2 has not yet provided data.

2. Obsolete import data

start → [2].prov[0]→ [1].prov[0]→ [1].get[0]→ [1].compute[2]
→ [1].prov[2]→ [1].get[2]→ [1].compute[4]→ [1].prov[4]
→ [1].get[4]→ . . .

Model 1 gets data expected to be valid at time 4 while the last data provided by model 2
was valid at time 0 and model 2 has not yet provided data valid at time 3 (which would
be the last recently valid data according to the time step of model 2).

3. Overwritten import data

start → [2].prov[0]→ [1].prov[0]→ [2].get[0]→ [2].compute[3]
→ [2].prov[3]→ [1].get[0]→ . . .

Model 1 gets data expected to be valid at time 0 while model 2 has already provided
data that is valid at time 3.

In the following we provide a formalisation of the coordination problem in terms of safety
and liveness conditions.

Safety Properties

We start by formalising the corresponding synchronisation conditions by means of FSP prop-
erty processes. The crucial idea is that the problem can be simplified if we consider only two
simulation models at a time and, moreover, if we consider each of the two models only under
one particular aspect, either as a provider or as a user of information. In the following let U
denote a user model and let P denote a provider model. From the user’s point of view we
obtain the following condition (1), from the provider’s point of view we obtain condition (2).
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(1) U gets data expected to be valid at time tU only if the following holds:
P has last provided data valid at time lastP with lastP ≤ tU and the next data that P
provides is valid at time tP with tU < tP.

(2) P provides data valid at time tP only if the following holds:
The next data that U gets is expected to be valid at time tU with tU ≥ tP.

An execution trace w of an integrative simulation with an arbitrary number of simulation
models [1] ∶MODEL(Step1), . . . ,[n] ∶MODEL(Stepn) is called legal with respect to a user U
and a provider P, if w meets the above requirements (1) and (2). We model the legal execution
traces by a generic FSP property process which is parameterised with respect to the model
number and the time step of the user and the provider model respectively.

property VALIDDATA( User=1, StepUser=1,Prov=1, StepProv=1) =
VD[ S imSta r t ] [ S imSta r t ] ,

VD[ nextGet : Time ] [ nextProv : Time ] =
(when ( nextProv −StepProv<=nextGet \& nextGet<nextProv )

[ User ] . ge t [ nextGet ] −> VD[ nextGet+StepUser ] [ nextProv ]
|when ( nextGet>=nextProv )

[ Prov ] . p rov [ nextProv ] −> VD[ nextGet ] [ nextProv+StepProv ] ) .

The first alternative of the property process formalises condition (1) from above where the
index variable nextUser corresponds to tU , nextProv corresponds to tP and nextProv−StepProv
corresponds to lastP. The second alternative formalises condition (2) from above. For the
sake of simplicity we did not take into account the end of a simulation in the above process
definition. For this purpose the process can be appropriately extended in order to avoid index
overflow when the simulation end is reached and to ensure that the user and the provider have
a clean termination.

All system requirements concerning the validity of data are now obtained by pairwise in-
stantiations of the generic property process VALIDDATA. As an example let us consider
model 1 with time step 2 as a user and model 2 with time step 3 as a provider. The corre-
sponding safety property is then given by the property process VALIDDATA(1,2,2,3). The
labelled transition system of this process is shown in Figure 7.4.

Labelled transition systems assigned to property processes have an error state, pictorially
represented by −1, and are complete in the sense that for any action and any state (apart from
the error state) there is always an outgoing transition. This transition leads to the error state
if it is not properly defined in the property process definition. Thus the legal and illegal exe-
cution traces determined by a property process are revealed. For instance, the three example
traces considered in Section 7.1.2 are illegal w.r.t. the property process VALIDDATA(1,2,2,3),
because their restrictions to the alphabet of VALIDDATA(1,2,2,3) lead to the error state.

Besides the requirements concerning the validity of exchanged data we have to cope also
with data access. Since, in reality, getting and providing data are non-atomic actions we have
to ensure that a model gets data only if no other model provides data at the same time and
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0 1 2 3 4 5 6−1

[1].get[2][1].get[0][2].prov[0] [2].prov[3] [1].get[4] [2].prov[6]

{[1].get[0..4], 

[2].prov[1..6]}

{[1].get[1..6], [2].prov[0..6]}

{[1].get.{[0..1], [3..6]}, [2].prov[0..6]}

{[1].get[0..6], [2].prov.{[0..2], [4..6]}}

{[1].get.{[0..3], [5..6]}, [2].prov[0..6]}

{[1].get[0..6], [2].prov[0..5]}

{[1].get[0..6], [2].prov[0..6]}

Figure 7.4: LTS of the property process VALIDDATA(1,2,2,3)

vice versa. To formalise mutual exclusion we first enclose the critical regions, which in our
case are represented by the get and prov actions, by corresponding enter and exit actions. For
this purpose the process definition for simulation models given above is slightly adapted in the
following way.

MODEL( Step = 1) = ( s t a r t −> INIT ) ,
INIT = ( en t e rP rov [ S imSta r t ] −> prov [ S imSta r t ] −>

ex i tP r o v [ S imSta r t ] −> M[ S imSta r t ] ) ,
M[ t : Time ] =

i f ( t+Step <= SimEnd )
then ( en t e rGe t [ t ] −> get [ t ] −> ex i tG e t [ t ] −>

compute [ t+Step ] −>
ente rP rov [ t+Step ] −> prov [ t+Step ] −>
ex i tP r o v [ t+Step ] −> M[ t+Step ] )

e l s e STOP + { Labe l s } .

where

s e t GetProvs = {{ get , prov } [ Time ] }
s e t E n t e r E x i t s = {{ ente rGet , e x i tGe t , en te rProv , e x i t P r o v } [ Time ] }
s e t Lab e l s = {GetProvs , E n t e r E x i t s }

Note that the alphabet extension by Labels is necessary for technical reasons because the
alphabet of property processes must be included in the alphabet of processes to be checked. By
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means of the enter and exit actions the desired exclusion conditions can now be expressed by a
further property process, called EXCLUSION, which follows a standard scheme; cf. [MK06].

const NrModels = 2
range Models = 1 . . NrModels
range CountModels = 0 . . NrModels

property EXCLUSION =
( [ Models ] . e n t e rGe t [ Time ] −> GET [ 1 ]
| [ Models ] . e n t e rP rov [ Time ] −> PROV[ 1 ] ) ,

GET[ i : CountModels ] =
( [ Models ] . e n t e rGe t [ Time ] −> GET[ i +1]
|when ( i >1) [ Models ] . e x i t G e t [ Time ] −> GET[ i −1]
|when ( i ==1) [ Models ] . e x i t G e t [ Time ] −> EXCLUSION) ,

PROV[ i : CountModels ] =
( [ Models ] . e n t e rP rov [ Time ] −> PROV[ i +1]
|when ( i >1) [ Models ] . e x i t P r o v [ Time ] −> PROV[ i −1]
|when ( i ==1) [ Models ] . e x i t P r o v [ Time ] −> EXCLUSION ) .

Liveness Properties

In contrast to the safety properties it is easy to identify the required liveness properties for
integrative simulations. Obviously, we want that each simulation model provides data during
the whole simulation period at any time that fits to its local time step. More formally, this
means that for all execution traces w of an integrative simulation, for all models m ∈ Models
and for each time t ∈ Time with t%Stepm = 0 we have [m].prov[t] ∈w.

7.2 Design
The specification of the system requirements of the last section is highly non-constructive. In
this section we firstly focus on a formal solution of the coordination problem in terms of an
FSP process for which we can verify that the resulting system fulfils the requirements, and
then show how the formal design model can systematically be transformed to an UML class
design model.

7.2.1 Formal Design Model
The basic idea of the formal design model is to introduce a global time-controller that coor-
dinates appropriately all simulation models participating in an integrative simulation. More
precisely, we want to design an FSP process, called TIMECONTROLLER, such that for n
simulation models the composite process
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∣∣SYS = ([1] ∶MODEL(Step1)∣∣ . . . ∣∣[n] ∶MODEL(Stepn)∣∣
TIMECONTROLLER(Step1, . . . ,Stepn))/{start/[Models].start}

restricts the execution traces of the uncontrolled simulation models to the legal ones. The
composite process SYS is then considered as the design model for the system. The (static)
structure of SYS is represented by the diagram in Figure 7.5 which indicates the required
communication links.

[n].EnterExits[1].EnterExits

[n]:MODEL(Stepn)[1]:MODEL(Step1)

TIMECONTROLLER(Step1,. . ., Stepn)

start

Figure 7.5: Structure diagram of the design model

The communication links show that each simulation model m communicates with the time-
controller via the shared enter and exit actions in the (labelled) set [m].EnterExits (see Sec-
tion 7.1.2 for the definition of EnterExits). This means that the simulation models synchronise
with the timecontroller on actions of the form [m].enterGet[ t ] etc., where m ∈ Models and
t ∈Time. It is then the task of the timecontroller to guarantee that synchronisation can only oc-
cur if the constraints determined by all property processes (given in Section 7.1) are satisfied.
For this purpose the enter actions of the timecontroller are guarded by appropriate conditions
which monitor the validity of the safety properties. To express the necessary conditions the
timecontroller is equipped with a local state (modelled by index variables) which records the
execution status of all simulation models to be coordinated. More precisely, the timecontroller
stores for each model the time for which it gets the next import data (represented by the index
nextGet) and the time for which the model will provide the next export data (represented by
the index nextProv).

The following time controller definition is formulated for the case of two simulation mod-
els where the time steps of the two models are given by parameters. It is obvious that this
description provides a general pattern which can be easily applied to an arbitrary number of
simulation models. For a timecontroller definition which is generic w.r.t. the number of sim-
ulation models one would need array types which are not available in FSP (but would be
available in SPIN [Hol04]). Let us still remark that the guards of the enter actions are inferred
from the requirements specification by building the conjunction of the guards occurring in the
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property processes for the validity of data. Moreover, note that model checking shows that
the exclusion property for get and prov is already guaranteed by these conditions and therefore
does not need a special treatment.

TIMECONTROLLER( Step1=1, Step2=1) =
( s t a r t −> TC[ S imSta r t ] [ S imSta r t ] [ S imSta r t ] [ S imSta r t ] ) ,

TC[ nextGet1 : Time ] [ nextProv1 : Time ]
[ nextGet2 : Time ] [ nextProv2 : Time ] =

(dummy [ t : Time ] −>
// en t e rGe t
(when ( nextProv1 −Step1<=t \& t<nextProv1 \&

nextProv2 −Step2<=t \& t<nextProv2 )
[ Models ] . e n t e rGe t [ t ] −>
TC[ nextGet1 ] [ nextProv1 ] [ nextGet2 ] [ nextProv2 ]

// e x i t G e t
| [ 1 ] . e x i t G e t [ t ] −> TC[ t+Step1 ] [ nextProv1 ]

[ nextGet2 ] [ nextProv2 ]
| [ 2 ] . e x i t G e t [ t ] −> TC[ nextGet1 ] [ nextProv1 ]

[ t+Step2 ] [ nextProv2 ]
// en t e rP rov
|when ( nextGet1>=t \& nextGet2>=t )

[ Models ] . e n t e rP rov [ t ] −>
TC[ nextGet1 ] [ nextProv1 ] [ nextGet2 ] [ nextProv2 ]

// e x i t P r o v
| [ 1 ] . e x i t P r o v [ t ] −>

i f ( t+Step1<=SimEnd )
then TC[ nextGet1 ] [ t+Step1 ] [ nextGet2 ] [ nextProv2 ]
e l s e TC[ S imSta r t ] [ S imSta r t ] [ S imSta r t ] [ S imSta r t ]

| [ 2 ] . e x i t P r o v [ t ] −>
i f ( t+Step2<=SimEnd )
then TC[ nextGet1 ] [ nextProv1 ] [ nextGet2 ] [ t+Step2 ]
e l s e TC[ S imSta r t ] [ S imSta r t ] [ S imSta r t ] [ S imSta r t ]

| dummy [ t ] −> TC[ nextGet1 ] [ nextProv1 ] [ nextGet2 ] [ nextProv2 ] )
)\{dummy [ Time ] } .

Let us still comment the role of the actions dummy[t:Time] in the above process description.
In fact, we would not need these actions if we could write

TC[ nextGet1 : Time ] [ nextProv1 : Time ]
[ nextGet2 : Time ] [ nextProv2 : Time ] =
// en t e rGe t
(when ( nextProv1 −Step1<=t \& t<nextProv1 \&

nextProv2 −Step2<=t \& t<nextProv2 )
[ Models ] . e n t e rGe t [ t : Time ] −>
TC[ nextGet1 ] [ nextProv1 ] [ nextGet2 ] [ nextProv2 ]
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. . .

This would make perfect sense expressing that for any m ∈ Models and for any t ∈ Time the
action [m].enterGet[ t ] can only happen if the guard is satisfied for t. Unfortunately FSP does
not support this possibility since the index variable t is considered to be undefined in the guard.
However, if we first introduce the (non-sense) actions dummy[t:Time] then the index variable
t is known where necessary. The dummy actions are made invisible by applying the hiding
operator.

As an example, the design model of a distributed simulation with two simulation models
having time steps 2 and 3 resp. is given by the following composite process.

const StepModel1 = 2
const StepModel2 = 3
| | SYS =

( [ 1 ] :MODEL( StepModel1 ) | | [ 2 ] :MODEL( StepModel2 ) | |
TIMECONTROLLER( StepModel1 , StepModel2 ) )
/{ s t a r t / [ Models ] . s t a r t } .

We cannot visualise the labelled transition system of the process SYS because it has too
many states and transitions. However, for an analysis of the behaviour of the design model we
can consider different views on the system which can be formally defined by means of the in-
terface operator. For instance, if we want to focus only on the get and prov actions executed by
the system we can build the process SYS@{[Models].GetProvs} where the set GetProvs has been
defined in Section 7.1.2. The corresponding LTS, after minimisation w.r.t. invisible actions, is
shown in Figure 7.6.
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[2].get[0] [1].get[0]

[1].get[0] [2].get[0]

[1].prov[2]

[1].get[2]

[2].prov[3]

[2].get[3]

[1].prov[4][1].get[4][2].prov[6]

[1].prov[6] [2].prov[6]

[1].prov[6]

[1].prov[0] [2].prov[0]

[1].prov[0]

[2].prov[0]

Figure 7.6: View on the get/prov actions
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Similarly one could focus on the mutual exclusion behaviour of the system by exhibiting
only the enter and exit actions, i.e. by considering the process SYS@{[Models].EnterExits}. The
(minimised) LTS of this view is depicted in Figure 7.7. As the LTS grows rapidly with the
number of actions contained, only the actions nterProv[0], exitProv[0][Models].e are considered.
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[2].enterProv[0]

[1].enterProv[0]

[1].exitProv[0]

[2].exitProv[0]

[1].enterProv[0]

[2].exitProv[0]

[1].exitProv[0]

[2].enterProv[0][1].exitProv[0]

[2].enterProv[0]

[1].enterProv[0]

[2].exitProv[0]

...

Figure 7.7: View on the enter/ exit actions

Checking the Safety Properties

In order to check that the design model indeed satisfies the required safety properties we apply
standard model checking techniques. For this purpose we construct for each property process
the parallel composition with the design model. If in the resulting LTS the error state is not
reachable then the safety property is fulfilled, otherwise it is violated. For instance, if the
two simulation models from above are involved in an integrative simulation we construct the
following processes.

| | CHECK_VALIDDATA_USER1_PROV2 =
(SYS | | VALIDDATA(1 , StepModel1 , 2 , StepModel2 ) ) .

| | CHECK_VALIDDATA_USER2_PROV1 =
(SYS | | VALIDDATA(2 , StepModel2 , 1 , StepModel1 ) ) .

| | CHECK_EXCLUSION = (SYS | | EXCLUSION ) .

The analysis with the LTSA tool shows that no errors occur, i.e. the design model satisfies
the coordination requirements for the validity of data and for get/provide exclusion. For more
complex configurations more efficient model checkers like SPIN [Hol04] should be used.
Several runs with SPIN have shown that the efficiency of model checking the design of the
timecontroller depends strongly on the distribution of the individual model steps whereby it is
beneficial if their greatest common divisor is as small as possible. Otherwise one may run out
of memory and therefore appropriate abstraction techniques have still to be investigated.
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Checking the Liveness Properties

In section 7.1.2 we have stated a liveness property which requires that each simulation model
provides data during the whole simulation period at any time that fits to its local time step. To
check this condition with LTSA we can define a collection of progress properties of the form

progress PROV_Model_m_t = { [m] . prov [ t ] }

for each m ∈ Models and t ∈ Time with t%Stepm = 0. With this approach, however, two dif-
ficulties arise. First, we obtain quite a lot of progress properties to be considered and, more
seriously, none of the properties will be fulfilled because simulations are finite but progress
properties assume infinite execution traces.

The first difficulty can be easily solved by using indexed progress properties. In our case we
define for each model a family of progress properties indexed by the time for which the model
should provide data. This means that for each m ∈ Models we obtain an (indexed) progress
property of the following form:

progress PROV_Modelm [ i : 0 . . ( SimEnd−S imSta r t )/ StepModelm ] =
{ [m] . prov [ S imSta r t + i ∗ StepModelm ]}

To overcome the second problem the idea is to introduce artificial cycles such that after a
simulation is finished it is automatically restarted. We will not further detail here the neces-
sary, straightforward modifications of the processes occurring in the design model. It should
be obvious that for checking the required liveness property for integrative simulations it is
now (necessary and) sufficient to check that the modified design model satisfies all progress
properties from above. Indeed a progress analysis with LTSA shows that no progress property
is violated. Thus, in summary, we have shown that the timecontroller-based design model is a
correct solution of the coordination problem. The corresponding LTS is shown in Figure 7.8.
Also the timecontroller must be adapted accordingly which is not detailed here.

0 1 2 3 54 6 7

[2].start [2].prov[0] [2].get[0] [2].compute[0] [2].prov[3] [2].get[3] [2].compute[3]

[2].prov[6]

Figure 7.8: Model with cycles

Again we can visualise certain views on the behaviour of the modified system. For instance,
if we focus on the actions get and prov we obtain the (minimised) LTS shown in figure 7.9.

For checking the required liveness property for integrative simulations it is now (necessary
and) sufficient to check that the modified design model satisfies all progress properties from
above. Indeed a progress analysis with LTSA shows that no progress property is violated.
Thus, in summary, we have shown that the timecontroller-based design model is a correct
solution of the coordination problem.
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Figure 7.9: The minimised LTS focussing on get/prov actions with cycles

7.2.2 Structural UML Design Model
In this section we sketch how we derive in a systematic way a UML design model from the
timecontroller-based FSP model. In principle, many steps of the translation procedure, which
follows the pragmatic ideas of Magee and Kramer provided in [MK06]1, could be automated
if the FSP model would be enhanced by additional information, saying, for instance, which
processes are considered as active or passive objects and which actions are considered as input
or output actions.

An overview of the structural UML design model is given in the class diagram in Fig-
ure 7.10. The details of the classes can be found in Appendix A.4.1. In the following we will
briefly describe the classes and their relation to the formal FSP design model.

The class Timecontroller (cf. Figure 7.11) which is newly introduced in the view “time
coordination” arises from the FSP process TIMECONTROLLER. It provides the operations
enterGet, exitGet, enterProv and exitProv which correspond to the respective actions of the
TIMECONTROLLER process. Furthermore there are qualified associations to the class Date
with role names nextProv and nextGet respectively which store the information about the
current progress of the models involved in the simulation. The class Date represents a time
point which has been modelled by a natural number in the FSP model. The associations
correspond to the indices of the local processes TC. Note that one Timecontroller instance
controls arbitrarily many ModelCore instances which is denoted by the multiplicities 1 and *
at the respective ends of the (directed) association.

1Magee and Kramer actually provide a translation scheme from FSP to Java which we adapt
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Figure 7.10: Structural UML design model in the view “time coordination” (overview)

As the process MODEL runs through the model’s life cycle, it is represented by the ac-
tive class ModelCore (cf. Figure 7.12). All actions of the MODEL process are considered
as output actions which correspond to operation calls on a Timecontroller object on the one
hand (enterGet, exitGet, enterProv, exitProv) and on a concrete simulation model object on
the other hand (getData, compute, provide) which is represented on the framework level by
the base class AbstractModel (cf. Figure 7.13). The aforementioned operations are designed
as mandatory plug-points, i.e. as abstract operations which have to be implemented in a con-
crete simulation model. The course of action is implemented in the start operation of the class
ModelCore. We will detail on this operation in the following section.

All relevant information which has been coded as global constants, process parameters or
process labels in the FSP model (like, e.g. simulation start and end, model identifiers, etc.) we
find in the UML design model as properties of the classes SimulationConfiguration and Mod-
elMetadata respectively (cf. Figure 7.14 for details of SimulationConfiguration; for details of
the remaining classes please refer to Appendix A.4.1). In contrast to the FSP model, where
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Figure 7.11: Class Timecontroller in the view “time coordination”

data only may be coded by natural numbers, we use more sophisticated types here. Therefore,
simulation begin and end (like time points in general) are modelled by the class Date which
provides query operations to decide whether a Date instance is before or after another, and
additionally, a query to obtain the consecutive time point with respect to a certain time step
(getNextDate).

The time step of a simulation model is represented by the class TimeStep which comprises
an integer attribute value as well as an enumeration property unit of type TimeStepUnit. With
this construct it is possible to express periodic time steps (like, e.g., one minute, six hours,
one day), as well as calendar-based non-periodic time steps (like, e.g., one month, one year)
which are mainly important in social sciences. Finally note, that the composite process SYS
may be viewed as represented by the class SimulationAdmin.

Finally we have to consider the query isValid of the class SimulationConfiguration the result
of which decides whether a simulation configuration is valid (and hence the corresponding
simulation is executable) or not. Concerning the temporal aspects of a simulation configura-
tion one has to ensure that

• simulation begin and simulation end are defined and begin is before end;

• each participating model comprises a valid time step, i.e. a time step value greater than
zero and a well-defined time step unit.

The conditions stated above are expressed by the following OCL conditions (note that the
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Figure 7.12: Class ModelCore in the view “time coordination”

Figure 7.13: Class AbstractModel in the view “time coordination”
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Figure 7.14: Class SimulationConfiguration in the view “time coordination”

existence of a begin and an end date is implicitly ensured by the multiplicity 1 at the respective
association ends).

context S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . s i m u l a t i o n I d <> ""

and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n g . Models−>f o r A l l (m | m. i s V a l i d ( ) )
and s e l f . b eg in . i s B e f o r e ( s e l f . end )

context ModelMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . mode l Id <> "" and s e l f . mode lC la s s <> ""

and s e l f . t imeStep . i s V a l i d ( )

context TimeStep : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . v a l u e > 0
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Figure 7.15: Interaction overview diagram of the view “time coordination”

7.2.3 Behavioural UML Design Model
Let us now consider the behavioural part of the UML design model an overview of which is
given by the interaction overview diagram in Figure 7.15. At first sight this diagram shows
no extension with respect to the interaction overview diagram of the base view, so we have to
take a closer look at the single interaction uses contained in the overview. The details of each
diagram can be found in Appendix A.4.2. In the following we will concentrate on the diagram
runModelˆtime which comprises the most interesting extension with respect to the base view.

So let us consider the sequence diagram runModelˆtime (cf. Figure 7.16). All interactions
between the operation calls init and finalize (which are already part of the base diagram) are
derived from the (extended) FSP process MODEL.

In the following we go through the diagram along the lifeline of the ModelCore object.
After the init operation call has returned the current model time has to be set to the ac-
tual simulation begin time which is specified by the respective state invariant. The state in-
variant is followed by the message call enterProv on the Timecontroller instance. As this
message call corresponds to the action enterProv which is shared by the processes TIME-
CONTROLLER and MODEL the synchronisation of these processes has to be taken into
account here. Remember that the action enterProv in the process TIMECONTROLLER
is guarded by the condition nextGet1>=t & nextGet2>=t which stands exemplary for the
condition nextGet1>=t & nextGet2>=t & ... & nextGetn>=t when considering n participat-
ing models. This condition can be translated into the following OCL statement by using the
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7.2 Design

Figure 7.16: Sequence diagram runModelˆtime
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types of the UML class design model:

context T ime c o n t r o l l e r : : e n t e rP rov ( mode l Id : Str ing , t : Date )
enable : s e l f . nextGet . f o r A l l ( d : Date | not t . i s B e f o r e ( d ) )

Note that we use the keyword to express a condition that blocks the caller of the respective
operation until the conditions becomes true (i.e. the condition has to be checked every time the
state of the affected objects changes). In Section 10.2.2 we provide an implementation pattern
for the enable condition in Java. After the enterProvide message returned, the provide message
is called on AbstractModel, i.e. on a concrete simulation model instance at run time. When
the provide operation has finished, it is signalled to the Timecontroller by calling exitProv.

After the initial providing of data the execution loop is entered which corresponds to the
conditional recursive call of the local FSP process M. The interactions within the loop are
performed until the exit condition denoted in square brackets remains false, i.e. the simulation
end is not reached. Within the loop at first the interaction pattern from above is repeated with
the enterGet, getData and exitGet message respectively. After that the current model time
is increased by the actual time step (cf. the message call inc ime to self and the correspond-
ing postcondition), before the computation of new data is activated by calling compute on
AbstractModel. At the end of the loop we find again the interaction pattern for the provide
operation and its corresponding enter and exit operations.

7.3 Component Design

The component diagram in Figure 7.17 shows the architecture of the view “time coordination”.
The architecture of this view extends the base architecture by the component TimeCoordina-
tion and its provided interfaces TimecoordinationAccess and TimecontrollerMonitor. While
the first one is intended to configure the component by setting the appropriate simulation con-
figuration (via the operation setSimulationConfiguration), the latter interface is relevant for the
coordination of the simulation models. It comprises the operations enterGet, exitGet, enter-
Prov, and exitProv, which have been described in the previous section.

The details of the components Simulation, Model and TimeCoordination in the current view
can be found in Appendix A.4.3.

7.4 Conformance with the Development Methodology

In this chapter the architecture of the view “Time Coordination of Integrative Simulations“ (or
time view for short) has been constructed which corresponds to the following extension and
refinement steps according to our development methodology.
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Figure 7.17: Architecture in the view “time coordination”

reqbase ↝ desbase ↝ cmpbase

; ; ;
reqtime ↝ destime ↝ cmptime

As the refinement of the base view has already been shown in Section 4.5, one has to prove
that

1. the abstraction levels of the time view are in refinement relation, and

2. each abstraction level of the time view is an extension of the respective level of the base
view.
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7 View “Time Coordination”

Again we leave the proof of both cases to the reader as they can be produced analogously to
those provided in Sections 4.5 and 5.4 respectively.

7.5 Discussion
Our approach for time coordination of an integrative simulation allows for the parallel exe-
cution of simulation models and guarantees that each model gains the most recent data when
importing from another model during the simulation. Of course, when comparing our ap-
proach with those inherent to other frameworks we have to face the following disadvantages.

• There might be a time lag of at most one time step between the imported data and the
current model time of the importing model (although the data is most recent). This can
be attenuated by increasing the frequency of the affected models, i.e. by reducing the
respective time steps.

• When a model with a smaller time step is connected to a model with a greater one,
then redundant data is fetched by the model with the smaller time step until the other
model changes its state again. This is, however, no essential problem but rather an
issue of performance and could be eliminated with appropriate mechanisms. For ex-
ample, an observer mechanism could be used here: the model with the smaller time
step (e.g. 1 hour) registers itself as an observer at the model with the greater time step
(e.g. 1 day); each time the latter model provides new data it notifies its observers. For
the observing models it is then sufficient to fetch the data immediately after notification
(i.e. once per day when considering the above mentioned time steps).

However, our approach is – to our knowledge – the only one which enables parallel execution
and hence, in combination with network distribution, the creation of a parallel and distributed
simulation system.

The OpenMI approach (cf. [GGW07]) of time coordination is based on a request and reply
mechanism where a chain of models is created and the first model in the chain, the so called
trigger, is activated and then calls an operation getValues on the next model of the chain, and
so on. This operation is sequentially called until the simulation end is reached. Note that the
getValues call causes the enquired model to perform a computation for the respective time
step. In the case that a model contains a cycle this would lead to a deadlock. To avoid this
deadlock each model remembers if its getValues method has been called within the current
time step (or if it initiated the getValues call chain itself) and in this case returns a so called
”best guess“ of values (e.g. an extrapolation of computed values of previous time steps) instead
of computing new values.

The OMS (cf. [KKO05]) introduces the notion of so called Time Compound Components
(TCC), which define a certain time step. Within a TCC all models having the respective time
step are sequentially called to run over a time step.
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8
Integration of the Views: The

Framework Architecture

base
req ↝ des ↝ cmp

data
req ↝ des ↝ cmp

space
req ↝ des ↝ cmp

time
req ↝ des ↝ cmp

integration
cmp

In the preceding chapters we developed an architecture for different views of the Generic
Simulation Framework under consideration. Now we are able to complete the figure above
and construct the complete framework architecture by the integration of the models of the
different views according to the methodology provided in Chapter 3. As we have seen there,
the integration process could be performed automatically, and leads to a unique result except
for renaming.

In the remainder of this chapter we first present the result of the structural integration (Sec-
tion 8.1), i.e. the integrated component architecture, and then exhibit the result of the be-
havioural integration (Section 8.2), i.e. the integrated sequence diagrams.
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8.1 Structural Integration
The result of the integration of the component architectures from the different views is shown
in Figure 8.1. The complete architecture of the framework consists of five components: Base-
Data, Simulation, TimeCoordination, ModelLinking and Model, the latter comprising a sub-
component Proxel. Note that Model is the only component exhibiting multiplicity *, which
means that multiple instances of this component exist at run time. This makes sense as the
component Model represents a generic simulation model – at run time a concrete simulation
model has to be bound to that component in order to integrate this model into the simula-
tion system – and we want to integrate an arbitrary number of simulation models within the
system. All other components are singletons as they act as controlling instances for one inte-
grative simulation.

After presenting the architecture we have to detail on the single components. Fortunately
most of the components have already been fully specified within the single views:

• the component ModelLinking within the view “data exchange”,

• the components BaseData and Proxel within the view “simulation space”, and

• the component TimeCoordination within the view “time coordination”.

So we still have to consider the details of the components Simulation and Model with its
subcomponent Proxel. For lack of space we restrict ourselves to showing the component Model
here in Figure 8.2 and refer for component Simulation to Appendix A.5.1.

Exemplarily we also want to show the integrated package metadata (cf. Figure 8.3) which
contains the class SimulationConfiguration and the types of its properties, like, e.g. Model-
Metadata, Date, AreaMetadata, etc.

The integrated postcondition of the query isValid of the class SimulationConfiguration re-
sults from the conjunction over the respective postconditions in the single views and reads as
follows:

context S imu l a t i o nCon f i g u r a t i o n : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . s i m u l a t i o n I d <> ""

and s e l f . p a r t i c i p a t i n gMod e l s <> n u l l
and s e l f . p a r t i c i p a t i n g . Models−>f o r A l l (m | m. i s V a l i d ( ) )
and s e l f . p a r t i c i p a t i n gMod e l s . f o r A l l (m |

m. imp o r t I n t e r f a c e s −>f o r A l l ( i |
s e l f . p a r t i c i p a t i n gMod e l s −>one ( n |

n . e x p o r t I n t e r f a c e s −>i n c l u d e s ( i ) ) ) )
and s e l f . a r ea . i s V a l i d ( )
and s e l f . r e s o u r c e s −>f o r A l l ( r | r . i s V a l i d ( ) )
and s e l f . a r ea . p r o p e r t i e s −>f o r A l l ( p |

s e l f . r e s o u r c e s −>e x i s t s ( r | r . p r o p e r t y = p ) )
and s e l f . b eg in . i s B e f o r e ( s e l f . end )
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8.1 Structural Integration

Figure 8.1: Architecture of the simulation framework
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Figure 8.2: Integrated component Model

The postconditions of the isValid operations which are used within the above postcondition
are listed below.

context ModelMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . mode l Id <> ""

and s e l f . mode lC la s s <> ""
and s e l f . e x p o r t I n t e r f a c e s <> n u l l
and s e l f . i m p o r t I n t e r f a c e s <> n u l l
and s e l f . p r o x e l C l a s s <> ""
and s e l f . t imeStep . i s V a l i d ( )

context AreaMetadata : : i s V a l i d ( )
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8.1 Structural Integration

Figure 8.3: Integrated package metadata
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pre : t r u e
post : r e s u l t = a r e a I d <> ""

and d e s c r i p t i o n <> ""
and n rP r o x e l s > 0
and p r o p e r t i e s <> n u l l
and p r o p e r t i e s −>f o r A l l ( p | p . i s V a l i d ( ) )

context ResourceMetadata : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = r e s o u r c e I d <>""

and d e s c r i p t i o n <> ""
and r e sou r ceType <> ""
and r e s o u r c e L o c a t i o n <> ""
and p r op e r t y . i s V a l i d ( )

context AreaPrope r t y : : i s V a l i d ( )
pre : t r u e
post : name <> "" and type <> ""

context TimeStep : : i s V a l i d ( )
pre : t r u e
post : r e s u l t = s e l f . v a l u e > 0

8.2 Behavioural Integration
The interaction overview diagram in Figure 8.4 shows the complete course of action by means
of integrated sequence diagrams. Note that the referenced sequence diagrams have been in-
tegrated from those of the different views (denoted by the postfix integration) if they have
already been present in the base view. This holds for the diagrams executeSimulation, runSim-
ulation, createAndRunModel, and runModel. Otherwise the diagrams from different views are
referenced directly and need not be integrated. Note further that – according to the methodol-
ogy – interaction fragments from different views are independent and hence may be executed
in parallel, which is denoted by the fork and join bars before and after the diagrams init-
Modelˆdata and initModelˆspace respectively. Although the diagram runModelˆintegration
is not shown here (but of course in the Appendix), we want to remark that the integration of
the diagrams from the different views in this case is equal to the diagram runModelˆtime, as
in the other views the extension with respect to the base view is trivial (i.e. the diagrams are
equal).

The integrated sequence diagram createAndRunModelˆintegration is depicted in Figure 8.5.
The remaining sequence diagrams referenced in Figure 8.4 can be found in Appendix A.5.2.
Note that the interaction uses initModelˆdata and initModelˆspace are put in different operands
of a par fragment to reveal the independent execution of the contained interactions.
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8.2 Behavioural Integration

Figure 8.4: Interaction overview diagram of the integrated views
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Figure 8.5: Sequence diagram createAndRunModelˆintegration
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9
Some Guidelines for the Application

of the Simulation Framework

This chapter provides some guidelines how the Generic Simulation Framework can be applied
within a multidisciplinary environmental research project in order to obtain and apply an inte-
grative simulation system. For this purpose a characteristic workflow for the application of the
framework is presented in Section 9.1. Then, in the subsequent sections the most important
activities within this workflow are detailed.

While the current chapter provides an abstract view on the application of the framework,
in particular without taking into account a specific programming language, in Chapter 11,
a concrete application of the framework within the multidisciplinary environmental research
project GLOWA-Danube to set up the simulation and decision support system DANUBIA is
discussed in detail.

9.1 Workflow of a Simulation Project
A simulation project is intended to examine a certain environmental problem or question, like
e.g. “how will the expected frequency of the occurrence of extreme discharge at a gage P
change within the next 100 years?” by means of simulation. A characteristic workflow for
the application of the Generic Simulation Framework on a simulation project is given by the
activity diagram in Figure 9.1.

Typically, in an integrative project a number of people from different scientific disciplines
and from different locations work together and with fill different roles within the project
(cf. [End03]). The most important roles with respect to the creation of a simulation system
are project management, model developer, and simulation administrator. These roles can are
assigned to responsibilities within the workflow which are denoted by the vertical partitions
(or “swim lanes”) in the activity diagram.
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Check in simulation models 

into central repository

Prepare simulation project

Simulation AdministratorModel DeveloperProject Management

Provide (raw) result dataPublish simulation results
Analyse and prepare

result data

[ok]

[error]

Define/Redefine

data interfaces

Develop/Reengineer

simulation models

simulation models (local)

Compile and test

from central repository

Check out simulation models

Compile and test simulation

models (integrative)

[error]

[ok]

[error]

[ok]

Execute simulation run

Figure 9.1: Workflow for the framework application (highlighted activities are detailed in sub-
sequent sections)
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9.1 Workflow of a Simulation Project

The project management normally consists of a group of leaders of the participating disci-
plines or subprojects. In each subproject at least one person should act as model developer,
and at least one person is necessary to fill the role of the central simulation administrator. Note
that the activities in the middle partition of the diagram are supposed to be performed in each
subproject separately.

In the following we describe briefly the single activities of the workflow; those activities for
which the Generic Simulation Framework is essential (highlighted by a yellow background)
are detailed in subsequent sections.

Prepare simulation project. This activity includes the definition of aims and scope of the
simulation project and the selection of an appropriate set of simulation models to obtain the
aimed result parameters.

Define data interfaces. After the participating simulation models have been selected, in-
terfaces have to be defined which specify the data to be exchanged between the models. This
task is detailed in Section 9.2.

Develop/Reengineer simulation models. With this task the responsibility within the
workflow is passed over to the single model developers which have to implement new mod-
els or reengineer existing models so that they meet the requirements of the framework. See
Section 9.3 for details.

Compile and test simulation models (local). Each model developer is obliged to com-
pile and test his/her simulation model locally before passing it over to the central simulation
administrator. For the purpose of a run time test the model developer can utilise the frame-
work core as a test environment; possibly he or she needs some dummy models acting as data
providers for the required interfaces.

Check in simulation models into central repository. If compile and run time tests in
the previous activity have been passed error-free, the model developer is allowed to check in
his/her simulation model into a central model repository1. The term simulation model includes
here

• code and/or executables of the model,

• required data (e.g. initialisation data), that is not obtained via interfaces from other mod-
els during the simulation run,

• meta data of the simulation model.
1We assume that such a repository has been set up before.
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Check out simulation models from central repository. As soon as all necessary simu-
lation models are available in the repository the simulation administrator can check out these
models (including data and meta data) and set up a simulation environment. A simulation en-
vironment is typically distributed on different computers in a local area network or on different
nodes within a computer cluster.

Compile and test simulation models (integrative). Although the simulation models
have been locally tested it is possible that they contain errors which emerge only in the inter-
action with other models. Hence the simulation models are again compiled (in order to avoid
errors caused by different compiler versions) and tested under run time conditions.

Execute simulation run. If all tests have been passed error-free, the integrative simulation
run can be executed. This task is detailed in Section 9.4. If the execution ends with an
error message – which can occur despite intensive testing – the source of the error has to be
investigated and the responsible developer(s) of the model(s) which caused the error have to
be notified about the error.

Provide (raw) result data. The result data which have been produced during the simula-
tion run must be provided to the model developers, for example by transferring them onto a
file server.

Analyse and prepare result data. It is now the task of the model developer to analyse the
result data and prepare the data for later publication.

Publish simulation results. The final step in a simulation project is to publish the results
in an appropriate manner, for example within a scientific publication.

Finally note the following remarks on the workflow described in Figure 9.1.

1. The importance of the single activities typically varies during the environmental re-
search project. While the definition of data interfaces and the development of simulation
models demands a lot of time at the beginning of a project, the execution of simulation
runs gets more and more important towards the end of the project. In the latter case, in
particular when an adequate number of simulation models already resides in the reposi-
tory, it is even possible to skip the aforementioned activities.

2. Within a simulation project often several simulation runs with the same set of partici-
pating models, but different configurations, i.e. variations of the model parameters, are
performed. This is sometimes called a simulation ensemble.

3. In the case of a long computing time of the simulation run, it is advisable to provide
some result data already during the simulation run (e.g. after one month simulation time
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has been computed). This gives model developers the opportunity to check whether
their model works correctly even in the combination with other models, and in case of
need to request a rerun of the simulation.

9.2 Design of Data Interfaces
In an integrative simulation project where models shall be linked via interfaces it is important
that the interfaces to be linked fit together.

C

BA

CToB

getDataA2():A2Type

<<interface>>
AToC

<<interface>>

AToB
<<interface>>

<<interface>>
BToA

getDataA1():A1Type

getDataB():BType

getDataC():CType

Figure 9.2: Models and Interfaces

In our approach we give the following recommendations for the definition of data interfaces
(cf. Figure 9.2).

• A data interface specifies the data exchange between two simulation models, one model
acting as provider and the other one acting as user of the data.

• In case of a bidirectional data exchange two interfaces should be specified.

• The name of the interface should reflect provider and user model (e.g. the interface
AToB has provider A and user B).

• The operations for data exchange are required to comply to a predefined signature pat-
tern of the form getX():T , where X denotes a parameter name and T a predefined data
type.

The use of project-wide common data types is strongly recommended to avoid errors caused
by the usage of different physical units in the various disciplines. For example, water flux is
typically measured by hectolitre per year in social sciences and by cubic metre per second
in natural sciences. So an agreement has to be achieved which probably might consist in the
usage of standard (SI) units. Possibly in some models data have to be converted in order
to match the standard units, but this effort is by far compensated by avoiding mistakes and
misunderstandings.
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Furthermore, the interfaces can be enhanced by specifying the expected and assured ranges
of exchanged data such that interface compatibility can be checked upon set up of a simula-
tion configuration. A syntax for specification and a tool for checking the specifications was
developed in [Wag07].

9.3 Development of a Simulation Model
The development of a simulation model is considerably facilitated by the developer interface
of the Generic Simulation Framework. In particular, the model developer can concentrate on
implementing the scientific code for the model which reflects the simulated process and is
usually contained in the compute and the computeProxel operation respectively. He or she
does not need to care about administrative issues, e.g. linking the models for data exchange or
coordinating different time steps during the simulation, as these issues are already handled by
the framework core.

In order to comply with the Generic Simulation Framework a simulation model implemen-
tation has to comprise

• a subclass of each abstract base class of the components Model and Proxel, i.e. sub-
classes of the classes AbstractModel and AbstractProxel, providing implementations of
the respective mandatory plug-points; these subclasses are called model class and proxel
class respectively;

• an instance of ModelMetadata containing the meta data of the model in an appropriate
form.

The model class must also implement the provided interfaces of the model. The form of the
meta data depends on how meta data are handled in the actual framework implementation; for
example this could be a text file containing key-value pairs defining values for the attributes
of ModelMetadata. Beyond that a model developer is free in the implementation of his/her
simulation model.

In the field of computer-based environmental simulation many well-approved simulation
models exist, often implemented in imperative programming languages like C or FORTRAN.
In order to reuse such so called legacy models within the object oriented simulation framework,
wrapping techniques can be applied. The model class then acts as a wrapper for the legacy
model. Within the plug-points appropriate routines of the FORTRAN model can be called (in
the case of Java for example by using the Java Native Interface).

Figure 9.3 provides an example for the application of the developer interface on the de-
velopment of a sample Groundwater model. While the upper part of the figure (above the
dashed line) shows the general framework classes, the lower part contains classes and objects
which have (at least) to be implemented or instantiated by the model developer. While the
base classes AbstractModel and AbstractProxel have to be specialised by concrete subclasses
(in Figure 9.3 by Groundwater and GroundwaterProxel respectively), the object of type Mod-
elMetadata represents the meta data of the model.
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DataInterface
<<base interface>>

<<plug−points>>
computeProxel()

<<queries>>

...

getPid():Integer

getProperty(...)
AbstractProxel

...

<<plug−points>>

getData(t:Date)
compute(t:Date)
provide(t:Date)

<<queries>>
proxel(pid:Integer):

<<interface>>
WatersupplyToGroundwater GroundwaterProxelGroundwater

getGroundwaterWithdrawal():
WaterFluxTable

...
inExFiltration:Real

gwWithdrawal:Real
gwLevel:Real

<<interface>>
GroundwaterToWatersupply

getGroundwaterLevel():LengthTable
getInExFiltration():WaterFluxTable

<<plug−ins>>
computeProxel()
...

exportInterfaces=["GroundwaterToWatersupply", ...]

importInterfaces=["WatersupplyToGroundwater", ...]

modelId="groundwater"

modelClass="Groundwater"

proxelClass="GroundwaterProxel"

timeStep="1 DAY"

:ModelMetadata

getGroundwaterLevel()
<<plug−ins>>

getData(t:Date)
compute(t:Date)
provide(t:Date)...

...

Groundwater Model

Developer Interface 1<<base class>>
AbstractModel

* <<base class>>
AbstractProxel

pid:Integer{key}
...

...
modelId:String
modelClass:String
proxelClass:String
exportInterfaces:String[*]
importInterfaces:String[*]

timeStep:TimeStep

isValid():Boolean{query}

ModelMetadata
<<data type>>

Figure 9.3: Application of the Developer Interface for the creation of a simulation model
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9.4 Execution of an Integrative Simulation Run
For the execution of an integrative simulation run a user interface for accessing the simula-
tion framework is indispensable. As the requested functionality of a user interface strongly
depends on the requirements of the actual research project, the user interface is not part of
the framework. However, in Chapter 4 a couple of interfaces (SimulationAccess and UserIn-
terface) have been developed which provide access to the component Simulation for a user
interface on the one hand, and define the minimum requirements for a user interface on the
other hand.

Figure 9.4 shows these interfaces once more in the context of a possible user interface
implementation UserInterfaceImpl and the framework core class SimulationAdmin.

UserInterface

finished()

error()

UserInterfaceImpl

SimulationAdmin

<<use>>

<<use>>

SimulationAccess

start()

setSimulationConfiguration(sc:SimulationConfiguration)

Figure 9.4: Interfaces between user interface and simulation framework

The interface SimulationAccess which is implemented by SimulationAdmin and used by a
user interface implementation comprises the operations setSimulationConfiguration and start.
On the other hand, the interface UserInterface contains the operations finished and error, by
which the SimulationAdmin notifies the user interface about the normal or abnormal termina-
tion of a simulation run.

Hence a user interface for the Generic Simulation Framework must be able to

• create a SimulationConfiguration object and pass it as parameter to the setSimulation-
Configuration operation,

• send the start signal,

• receive the signals finished and error and notify the user about the reception.

Moreover, the user interface implementation must be able to check, whether a SimulationCon-
figuration is valid or not.
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To set up a simulation configuration is typically a non-trivial task as it requires intrinsic
knowledge about the available simulation models, their interfaces and the goal of the simula-
tion, i.e. the kind of result that shall be obtained. The activity diagram in Figure 9.5 refines the
activity Execute simulation run which is part of the overall workflow introduced in Section 9.1.
It comprises two sub-activities, Configure simulation and Start simulation. The activity Con-
figure simulation contains several sub-activities which can be executed in parallel and with
which the properties of a SimulationConfiguration (cf. Figure8.3 on page 137) can be defined.
These properties include the simulation identifier, the set of participating models, simulation
begin and end, the simulation area and the set of resources describing the simulation space
(cf. Chapter 6). Note that the activity Start simulation can only be executed if the simulation
configuration is valid.

Define simulation begin

Define simulation end

Define simulation area

Select participating models

Start simulation

Configure simulation

Execute simulation run

Define simulation id

Select resources

[conf valid]

[conf not valid]

Figure 9.5: Sub-activities of executing a simulation run

Figure 9.6 shows an object diagram containing a sample SimulationConfiguration object
with its properties. Note that the query isValid must result to true – which is specified by
an OCL condition in Section 8.1 – in order to perform an integrative simulation with the
respective configuration. Obviously this is the case for the object depicted in Figure 9.6.

An example for a graphical user interface fulfilling the aforementioned requirements is
given in Section 11.3.2 in the context of the DANUBIA system.
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timeStep="1 MONTH"

importInterfaces=["GroundwaterToWatersupply"]

exportInterfaces=["WatersupplyToGroundwater"]

modelId="watersupply"

modelClass="Watersupply"

proxelClass="WatersupplyProxel"

simulationId="sim01"
begin="01.01.2011"
end="31.12.2060"

:SimulationConfiguration

:ModelMetadata

modelId="groundwater"

modelClass="Groundwater"

proxelClass="GroundwaterProxel"

exportInterfaces=["GroundwaterToWatersupply"]

importInterfaces=["WatersupplyToGroundwater"]

timeStep="1 DAY"

:AreaProperty

name="easting"
type="Real"

:AreaMetadata

areaId="upper danube"

description="..."

nrProxels="182750"

name="elevation"

type="Real"

:AreaProperty

resourceId="res01"

description="..."

resourceType="file"

resourceLocation="elevation.asc"

:ResourceMetadata

resourceId="res02"

description="..."

resourceType="file"

resourceLocation="easting.asc"

:ResourceMetadata

:ModelMetadata

Figure 9.6: Providing a Simulation Configuration
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10
Implementation of the Simulation

Framework in Java

In this chapter we describe a reference implementation of the Generic Simulation Framework
in the object-oriented programming language Java.

10.1 Implementation Architecture
The implementation architecture of the Generic Simulation Framework is based on a dis-
tributed client/server architecture. The network connections between the distributed compo-
nents are established by so called dynamic proxies. We detail on these issues in the remainder
of this section.

10.1.1 Distribution
Usually an integrative simulation system is quite resource intensive. In order to obtain an opti-
mal usage of the available computation resources the Generic Simulation Framework is imple-
mented as a distributed system based on a client/sever architecture. The idea of this architec-
ture is sketched in Figure 10.1. A centralised SimulationServer covers the central components
of the framework (Simulation, BaseData, ModelLinking and TimeCoordination) whereas the
single simulation models (i.e. instances of the framework component Model) reside in several
SimulationClients distributed over a network. While the solid lines in Figure 10.1 denote the
network connections between the centralised server and the clients for controlling the simula-
tion, the dashed lines between the clients denote the data connections between the simulation
models.

The network communication between the server and the clients is established by the Java
Remote Method Invocation (RMI, cf. [Gro01]) architecture. The same holds for the connec-
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Figure 10.1: Client/Server architecture of the Generic Simulation Framework

tions between the clients for data exchange. To enable remote access to a class, this class
must implement a remote interface, i.e. an interface that inherits from the predefined interface
java.rmi.Remote (in our diagrams we denote such interfaces by the stereotype «remote»).
Figure 10.2 shows the classes SimulationServer and SimulationClient which provide access to
the system on the server and the client side respectively (through their main methods).

The course of action for starting the system is the following. First, a SimulationServer has
to be started and registered to the RMI naming service (RMIRegistry). From this moment the
server is accessible via the remote interface SimulationAccess for the user interface on the one
hand, and via the remote interface ClientRegistration for the clients on the other hand. After
the server has been started, the SimulationClients may be instantiated on their different nodes,
provided with the network address of the SimulationServer. Via the network address and the
RMI naming service the server instance can be obtained, and the client registers itself by
calling the method register of the interface ClientRegistration. The server stores the registered
clients. When a simulation run is started, the server calls createSimulationClientManager on
each client, which will initiate the instantiation process of the single simulation models.

10.1.2 Dynamic Proxies
When using RMI for network communication it is usually necessary to add RMI specific
code to the involved classes and interfaces. In particular, an interface designated for remote
communication has to inherit from java.rmi.Remote and each operation has to declare to
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...

main(args:String[])

SimulationServer

...

...
clientId:String

SimulationClient

main(args:String[])...

SimulationAccess UserInterface
<<remote>><<remote>>

clients*

SimulationClientManagerAccess
register(clientId:String,

client:DanubiaClientAccess)

ClientAccessClientRegistration
<<remote>> <<remote>>

startSimulation()
setSimulationConfiguration(...)

finished()
error()

createSimulationClientManager(...):

Figure 10.2: Simulation Server and Simulation Client

throw a remote exception. In order to avoid this we introduced the concept of dynamic proxies.
The principle of dynamic proxies is depicted in Figure 10.3.

The figure is divided into three layers. The uppermost layer contains classes and interfaces
provided by the Java programming interface. The middle layer shows the actual dynamic
proxy implementation and the lowermost layer exemplifies the application of dynamic proxies
on a network connection between two classes A and B via an interface I. We do not want to
go into detail, but just want to point out, that the dynamic proxies work on basis of reflection
and are used for all kinds of network communication in the Generic Simulation Framework
(except for the initial communication described above).

10.2 Implementation Patterns

In this section we provide some implementation patterns which have been used within the ref-
erence implementation. With the first pattern design components are transformed to Java, the
second pattern shows how the enable construct used in sequence diagrams can be implemented
with synchronised Java methods, and finally we say some words about the implementation of
parallel combined fragments.
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newInstance(csi:ConnectorServerInterface,
interfaceName:String)

ConnectorClient

invoke(m:Method,...)

invokeTarget(methodName:String, ...)

ConnectorServer

server

invokeTarget(methodName:String, ...)
ConnectorServerInterface

{from java.lang.reflect}
InvocationHandler

{from java.rmi}
Remote

{from java.rmi.server}
UnicastRemoteObject

op():T

...
B

op():T...

I
A

target

<<use>>

Figure 10.3: Dynamic Proxy architecture

10.2.1 Components
As Java does not provide a means for implementing components directly we have to substitute
a UML design component with an appropriate construct. Of course a couple of approaches
dealing with components and their implementation exist, like e.g., Java/A [BHH+06], Arch-
Java [ACN02], SOFA [BHP06], Fractal [BCL+06], or the Catalysis approach [DW99], but
none of them turned out to be fully suitable for our purposes. Hence we developed a simple
implementation pattern for the components used in our methodology based on the principle
of indirect implementation (cf. [HKKR05]). In the following we describe this pattern and
illustrate it by an example.

The namespace of a component is represented by a package which is named with the com-
ponent’s name in lowercase letters. Subcomponents are represented by nested packages. A
package representing a component is denoted by the stereotype «comp impl» and contains

• implementation classes (interfaces) for all design classes (interfaces) which belong to
the internal structure of the component;

• the provided interfaces of the component;

• a public class named with the component’s name and the suffix Manager.

The implementation pattern is exemplified in Figure 10.4. The package h realises the hier-
archical component H. It comprises the nested packages c1 and c2 which represent the compo-
nents C1 and C2 respectively. Each (nested) package comprises a public manager class which
is used for accessing the component from outside, i.e. from the next higher level. Implement-
ing objects of interfaces which are required by the component are passed to the constructor
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<<component>>
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<<component>>
C2
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...
...

K4
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*
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I9

<<comp impl>>
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...

K5(k4:K4)
addI6(i6:I6)
...

K5
...

K4(i9:I9)
setK5(k5:K5)
...

K4

...
+I4

...
+I7

...
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...

...

<<comp impl>>

...

h
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getI7():I7

...
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k5k4 0..1

......

Figure 10.4: Implementation pattern applied to the component H
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of the manager class (e.g. objects implementing the interfaces I8 and I9 are passed to the con-
structor of HManager). As the association between the classes K4 and K5 has multiplicity
0..1 at the association end near K5, an implementing object of K5 has not to be created within
or passed to the constructor of K4 but rather may be set by calling the operation setK5 later.
Similarly, the operation addI6 of the class K5 adds an implementing object of type I6. Note
that this interface type has multiplicity *. Provided interfaces are contained in the package of
the outermost component which provides the interface. Hence the interface I5 is contained in
the package c1, but the interface I7 in the package h.

The following code excerpt of the class HManager shows the implementation of the con-
structor of HManager which illustrates the instantiation of the single elements of the package
h and the binding of the interfaces by means of the operations described above.

public class HManager {
I7 i7;
public HManager(I8 i8, I9 i9) {
K4 k4 = new K4(i9);
K5 k5 = new K5(k4);
C1Manager c1Manager = new C1Manager(k4, i8);
C2Manager c2Manager = new C2Manager(c1Manager.getI5());
k5.addI6(c2Manager.getI6());
i7 = c2Manager.getI7();

}
public getI7() { return i7; }

...
}

10.2.2 Enable Conditions
The implementation of an operation with an enable condition is shown beneath.

:A :B

op()

{enable: Q}

public class B {
...
public synchronized void op()
throws InterruptedException {
while (!Q) wait();
... // do something
notifyAll();

} ...
}

10.2.3 Parallel Combined Fragments
During the integration process a number of parallel combined fragments appeared in the design
level sequence diagrams as this was the appropriate way to combine interactions from different
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views. For the implementation, however, parallelisation would cause quite more effort, so we
restrict ourselves here to implement the operands of each parallel fragment in an (arbitrary)
sequential order. This is not contradictory to the design as any sequential order of the operands
of a parallel fragment results in a correct refinement of the fragment.
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11
DANUBIA – an Integrative

Environmental Simulation System

In this chapter we show how the generic simulation framework has been successfully ap-
plied within the integrative environmental project GLOWA-Danube to construct the integra-
tive simulation system DANUBIA1. For this purpose we first provide a brief introduction to
the GLOWA-Danube project in Section 11.1, before in Section 11.2 the DANUBIA system
is described. Finally, Section 11.3 presents how DANUBIA has been applied to calculate so
called “GLOWA-Danube scenarios” by performing integrative simulation runs.

11.1 GLOWA-Danube: Overview

GLOWA-Danube2 is a research and development project focusing on the comprehensive anal-
ysis of the future of water resources of the Upper Danube. In GLOWA-Danube the impact of
Climate Change of a broad range of sectors is investigated. Furthermore the project identi-
fies and simulates strategies for adaptation to and mitigation of the consequences of Climate
Change and tests their effectiveness. In GLOWA-Danube a team of researchers from different
natural and socio-economic science disciplines work closely together in an interdisciplinary,
university-based competence network since 2001.

The aim of GLOWA-Danube is to investigate with different scenarios the impact of change
in climate, population and land use on the water resources of the Upper Danube and to de-
velop and evaluate regional adaptation strategies. For this purpose the simulation and decision
support system DANUBIA was successfully set up within the first and second project stage
(2001-2006).

1Danubia is the Latin name of the river Danube
2cf. http://www.glowa-danube.de
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Besides the Informatics group research groups from the following scientific disciplines par-
ticipated in GLOWA-Danube:

• Hydrology/Remote Sensing

• Meteorology

• Groundwater/Water Supply

• Ecosystems/Plant Ecology

• Glaciology

• Environmental Psychology

• Environmental Economics

• Tourism Research

• Agricultural Economics

• Regional Climate Modelling

• Water Resources Management

The investigation area of GLOWA-Danube is the watershed of the Upper Danube (cf. Fig-
ure 11.1). The Upper Danube with its more than 10 million inhabitants and an area of
77.000 km2 is one of the largest and most important alpine watersheds in Europe. With its
strong relief and the altitudinal gradient of up to 3.600 m, the Upper Danube is particularly
vulnerable to Climate Change. These conditions also lead to a remarkably broad range of
influencing factors on the water resources. The watershed includes glaciers as well as tem-
perate lowlands, which are intensively used by agriculture. The Upper Danube in addition is
characterised by a complex and intensive use of the water resources for hydropower, farming
(possibly future irrigation) and tourism (e.g. snow cannons). The watershed of the Upper
Danube therefore combines in an exemplary way a lot of water use problems of Central Eu-
rope.

11.2 The Danubia System
DANUBIA is an integrative simulation system based on the Generic Simulation Framework
described in the previous chapters of this thesis. It includes – to our knowledge for the first
time – simulation models for natural science as well as socio-economic processes and their
interactions. With the intention of being predictive DANUBIA uses results of regional climate
models for predictions on Climate Change. Physical and physiological components describe
natural processes (hydrology, hydro-geology, plant physiology, yield, and glaciology). For the
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11.2 The DANUBIA System

Figure 11.1: The Upper Danube Basin – the Investigation area of GLOWA-Danube

simulation in the social sector (farming, economy, water supply companies, private households
and tourism) DANUBIA uses agent-based models which represent the decisions of the involved
actors based on the structure of societies, their environment as well as their interests.

DANUBIA was carefully and successfully validated with comprehensive data sets of the
years 1970–2005 and is now available in the third stage of the project for common use for
project researchers and stakeholder. The single parts of DANUBIA, including the Generic
Simulation Framework, are available under an open source licence (OpenDanubia3) and will
particularly serve decision makers from policy, economy, and administration as tool for a
foresighted planning of water resources against the background of Global Change.

The following publications detail on some selected simulation models of the natural sci-
ence part of DANUBIA: [BBM08] focus on the groundwater model within DANUBIA and,
finally, in [LWKS10] the crop growth model within the land surface component of DANUBIA

is described.

3http://www.glowa-danube.de/eng/opendanubia/opendanubia.php
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11 DANUBIA – an Integrative Environmental Simulation System

11.2.1 Architecture
Figure 11.2 shows the architecture of DANUBIA in a quite intuitive manner. The Generic Sim-
ulation Framework surrounds the simulation models of the various scientific disciplines which
are summarised in the five major components Atmosphere, Actor, Landsurface, Groundwater
and Rivernetwork. The embedding of the models into the framework is depicted by UML in-
heritance arrows which indicate the usage of abstract base classes to implement a simulation
model by inheritance. The connectors denote the data exchange between the single simulation
models at run time.
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Generic Simulation Framework

Groundwater

Actor

Atmosphere

Landsurface

Rivernetwork

Figure 11.2: Architecture of the DANUBIA system

Within DANUBIA the component Actor plays a special role as it is embedded into the
Generic Simulation Framework as well as into the DEEPACTOR Framework which provides
support for the special needs of agent-based social simulation models. The DEEPACTOR

Framework is in turn embedded into the Generic Simulation Framework again. In the next
section we will overview the DEEPACTOR Framework.

11.2.2 Support for Agent-Based Social Simulation
As GLOWA-Danube was – to our knowledge for the first time – the first project where sim-
ulation models from natural and social sciences were coupled much effort has been made for
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11.2 The DANUBIA System

supporting social simulation models. Usually, in social sciences the agent-based simulation
approach prevails, in contrast to the process-based approach in natural sciences.

To fill the gap between theses simulation approaches, the so called DEEPACTOR framework
has been developed providing a common architecture for socio-economic simulation models
(cf. [HJL10]). The underlying concepts of the so called DEEPACTOR approach, which extend
and reuse the concepts of the Generic Simulation Framework are depicted in Figures 11.3 and
11.4 respectively (the concepts of the Generic Simulation Framework are denoted by a grey
background). An ActorModel which extends a general simulation Model refers to a set of
Actors. Each Actor has a unique identifier and defines a number of type specific properties
(actorProperty1, etc.). The location of an actor within the simulation area is defined by a set
of (not necessarily connected) proxels. An actor may be part of a social network which is
defined by its collaborators.

ModelSimulation

*

location

*

1 ActorModel

id {key}
actorProperty1
actorProperty2
...

1

*

Actor

proxels

*

Proxel

pid {key}
...

collaborators

1

* actors
*

models

Figure 11.3: Concepts of the DEEPACTOR approach (1)

ActorSensor
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id {key}

*

actions
Action

executable
applicable
mandatory
period

* 1

Sensor
sensors

history

plans

*

ConstraintSensor

Figure 11.4: Concepts of the DEEPACTOR approach (2)

Actors perceive their environment explicitly via their Sensors. Sensors allow for the recep-
tion of data or events. Three concrete kinds of sensors are distinguished: A proxel sensor for
the simulation area, an actor sensor for information exchange with other actors of the same
model and a constraint sensor. Constraints are an explicit concept for the modelling of further
influencing aspects such as legal constraints, for instance.

Besides sensors, actors dispose of a History that allows to “remember” the plan execution
status of previous time steps. By this means a basic mechanism for actors with learning capa-
bilities is provided. Based on their local state, their history and their perceived environmental
state, actors decide which Plan is to be selected for execution within a given time step. A plan,
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in turn, is related to a set of Actions which model the concrete impact of plan execution. In
this vein, plans represent the possible courses of action of an actor.

The actions of a plan are to be executed if the respective actor decided for the particular
plan (i.e. activated the plan), and the plan is executable. The decision to activate a plan might
be based on its rating which allows to realise multi-attribute utility based decision algorithms
conveniently. A plan is executable only if all of its mandatory actions are executable in the
current time step—an action is either mandatory or optional, which is an initially assigned
property of an action. Whether an action is executable depends on two type-specific properties
that are evaluated dynamically within each time step: first, the action needs to be applicable
and, second, the period of the action needs to be consistent with the current simulation time.
For instance, harvesting is an action of a farming actor that is relevant only during certain
months of a year. Both, the plans of an actor and the actions of a plan are required to be
initially known and must not change during a simulation run.

The design of the DEEPACTOR framework follows again our general pattern which dis-
tinguishes core classes and (abstract) base classes for model developers, exemplified by the
classes ActorModelCore and AbstractActorModel in Figure 11.5. The remaining components
of the DEEPACTOR framework are implemented similarly and we omit further details here.

ActorModelCore
AbstractActorModel

AbstractModel

Model

ActorModel...

...

1 1

<<component>>

Proxel
<<base class>>

<<component>>

<<component>>

<<base class>>

Figure 11.5: Integration of the DEEPACTOR Framework with the Generic Simulation
Framework

The integration of the DEEPACTOR framework into the Generic Simulation Framework is
achieved by extension of the developer interface of the overall framework. As illustrated by
the excerpt in Figure 11.5, the core part of the DEEPACTOR framework specialises (solely) the
developer interface of the general framework, thus being transparent for the core layer of the
Generic Simulation Framework. Concrete actor models then use the developer interface of the
DEEPACTOR framework and, for basic functionality, the developer interface of the Generic
Framework such as AbstractProxel.

A concrete application of the DEEPACTOR framework for the simulation of water-related
issues in the Upper Danube basin is reported in [ESSJ07], describing a simulation model
for the water consumption of households, and in [BJS+08] who developed a model for water
supply companies as an important link between socio-economic and natural science simulation
models. An agent-based simulation model for the diffusion of environmental innovations is
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described in [SE09]. Finally, the work of [BJN+10] reports in more detail on the general
approach as well as the integrative aspects of aforementioned simulation models.

11.3 Scenario Calculations with Danubia
In this section we report on the application of DANUBIA within GLOWA-Danube and sketch
some simulation results that have been obtained.

11.3.1 GLOWA-Danube-Scenarios
The analysis of scenarios form a common technique in environmental modelling (cf., e.g.,
[KD95]). In our context a scenario is defined as a set of consistent assumptions concerning
the future development of the environment, in particular the future of the water cycle in the
Upper Danube basin. Scenarios are realised by integrative simulation runs with the DANUBIA

system.
The assumptions made for a scenario are expressed by certain variables and quantities

(called key factors) influencing the behaviour of the simulation models participating in the
integrative simulation run which realises the scenario. A scenario is then given by an assign-
ment of a value for each key factor. Two major independent fields of influencing variables
have been detected in GLOWA-Danube:

• the future development of the climate, and

• future societal trends.

As it is impossible to perform a simulation run for each potential value of a key factor, a set
of such values describing a feasible development of the respective key factor in the future has
been developed for each key factor, independently in both fields mentioned above. Thereby
the so called scenario matrix (cf. Figure 11.6) has been elaborated which we briefly explain
in the following.

By means of the scenario matrix a GLOWA-Danube scenario is defined by selecting a par-
ticular value in column 1, 2, and 3, and a (possibly empty) set of values of column 4. The first
to columns regard to a climate scenario which is combined by a climate trend and a climate
variant. While the climate trend defines particular values for the key factors, the climate vari-
ant describes certain weather phenomena, like e.g. five consecutive warm winters, etc. As an
example for a key factor within the climate trend consider “temperate increase in the next 100
years”, the possible values of which are 3,3 %, 5,2 %, or 4,7 % – corresponds to the selections
IPCC regional, REMO regional, and MM5 regional, respectively. Columns three and four
regard to the societal future trends, which are mainly defined by the so called society scenario,
and specified by the choice of certain actions performed by particular actors.

Note that different selections in the scenario matrix lead to different results of the simula-
tion run corresponding to the scenario. These results together with the assumptions made for
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the scenarios are then discussed with stakeholders from economy or policy in order to provide
support for their decisions concerning environmental issues. Detailed definitions of the sce-
narios, in particular the actual values of the key factors corresponding to each scenario, can
be found in the Global Change Atlas for the Upper Danube watershed [GLO10] which is also
available online4.

Selection 1:
Climate Trend

Selection 2:
Climate Variant

Selection 3:
Society Scenario

Selection 4:
Action

IPCC Regional Baseline Baseline Action 1

REMO Regional Five Warm
Winters

Performance Action 2

MM5 Regional Five Hot
Summers

Common
Public Interest

Action 3

Foreward
Projection

Five Dry Years . . .

Figure 11.6: Scenario Matrix of GLOWA-Danube (cf. [GLO10]

11.3.2 Performing an Integrative Simulation
For the execution of integrative simulation runs DANUBIA comprises a graphical user in-
terface, the so called DANUBIA Monitor, which is implemented using the Eclipse Standard
Widget Toolkit (SWT, cf. [NW04]).5 The following screenshots show typical tasks of the
DANUBIA Monitor.

The screen window in Figure 11.7 allows for configuring an integrative simulation. In
the upper left compartment one can find text areas for entering values for an identifier, the
start and end date, as well as list elements for selecting a simulation area and a set of base
data resources from a list of possible values. The lower part of the screen allows for selecting
simulation models to participate in the simulation run; simultaneously the models are assigned
flexibly to different nodes, i.e. computer resources, in order to gain an optimal distribution of
the models with respect to performance.

4http://www.glowa-danube.de/atlas/
5For the prototype of DANUBIA a Web-based user interface was developed applying Web engineering tech-

niques (cf. [Kra07]), but this user interface is no longer supported for security reasons.
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Figure 11.7: Configuration of a GLOWA-Danube Scenario Simulation

In the upper right compartment of the screen the GLOWA-Danube scenario is determined
by selecting values for climate trend, climate variant, society scenario, and action from a list
element. The buttons on the bottom of the screen allow for checking if the entered simulation
configuration is valid. The validity of a simulation configuration is necessary for starting the
respective simulation run.

Note that with this screen the user interface DANUBIA Monitor complies with the require-
ments for a user interface concerning the creation and validation of a simulation configuration
stated in Section 9.4. The possibility of defining GLOWA-Danube scenarios denotes a project-
specific extension.

The screen window depicted in Figure 11.8 shows the main window of the DANUBIA Mon-
itor, yet the screenshot has been made during a simulation run. It shows in the upper half
the configuration and in the lower half the state and the progress of the current simulation,
and displays, in particular, the current activities of the simulation models within the computa-
tion cycle. The protocol of these activities can be used for further performance analysis and
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optimisation.
Again, this screen complies with the requirements of the Generic Simulation Framework by

displaying the current state of the simulation run, and by giving the opportunity to start a sim-
ulation run with the respective button. All other features of the user interface are considered
as project-specific extensions.

11.3.3 Some Simulation Results
The results of the manifold simulation runs during the GLOWA-Danube project are reflected
in numerous scientific publications, reports and dissertation projects of the participating disci-
plines. Concluding project results are described, among others, in the following publications.
[BME+10] covers the impacts of Climate Change on water resources, groundwater recharge,
groundwater levels, and groundwater quality; [BMS+10] concentrates on the socio-economic
impacts of Climate Change on water use and land use in the Upper Danube basin. A complete
list of publications and reports is available on the GLOWA-Danube web page6.

The core results of the GLOWA-Danube project regarding the future of the water cycle
in the Upper Danube basin are subsumed in Section E6 “GLOWA-Danube results and key
messages” of [GLO10] which we briefly summarise in the following.

Scenario runs with DANUBIA are based on the findings of the IPCC [IPC07] and use results
of regional climate models as well as statistical ensemble approaches for the estimation of the
future regional Climate Change in the Upper Danube watershed. The analyses show that the
average air temperature at the Upper Danube has already increased by approximately 1,5 °C
in the last 30 years.

The IPCC climate scenarios predict a temperature increase between 3,3 °C and 5,2 °C be-
tween 1990 and 2090. The trends for the future precipitation are more rainfall in winter, less
in summer, altogether per year a precipitation decrease of 3,5 % to 16,4 % is expected.

Consequences of the predicted changes could be a reduction of waterpower production,
restrictions for ship traffic in summer due to low water levels, less snow cover per year in lower
alpine regions due to temperature increase but possible improvements in high-level alpine
regions, which leads to less winter tourism but a moderate increase of summer tourism.

Less private water use is expected (around 20 %) due to changing behaviours and new tech-
nologies for saving water. A shortage of drinking water is not expected, but the need for
temporary adaptation strategies of water suppliers is likely, like e.g. more cooperation and
networks. (Almost) all glaciers in the Upper Danube catchment will vanish until 2045.

6http://www.glowa-danube.de/eng/publikationen/publikationen.php
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Figure 11.8: Main screen of the DANUBIA Monitor
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12
Conclusions

This thesis presented the development of a generic framework for integrative environmen-
tal modelling and simulation. The framework supports the development and the coupling of
simulation models from various disciplines to perform integrative simulations. In particular
it allows for the parallel execution of an arbitrary number of dependable simulation models
(due to the fact that the models are distributable over a network) which is – to our knowl-
edge – not the case with other simulation frameworks or systems. Any other framework or
system considered comparable to ours lacks in at least one of the major characteristics of our
approach.

Our framework is generic in the sense, that it is, in principle, applicable to any kind of model
which simulates spatially distributed environmental processes on an arbitrary, but discrete time
scale. During an integrative simulation for some simulation period, the framework coordinates
the coupled models which run in parallel exchanging iteratively data via their interfaces.

For the development of the framework we developed and used a methodology which accom-
modates best practices of software engineering and takes into account view-based modelling
on different abstraction levels – and is in principal applicable for the development of any sys-
tem where a dispartment of the system into several significant views, i.e. functional aspects,
is meaningful. With the help of formal methods the correctness of the temporal coordination
(being the heart of the whole framework) could be verified.

With this work a complex system like the Generic Simulation Framework is described in
a rigorous manner, including formal specifications making the implementation more reliable.
This kind of documentation is valuable for a number of stakeholders like, e.g. natural and
social scientists, environmental project executives, model developers, and in particular people
dealing with framework development itself.

We identified several advantages of this approach. At first, the view-based development
allows for easy replacing (or even omitting) single views, or for easy incorporating additional
functionality by simply adding a new view in future development. The framework could so be
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made applicable for a wide range of problems treated by simulation, even outside the sector
of environmental modelling. In particular the use of components which rely only on interface
specifications supports further development and re-engineering. Secondly, the clear distinc-
tion of abstraction levels facilitates the single stakeholders to extract exactly the information
required for their particular purpose. While for project executives it might be sufficient to
get a clear picture of the requirements and underlying concepts of the framework, the model
developers, and in particular framework developers are certainly interested also in the design
which explains how the requirements are met, and the component architecture which shows
how the framework is modularised and assembled.

Applying the framework paradigm to integrative environmental modelling provides several
advantages: common routines and services like network support, time coordination or space
initialisation can be separated from the scientific code of the simulation models. The model
developer only has to implement distinguished extension points of the framework, thus one
can be sure that generally valid rules are respected by each model. The simulation framework
is generic in the sense that it is independent from actual simulation models. In fact, it scales
up to an arbitrary number of simulation models and can be applied to any simulation area as
long as the requirements of the framework are satisfied.

The framework has been developed and successfully instantiated in the interdisciplinary
research project GLOWA-Danube by the implementation of the distributed simulation and de-
cision support system DANUBIA. With DANUBIA a number of scenarios concerning changes
of climate and society have been simulated which shall show their impacts on the future of
water resources in the Upper Danube watershed thus giving hints for sustainable planning.

During the project it emerged that well-founded methods and techniques of software engi-
neering are essential for the integration of different scientific disciplines, on the technical, as
well as on the conceptual side. On the technical side the development and integration of simu-
lation models has been supported by application of the framework technology, and even more,
by demanding compliance with common rules and requirements the reliability of the system
has been considerably increased. On the conceptual side methods like abstraction, separa-
tion of concerns, and – last but not least – the application of the Unified Modeling Language
as a common graphical language have accounted for a better and more precise communica-
tion among the project partners and enabled the understanding of the integrative aspects of
the DANUBIA system. Our experiences in the interdisciplinary project GLOWA-Danube have
shown that the impact of informatics on other sciences is of increasing importance. Since
many complex problems in natural sciences are approached with computers, software engi-
neers and researchers in natural and social sciences have to work hand in hand.

Of course there are further issues concerning integrative environmental simulation which
have not been addressed within this thesis, but give reason for future work to integrate them
into the framework. One of the major issues might be the treatment of large amounts of data
which typically appear in simulation systems considering large simulation areas. Another
question which is widely unanswered arises from the impacts of error propagation and uncer-
tainty within the coupled models on the simulation results. In future versions, also interactive
simulation runs are thinkable, which means that the user may interrupt the simulation run at a
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certain point in time, e.g. when a certain condition becomes true, and resume the run with a
modified configuration. This possibility is in particular helpful for the application as decision
support system.

The work on the Generic Simulation Framework is not finished with the end of the GLOWA-
Danube project, as the framework as well as the simulation models applied in the GLOWA-
Danube project have been published under the name OPENDANUBIA under an Open Source
Licence. Therewith the framework is accessible for a wide range of interested developers in
the open source community, and along with the thesis at hand as a useful documentation for
it, it will hopefully also in the future contribute to the solution of environmental problems.
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A
Detailed Framework Model

In this appendix we provide the detailed model of the Generic Simulation Framework devel-
oped in Chapters 4 to 8.

Preliminary note. If dots in the operation compartment of a class symbol indicate an elision,
then the non-standard constructor of the respective class is omitted for lack of space. In this
case the parameter list of the constructor comprises an entry for each property of the class.
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A.1 Base View

A.1.1 Structural Design

AbstractModel
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A.1 Base View

ModelCore

ModelMetadata
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SimulationAdmin

SimulationConfiguration
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A.1 Base View

UserInterface

A.1.2 Behavioural Design
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A.1 Base View

A.1.3 Components
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A.2 View “Data Exchange”

A.2.1 Structural Design
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A.2 View “Data Exchange”

AbstractModel
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LinkAdmin

ModelCore
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A.2 View “Data Exchange”

ModelMetadata

SimulationAdmin
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A.2.2 Behavioural Design
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A.2.3 Components
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A.3 View “Simulation Space”

A.3 View “Simulation Space”

A.3.1 Structural Design
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AbstractModel

AbstractProxel
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A.3 View “Simulation Space”

AreaMetadata

AreaProperty
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BasedataAdmin
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A.3 View “Simulation Space”
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ModelMetadata
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A.3 View “Simulation Space”

ResourceHandler

ResourceMetadata
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A.4 View “Time Coordination”
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A.4 View “Time Coordination”

Timecontroller

TimeStep
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