
Formal modeling and quantitative analysis of
KLAIM-based mobile systems.

— Full Version
�

—

Rocco De Nicola
Dip. Sistemi e Informatica, Univ. di Firenze

v. Lombroso 6/17, I50134 Firenze, Italy
denicola@dsi.unifi.it

Diego Latella
C.N.R., Istituto di Scienze e Tecnologie dell’Informazione - A. Faedo

Via Moruzzi, 1 I56124 Pisa, Italy
Diego.Latella@isti.cnr.it

Mieke Massink
C.N.R., Istituto di Scienze e Tecnologie dell’Informazione - A. Faedo

Via Moruzzi, 1 I56124 Pisa, Italy
Mieke.Massink@isti.cnr.it

Aug. 24, 2004

Abstract

KLAIM is an experimental language designed for modeling and programming distributed systems
composed of mobile components where distribution awareness and dynamic system architecture con-
figuration are key issues, like most web-based service implementations. In this paper we propose
STOcKLAIM, a STOchastic extension of cKLAIM, the core subset of KLAIM. cKLAIM includes pro-
cess distribution, process mobility, and asynchronous communication. The extension makes it possible
to integrate the modeling of quantitative aspects of mobile systems—e.g. performance—with the func-
tional specification of such systems. At the conceptual level, our proposal is based on the assumption
that any action of a process in a cKLAIM network takes some time to be executed. At the technical
level, the time associated to the execution of an action is determined by a continuous random variable
with an exponential distribution. Consequently, process actions in STOcKLAIM are equipped with the
rate of such distributions. We present a formal operational semantics of STOcKLAIM, which associates
a labeled transition system to each STOcKLAIM network and a translation from such labeled transition
systems to Continuous Time Markov Chains for quantitative analysis. We also show how STOcKLAIM

can be used by means of two simple examples: namely a distributed mobile service and the spreading of
a virus.

1 Introduction

Components of modern widely distributed ubiquitous systems are characterized by highly dynamic be-
haviour and have to deal with changes of the network environment and its heterogeneity. This is a major
result of the dramatic recent change which made computers from isolated devices to powerful, intercon-
nected, interacting components of large complex systems, often referred to as global computers. Such

�
This work has been partially funded by Project EU-IST IST-2001-32747 Architectures for Mobility (AGILE),

http://www.pst.informatik.uni-muenchen.de/projekte/agile/.

1

systems, and the applications running on them, are characterized by features which were absent, or hidden
on purpose, in previous generation systems, like distribution awareness and code mobility. The World
Wide Web is an example of such a global system. In order to capture these aspects in a systematic way,
specification languages have been developed that allow designers to address key concepts such as locality
and movement of data, processes or devices explicitly. KLAIM (Kernel Language for Agents Interaction
and Mobility, [9, 4]) is an experimental language designed for modeling and programming distributed
systems composed of mobile components interacting via multiple distributed tuple spaces. The KLAIM

interaction model builds over, and extends, Linda’s one of single shared tuple space [11]. In [9] it is shown
how KLAIM can be used for modeling, as well as programming, mobile code applications, i.e. applica-
tions whose distinct feature is the exploitation of code mobility. In particular, KLAIM supports all major
paradigms relevant in such a context, namely remote evaluation, mobile agents and code on demand.

In this paper we address a first step towards the extension of KLAIM with stochastic features. In partic-
ular, we focus on (a variant of) cKLAIM, the Core subset of KLAIM, first introduced in [13] and described
also in [4], which includes process distribution, process mobility, and asynchronous communication of
names through shared located repositories (tuples).

The extension of cKLAIM that we propose and call STOcKLAIM, makes it possible to integrate the
modeling of quantitative aspects of mobile systems— e.g. performance—with the functional specification
of such systems. The operational semantics of our language associates a Labeled Transition System (LTS)
to each STOcKLAIM network specification. The associated LTS defines in turn a stochastic process [19]—
and in particular a Continuous Time Markov Chain (CTMC)—which can be used for checking stochastic
properties of the behaviour of the network.

CTMCs provide a modeling framework which has proved extremely useful for practical analysis of
quantitative aspects of system behaviour. Moreover, in recent years proper stochastic extensions of tempo-
ral logics have been proposed and efficient algorithms for checking the satisfiability of formulae of such
logics on CTMCs (i.e. stochastic model checkers) have been implemented [18, 20, 23, 6]. It is finally
worth pointing out that there is a strong connection between traditional (i.e. qualitative) model-checking
and stochastic model-checking, which brings to a sound integration of formal modeling and analysis of
functional (qualitative) and non-functional (quantitative) aspects of system behaviour. Such integration in
the context of mobile systems is our main long term goal.

cKLAIM can be used for specifying networks as finite collections of nodes that may host processes and
data. The central ingredients of cKLAIM are names; a countable set of names is assumed (

�������������	�
����������	���	���
� � � � ���	���

are used for denoting such names) that provide the abstract counterpart of the set of communica-
ble objects and can be used as localities, basic variables or process variables.

Each network node is singled out by a name that indicates its locality. Processes are the active compu-
tational units and may be executed concurrently either at the same locality or at different localities. They
are built up from the terminated process ���� and from a set of basic actions by using prefixing, parallel
composition and recursion. Basic actions permit removing/adding data from/to node repositories, activat-
ing new threads of execution and creating new nodes. cKLAIM has four different basic actions; and three
of them explicitly indicate the (possibly remote) locality where they will take effect. With an output action����� ������

a process can write the datum
���

in repository
�
. With an input action ����� ���

a process can
withdraw a datum from repository

�
. Processes can be written to/withdrawn from a repository as well. The

action "!$#$�&% �'�
spawns process % at repository

�
and action � "()� �+* � serves for creating a new node;

thus providing a means for modeling dynamic network architectures. Action � ,(-� �+* �
is not indexed

with an address because it always acts locally.
The basic idea underlying our extension is rather simple. Our modeling assumption is that any action. of a cKLAIM process takes some time to be executed. The time taken by a particular action . for

being executed is determined by a random variable. In the context of this paper we restrict such random
variables to exponentially distributed ones. This restriction is quite common when dealing with quantitative
system modeling due to the mathematical tractability of exponential distributions. Consequently (efficient)
analytical methods and automatic tools exist for reasoning about system models based on exponential
distributions. Moreover, exponential distributions can be used for approximating general distributions,
like, e.g. deterministic ones. Finally, exponential distributions form the basis for the definition of CTMCs.

The parameter which completely characterizes an exponentially distributed random variable is its rate

2

�
, which is a positive real number. 1 Consequently, we equip each action . with a rate

�
and call the

resulting pair a stochastic action. The intended meaning of � . ����� is that the time taken for the complete
execution of action . is a random variable distributed as ���	�
� ��� .

After having discussed in Sect. 2 existing work on stochastic languages for mobility, in Sect. 3 we define
the syntax and static semantics requirements of STOcKLAIM, together with an informal explanation of its
operational semantics. The formal definition of the operational semantics is given in Sect. 4. The semantics
associates each STOcKLAIM network to a LTS; in Sect. 4 also a translation from such LTSs to CTMCs is
defined. Applications of STOcKLAIM are given in Sect. 5 by means of two illustrative examples—namely
a distributed network service which exploits mobility for load balancing and the spreading of a network
virus—while some conclusions and an outline of future research are presented in Sect. 6.

2 Related Work

In our proposal, at a conceptual level, we follow essentially the same approach as Priami in [22] where he
extends the � -Calculus with stochastic features. There is however a key difference between our work and
the above mentioned one. In fact, the basic model of interaction of � -Calculus processes is synchronous,
while that of KLAIM processes is asynchronous. Synchronization of actions with exponentially distributed
durations poses non-trivial problems to the compositional definition of the operational semantics when
the intuition on action execution times is to be preserved by composition operators. For an interesting
discussion on the subject we refer the reader to [5].

As we shall see in the sequel, the choice of using an asynchronous model of interaction as the underlying
model for stochastic behaviour allows for a rather simple definition of the operational semantics. Moreover
it preserves a direct relation between the rates assigned to actions in specifications and those assigned
to them in the automata models associated to such specifications. Such a relation is more involving in
approaches based on synchronous models of interaction due to rate/probability normalization procedures
required by such models.

Of course, the above advantages come at the price of dropping component synchronization as a primi-
tive interaction mechanism. However, experience has shown that many fundamental behavioural aspects of
mobile, cooperating agents in distributed networks can be satisfactorily described and analyzed by relying
on asynchronous models of interaction [9, 3].

On a more technical level, another peculiarity of our approach is the fact that the definition of the
operational semantics of the language is based on a structural congruence which includes, among others,
commutativity and associativity of (network and) process parallel composition, non-deterministic choice,
and absorption. The use of such “coarser” structural congruences greatly simplifies the definition of the
operational semantics of locality-based, KLAIM-like languages. By using approaches which rule out com-
mutativity and associativity of parallel and choice operators, one cannot easily exploit the locality-based
pattern matching style which is typical of KLAIM-like languages operational semantics definition.

In [10] a probabilistic discrete- (resp. continuous-) time extension of full KLAIM has been proposed.
Basically, all sources of non-determinism in the notation have been enriched with probabilistic information.
In particular, (process) choice and parallel composition operators have been replaced by their probabilistic
counterparts and, in the discrete-time case, probabilities have been added also to the network nodes used in
network composition. Intuitively, the probability attached to a node is related to the scheduling criteria at
the global network level and extends the scheduling probability defined by the process parallel composition
operator at the node level. In the continuous time case, rates of exponential distributions are associated to
nodes, which are related to the execution time of any action in the node. Finally, the mappings of logical to
physical names (i.e. KLAIM allocation environments) have been replaced by mappings from logical names
to probability distributions on physical names. Our proposal is orthogonal to this approach in the sense
that non-deterministic and parallel operators are left unchanged while specific rates are associated to each
action, so that the former are features of the specific actions rather than of the node where the actions are

1Recall that a real-valued random variable � is exponentially distributed with rate —written ���������� —if the probability of �
being at most � , i.e. Prob ��������� , is ���! #"%$'& if �)(�* and is * for �)+�* , where � is a real number. The expected value of � is %"-, .
Exponentially distributed random variables enjoy the so called memoryless property, i.e. Prob �.��/
�102�43657�8/
���-9 Prob �.�:/;�<3�� ,
for �>=?�@3A(B* .

3

� �����
NETWORKS� � ����� ���
	

� � ����� � 	� � ��� �� � � � �

� �����
PROCESSES

����� � . ��� � � �� �� �� � � �� �
. �����

ACTIONS������� � � �� ����� � � �� ��� � � �� "!$#$�)� � �� � "()� �+* �

� �����
TERMS�

� � �
� � �

Table 1: Syntax of STOcKLAIM

executed. This gives rise to a clean semantic model which directly reflects the modeling choices expressed
at the specification level, whereas the probabilities of different alternatives of choice, parallel, or network
compositions are derived on the basis of the race condition principle [22]. In the proposal of [10] the
specifier has several different conceptual tools and related linguistic constructs for expressing probabilistic
information. On the other hand there is a certain interference among such concepts which results in several
normalization steps. As a result, the relationship between the specific probability/rate values used in a
specification and those resulting in the associated semantical structure can be quite complicated.

In [16] a probabilistic extension of the asynchronous � -Calculus is proposed, which does not address
time and continuous distributions.

Finally, in [12] PEPA nets are proposed, where mobile code is modeled by expressions of the stochastic
process algebra PEPA which play the role of tokens in (stochastic) Petri nets. The Petri net of a PEPA
net models the architecture of the net, which to our understanding, is a static one. A PEPA expression
can move from a place to another one if there is a transition from the first place to the second. A proper
synchronization mechanism between PEPA expressions and Petri nets is provided in order to fire transitions
(i.e. to move code).

We are not aware of other proposals for stochastic/probabilistic calculi for mobile systems.

3 Syntax of STOcKLAIM

Let � , ranged over by
��������� ��� �	���	�

, be a set of localities, � , ranged over by
����+������� �	���	�

, a set of lo-
cality variables, � , ranged over by

� � � ��� � � ��� �	���	�
a set of process variables, and � , ranged over by� ��� ������� ��� ���&��� ���	�

a set of rate names. We assume that the above sets are mutually disjoint. Moreover, we
let � � � � range over � �!� .

The syntax of STOcKLAIM, given in Table 1, is exactly the same as that of cKLAIM, except that pro-
cesses have a richer action prefix operator, and for the addition of an explicit choice composition operator.
Moreover, processes can be stored to (resp. retrieved from) localities by means of out (resp. in) actions, in
much the same way as data. A network node

� ���"� ���
	
intuitively means that value

� ����	
is stored, or located,

in node, or locality,
�
. Similarly, for process � ,

� ����� � 	 means that � is stored in
�

as a piece of data. On
the other hand

� ��� � indicates that process � is running in locality
�
. Complex networks are built from

simpler ones by means of the network parallel operator
� �
. Given network

�
, the set of values located in

locality
�

coincides with all those
���

and � such that
� ����� ����	

or
� ����� � 	 occurs in

�
. The set of processes

running in locality
�

coincides with all those � such that
� ��� � occurs in

�
. The intuition behind action

prefix � . ��� �
� � is that the execution time of action . is distributed exponentially with rate specified by rate
name

�
. Rate names are mapped to rate values by means of binding functions, which are (partial) functions

4

from � to IR � . The main reason for using rate names instead of just rates is related to the way we deal
with the race condition semantics for the non-deterministic choice operator (� � 	���) and interleaving one
(� � � ���).

As we mentioned in Sect.1, STOcKLAIM networks can be mapped to CTMCs. The presence of a
choice operator for processes facilitates the specification of stochastic processes since each choice expres-
sion essentially corresponds to a state of the underlying CTMC with as many transitions as those of the
components of the choice (and of possibly nested parallel compositions).

A typical problem in the definition of stochastic process calculi, due to the race condition principle,
is that an expression like � . �7�-� � � :� . �����
� � should not be identified with the expression � . �7�-� � � —as it
would be the case in non-stochastic process calculi. In fact, to an external observer, the first process should
appear twice as fast as the second one (i.e. it should be equated to � . ��� ���
� �)2. There are several ways
for dealing with the problem of not identifying a process offering a choice of two equal components with
one of the components. One way is to use proved transition systems as in [22] that permit distinguishing
left and right components by labelling transitions starting from derivations labelled with the actual proof
of process transitions. Unfortunately, such an approach is not naturally compatible with a definition of
the operational semantics based on a structural congruence which includes, among others, commutativity
and associativity of

� � � � � and absorption. As we shall see, such structural congruences greatly simplify
the definition of the operational semantics since they allow the full exploitation of locality-based pattern
matching in the application of the deduction rules. Consequently, in this paper we prefer not to use proved
transition systems and to require that the rate names occurring in any network expression be distinct.
Actually it would suffice to require that the rate names of the initial steps of the components of choice
expressions be distinct and similarly for all rate names of the components of process and node parallel
compositions. But, we prefer a more homogeneous approach. Clearly, care is needed to guarantee name
uniqueness in presence of process replication and migration during execution. This choice allows us to
keep the definition of the operational semantics as simple as possible, focusing more on the main issues of
mobility and stochastic behaviour than on the technicalities of such a definition. Moreover, the use of rate
names and binding functions instead of actual rate values permits re-using a network specification, with
different bindings, for several validation sessions, as we will see in the examples in Sect.5. Finally, the
separation of rates from rate names facilitates the future extension of our calculus with rate variables.

Recursive behaviours are modelled via process definitions; it is assumed that each identifier
�

has a

single defining equation of the form
���� � where � may contain occurrences of

�
and other process

names. It is also assumed that occurrences of
�

on the right part are always guarded, i.e. prefixed by a
stochastic action.

Finally, a term � can be either a locality constant
�

or a parameter, i.e. a locality variable
�

or a process
variable

�
. Parameters are identified by prefixing them by an exclamation mark.

4 Semantics of STOcKLAIM

In this section, the operational semantics of STOcKLAIM is defined as well as the translation from the
resulting LTSs to CTMCs.

4.1 STOcKLAIM Operational Semantics

The operational semantics of STOcKLAIM is an orthogonal extension of the one of cKLAIM as presented,
e.g., in [4, 13]. The transition relation is defined over (network) configurations, i.e. triples ��� �
	 � � � —
henceforth written as � ��	� �

—where � is a finite set of localities,
	 � ���� IR � is a mapping from rate

names to rates, with ������� 	 �
—the domain of

	
—also finite, and

�
a STOcKLAIM network expression.

2An expression like ��� =4���� � 0 ���7=�� ��� � is interpreted as a race condition between � and � . This, intuitively can be interpreted
as follows: when such a process is executed, both � and � are enabled and their actual execution times are given by a sample of
��� ���.�� and ��� ��� � � respectively. The action with the smallest execution time is actually executed. From standard theory we
know that for independent random variables � and ! respectively in ��� ���.�� and in ��� ��� � � the random variable MIN ����=�!�� is
exponentially distributed with rate �0"� .

5

Let � Loc
� �

denote the set of all localities occurring free 3 in
�

and � Rat
� �

be the set of all rate names
occurring in

�
. We require � Loc

� ��� � and � Rat
� ��� ��� ��� 	 �

. Finally, we require that all rate names
occurring in

�
be distinct and that for expressions of the form ��� � � ��� ��� � , (i) there exists at most one

free occurrence of
�

in � which is not the first argument of an out or eval operator, and (ii) there exists no
defining equation for

�
.

The Structural Congruence is the smallest relation satisfying the laws given in Table 2. The main
difference with those of cKLAIM is the addition of the laws for commutativity (CO) and associativity
(AS) for non-deterministic choice, a law for its neutral element (NE), and a law (REN) for rate name
remaning. The law for rate renaming (REN) states that the rate names occurring in

�
can be replaced by

means of a rate names substitution � . We use the usual notation for syntactical substitution, namely
� � ,

where � is a total function in � � � . Of course it is required that (i) the substitution does not interfere
with the current binding (i.e. ������� 	 ��� � ����� � � �
	 , where � ����� � � is the range of �), (ii) rate names
uniqueness is preserved in

� � (i.e. � must be injective), and (iii) the binding in the configuration where
the substitution has been applied is defined for the new names and gives the same rates as for the old ones
(i.e. the new binding is the composition of the old binding and the inverse of �).

The Reduction Relation � � is the smallest relation induced by the rules of Table 3. Let � , ranged
over by � ��� � ���	��� be the set of all standard representatives of the equivalence classes on configurations
induced by the Structural Congruence Laws. We abstract here from the way in which such representatives
are chosen; a possibility could be taking the smallest elements, where we can use set inclusion for locality
sets and binding(-domain)s, and lexicographic order for network terms. For configuration ���� , let �

be the smallest set such that (i) ����� , and (ii) if � ���� , � � ��� ,

� � � and �� ����� � � �.� ��� � can be
derived using the rules and laws of tables 3 and 2, then also � � ���� .

The operational semantics of a network
���

, with rate names defined by binding
	 �

, associates a LTS,
��� � ��� �
	 � � ���! #" �%$ �'& � � � � � � to

���
with

	 �
. $ ���(#" �) � is the set of states of the LTS, where

the initial state of the LTS, � �*� , is the standard representative of � Loc
��� � �
	 � � ���

;
&+� � is the set

of labels (i.e. rate names) of the LTS and � � � $-, & ,�$ is its transition relation, as deduced by the
Reduction Rules and the Congruence Laws. As usual, /.� �0 � stands for �� ��� � �@� �1� � ; moreover, if is
the state � ��	 � �

, we let
	�2

denote the binding
	

of .
Let us briefly comment on some of the rules. Rule (OUTL), resp. (OUTP), models the dispatching

of a name, resp. a process, at a (possibly remote) locality. In order to preserve uniqueness of rate names,
when executing action � ����� % � ������� �
� � process % � is stored instead of % ; % � is obtained from % by
means of function RN, defined in Fig. 1, which renames all rate names in % into fresh names; function
RN returns also a new binding where the fresh names are bound to the same rates as those the original
ones were bound to. Notice that, in the definition of function RN, rate name uniqueness is guaranteed by
means of function *�3&�+�54 and by a proper sequentialization of the application of RN to the components
of (process) parallel and non-deterministic composition; such sequentialization is achieved by means of	�� �

. The selection criterion of *�3�+�54 is immaterial here and is easily implementable due to finiteness of
the domain of binding functions. Rate names renaming takes place also for process spawning (EVA) and
instantiation (PIN) for similar reasons.

Rule (INL), resp. (INP) models retrieval and removal of names, resp. processes, from given localities.
Action ��� � � ���

is a blocking action that can be performed only if the required datum is present at the
chosen locality

���
. Moreover, if the argument ��� � is a locality variable (

� �
), resp. a process variable (

� �
),

the retrieved datum is used to replace all free occurrences of
�

, resp.
�

, in the rest of the process executing
the action; instead, if the argument is a locality constant the only effect is its removal from the target node.

Rule (NLC) models the creation of a new node, with its fresh name; indeed the expected result of
� ,(-� �+* � is a fresh name, i.e. a name not present in the set of all used names, � ; function *�3�+�54 is used
to choose such a new element of �76 � , the selection criterion being immaterial here. The new name is then
added to the set of used names, � . Rule (EVA) is used to model the spawning of the argument process at
the intended locality; there it will run concurrently with the processes already present. The remaining rules
are standard and are used to deal with parallel composition, nonderministic choice and to take advantage
of structural congruence. For the rest, the rules should be self-explanatory.

3The formal definition of free and bound names in cKLAIM can be found in [13].

6

� CO
� � � � �
	 � � � � � � ��� � �
	 � � �

� � � �

� AS
� � � � �
	 � � � � � � � �

� � ��� � �
� �
	 � � � � � � � � � � � ���

� NE
� � � �
	 � � ��� ��� � �
	 � � ��� � � �&���

� CO � � �
	 � � ��� � � ����� � ��	 � � ��� � � � �

� AS � � ��	 � � ��� � � �?� � � � � �
� ��	 � � ��� �?� � � � � � �

� NE � � ��	 � � ��� ��� � ��	 � � ��� � �����
� CLO

� � ��	 � � ��� � � � � ��� � �
	 � � ��� � � � � � ��� ���

� REN
� � ��	 � � � � � � 	�� �	�

� � � � �
��������� � � � � ��� � � ��� ��� ������� � �! � � ���#"$&% �(' � ')� �!� � ��� � � � ��� ��� 	 � � 	

Table 2: Structural Congruence of STOcKLAIM

RN ������ �
	 � � �! #" ������ ��	 �

RN � � . ��� � � � ��	 � ���! #" � � . ��� �<� � � ���
	��@� where� � � *�3&�+�54 � � � ��6���� ��� 	 �
��� ���
	��.� � RN ��� �
	+* 	 � � �-,�� �/.@�

RN ��� �(0 % ��	 � ���! #" ��� � �(0 % ����	���� , �(0 �21 � �43 , where
��� ���
	�� �.� � RN ��� ��	 �
��% ���
	��@� � RN ��% ��	�� ���

RN � � ��	 � � �! #" � � ��	 �
� �65 � �� �

Figure 1: Definition of function RN

7

(OUTL) � �
	 � � ��� � ���&� ��� � �'������� � � � � � ��� ��� � � .� �
� ��	 � � ��� � � � ��� ��� � � � � ��� ����� ��� ��	

(OUTP) � �
	 � � ��� � ���&� % �'������� �
� � � � ��� ��� � � .� �
� ��	�� � � ��� � � � ��� ��� � � � � ��� ��� � % �
	
where ��% ���
	��.� � RN ��% �
	 �

(INL) � �
	 � � ��� ����� � � ������� � � � � � ��� ����� ��� �
	 .� �
� ��	 � � ��� ��� � � ��� ��� ����
where � �

� * � � � , �). � � 5 � � � �� � � 5 � � ��� �

(INP) � �
	 � � ��� ����� � � � � � ������� � � � � � ��� ����� � �
	 .� �
� ��	 � � ��� � * � �/, � . � � ��� ��� ����

(NLC) � �
	 � � ��� ��� "(-� �+* ���� � � � .� �
� � 1 ��� 3 ��	 � � ��� � * ���/, �). � � ��� ��� ����
where

��� � *�3&��� 4 � � � � 6 �

(EVA) � �
	 � � ��� �� "!$#$�+% �'������� � � � � � ��� ��� � � .� �
� ��	�� � � ��� � � � ��� ��� � � � % �
where ��% ���
	��.� � RN ��% �
	 �

(PIN)
� ��	&� � � ��� � � .� � � ����	&� � � �
� ��	 � � ��� � .� � � � ��	 � � � �

where
� �� � and ��� � ��	 � � � RN ��� ��	 �

(CHO)
� �
	 � � ��� � � � � � .� � � ���
	�� � � ��� � � � � � �

� ��	 � � ��� � � ���
� � � .� � � ����	�� � � ��� � � � � � �

(PAR)
� �
	 � � � .� � � ����	�� � � �

� ��	 � � � � � � � .� � � � ��	 � � � � � � � �

(STC)

� ��	 � � � � � ��	 � � � � �
� � �
	 � � � � .� � � � �
	 � � � � �

� � ��	 � � � ��� � ���
	�� � � �
� ��	 � � .� � � ����	�� � � �

Table 3: Reduction Rules of STOcKLAIM

8

4.2 From LTSs to CTMCs

As we already mentioned in Sect. 1, in order to apply numerical analysis techniques for studying quantita-
tive aspects of (mobile) systems, and especially in order to use stochastic model checking, it is necessary
to obtain a CTMC from the LTS associated to a STOcKLAIM network expression. This in turn requires the
LTS be finite. Consequently, henceforth we will take into consideration only finite LTSs. There are sev-
eral ways for assuring finiteness of the LTS automatically generated from higher level specifications, like
process algebras. Some relay on syntactical restrictions, like avoiding certain (combinations of) operators,
and they have been studied extensively in the context of traditional process algebra. Others, typically used
in the context of verification tools design, are based on the introduction of constraints on certain kinds of
resources, e.g. buffer sizes and data value domains, in the definition of the operational semantics. The
latter approach seems to be most suitable for STOcKLAIM. For instance a limit can be imposed on the
maximum number of values which can be stored in a single node. We leave the details of these issues for
further study.

CTMCs have been extensively studied in the literature (a comprehensive treatment can be found in
[19]; we suggest [15] for a gentle introduction). For the purposes of the present paper it suffices to recall
that a CTMC � is a pair ��� ��� � where � is a finite set of states and

� � � ,�� � IR� � is the rate matrix.
The rate matrix characterizes the transitions between the states of � . If

� ��� � � ����	��

then it is possible

that a transition from state � to state � � takes place, and the probability of “taking” such a transition within
time � , is ��� ��������� ������� � . If

� ��� � � � � ��

then no such a transition can take place4. Finally, we would like to

point out that the traditional definition of CTMCs does not include self-loops, i.e. transitions from a state
to itself. On the other hand, the presence of such self-loops does not alter standard analysis techniques (e.g.
transient and steady state ones) and turn out to be useful when addressing model-checking CTMCs [1],
therefore we will allow them in this paper.

Given a network
�

with binding
	

and assuming � � � � �
	 � � � $ �'& � � � � � � finite, the CTMC
��� ��� � associated to

�
with binding

	
, denoted by $ �! $;� � ��	 � , is defined as follows: the set � of

states coincides with $, and for all � � � $
� �� � � � � �! #"

�#"
.%$'&)(�* (� �

	52 � � � 5 � 2 �
2
�
	�+	

 � 5 � 2 �
2
�
�+	

where � 2 �
2
�
���(#" 1 � � � . �� � � 3

5 Examples of Modeling and Analysis

In this section we show how STOcKLAIM can be used for modeling stochastic aspects of mobile systems.
In fact we also give an idea of how stochastic model-checking would work for STOcKLAIM.

A complete model-checking framework for a modeling language requires the availability of a proper
temporal logic for the specification of the requirements against which models are to be checked. Such
a logic should provide specific modalities for the primitive notions which the modeling language is built
upon, besides (or extending) the purely temporal ones. So, in the case of STOcKLAIM we should address
both the stochastic features and mobility. We are currently developing a logic for STOcKLAIM which
addresses both issues by means of integrating notions of ACSL [17] with concepts of the KLAIM logic
[4]. ACSL is an action-based variant of CSL, the Continuous Stochastic Logic, as proposed in [2]. CSL
is the input logic for the Erlangen-Twente Markov Chain Model Checker, ETMCC [18]. For the examples
in the present paper, we use a simple customization of CSL which allows us to express limited aspects of
mobility, namely the fact that a certain piece of data (resp. process) is stored (resp. running) at a certain
locality. We do this by using atomic propositions of the form

� � �
and
� � �
	 � �

where
�

is a process identifier
and

�
,
���

localities. A state � in the CTMC corresponding to a LTS will satisfy, i.e. will be labelled by
� � �

(resp.
� ���
	 � �

) if and only if the associated configuration in the LTS (belongs to the same congruence class

4The reader should be warned that the above intuitive interpretation is correct only if there is only one transition originating from+ . If this is not the case, then a race condition arises among all transitions originating from + .

9

which contains a configuration which) is of the form � ��	 � �
and

� ��� �
(resp.

� ����� � ��	
) is a sub-expression

of
�

.
Despite the above limitation, our examples should illustrate the benefits of a formal approach to mod-

eling and analysis of stochastic aspects of mobile systems.
CSL is a stochastic variant of the well-known Computational Tree Logic (CTL, see e.g. [7]). CTL

permits stating properties of states, and of paths. CSL extends CTL with two probabilistic operators that
refer to the steady-state and the transient behavior of the system under consideration. While the steady-
state operator refers to the probability of the system being, in the long run, in any of the states belonging
to a given set (specified by a state-formula), the transient operator allows us to refer to the probability of
the occurrence of particular paths in the CTMC. In order to express the time-span of specific paths, the
path-operators until � and next � are extended with a parameter that specifies a time-interval. Let � be an
interval on the real line, 0 a probability value and ��� an ordering operator on IR, i.e. ����� 1�� ��� �
	 ��� 3 .
The syntax of CSL is:

State-formulas��� ������� � � ����� ����������� �! ��"#���$���&% �'���$��� �! : prob. that

�
holds in steady state is (*)!+"#���$�,�&% : prob. that path-formula % holds is (*)!+

Path-formulas% � �.-0/ � � �21 / �- / � : next state is reached at time 3#465 and fulfills

��21 /87 :

�
holds along path until 7 holds at 394:5

The meaning of atomic propositions (;), negation (<) and disjunction (=) is standard; using these operators,
other boolean operators such as conjunction (>), implication (?), true (TRUE) and false (FALSE), and
so forth, can be defined, as usual. The state-formula �A@CBED%��F � asserts that the steady-state probability for the
set of states satisfying F , the F -states, meets the bound ��� 0 . GH@IBJD ��K � asserts that the probability measure
of the set of paths satisfying K meets the bound ��� 0 . The operator GH@CBED%� � � replaces the usual CTL path
quantifiers L and M . In CTL, the state-formula LNK is valid in state � if there exists some path starting in
� and satisfying K and M8K is valid if all paths satisfy K . In CSL, the formula G � � �&K � holds if almost all
paths satisfy K . Moreover, clearly LNK holds whenever GPO � ��K � holds. Thus, qualitative as well as stochastic
properties can be expressed in CSL5.

In CTL, a path satisfies an until-formula F �RQ if there is a state on the path where Q holds, and at every
preceding state on the path, if any, F holds. The CSL counterpart, F �TS#Q is satisfied by a path if Q holds
at time ���U� and at every preceding state on the path, if any, F holds. In CSL, temporal operators likeV

, W and their real-time variants
V S or WXS can be derived, e.g., G @CBJD � V SYF � � G @IBJD � TRUE �ZS9F � andG � D ��W[S#F � � G]\ � � D � V S^<_F � . The untimed next- and until-operators are obtained by �`F � ��SaF andF � �RF � � F � �ZS#F � for � � *
 �cb �

.
Four different types of performance and dependability measures can be expressed in CSL, viz. steady-

state measures, transient-state measures, path-based measures, and nested measures.
The ETMCC model checker [18] is a prototype tool that supports the verification of CSL-properties

over CTMCs. The model checker takes as input a model file with a textual representation of a CTMC,
a label file associating each state to the atomic propositions that hold in that state and a given accuracy.
ETMCC is based on sparse matrix representations of CTMCs. Alternative model checkers for CSL include
PRISM [20], Prover [23] and the APNN (Abstract Petri Net Notation) toolbox [6].

In the following we present two simple examples with the purpose of showing how STOcKLAIM can
be used in conjunction with a stochastic model-checker.

5We recall that in the context of probabilistic program/model verification, a qualitative property is one which does not involve
numeric probabilities, except probability � ; in such a context, a qualitative property is satisfied by a system if the probability of the set
of computations which satisfy the property amounts to � , i.e. the property is satisfied by almost all computations (see e.g. [21, 8, 14]).

10

�
::
����� 	 � � �

::
� ��� 	 � � �

:: �	��
 � �� � � ��� ::
� � � 	

where:�� � �� ����� ��� � � ���A� � �� ��������� ������� �� � � �&� ��� � � ��� � � � �� �
� � �&� ��� � � ��� � � � �� �

�	��
 �� ��������� � ��� � � � � �
� �	��
��������
��������� � ��� � � � � �
� �	��
��������

�	��
�������� �� �� "!$#$���� ���� � � � "! � �
� �	��
 ��#
�	��
�������� �� �� "!$#$���� ���� � � � "! � � � �	��
 ��#
�	��
 ��# �� � � �&� ��� � � � � � �	��

�� ���� �� � � �&� ��� � � � ! � � � ����
�� ���� �� ����� � � � � � ! � �
� �%$��
�%$�� �� �� "!$#$����� � � � ! $�� � � �&���
��� �� � � �&� ��� � � � ! � � � ���
��� �� � � �&� � � � � � ! � � � ����

Figure 2: DMS definition

5.1 A Distributed Mobile Service

Figure 2 shows the STOcKLAIM specification of a simple network service, & � , which exploits mobility
for balancing the usage of network resources. We consider a very simple configuration of the distributed
service, consisting of two localities, namely

�
, for local node, and

�
, for remote node. Moreover, in order

to simplify the specification and the associated transition system, we use a slightly extended version of the
STOcKLAIM input action ��� � � �

, where � can also be a pair of locality constants
� � � � � which matches

the data
���

and
� � in the node

�
of a network like

� � � � ����� � � 	 � � � ����� � � 	 .
There is a user

�� � running locally, continuously sending requests to the local server �"��
 . For each
request, the server spawns a specific agent which will take care of servicing it. Requests of service ���
are processed locally while those of service ��� require also special computing resources which are located
remotely, so they are initiated locally but completed remotely, which requires the migration of the related
agent, �� ���� , to

�
. Each agent terminates as soon as the processing of the request it is in charge of finishes.

The user is allowed to send a new request for a service only after the server has dispatched the previous
one; this is achieved by means of the token

���
. At any point in time, at most one agent is running at each

node (but two agents can run in parallel, one at
�

and one at
�

); this is achieved by means of tokens
���

and
� �

. The LTS of the distributed mobile service, ��� �'& � � is shown in the table in Fig. 3. States are
numbered from to ("(and the number of each state is given in the first column. The second (resp. third)
column gives the current tuple at locality

�
(resp.

�
). Finally the fourth column lists, for each state, the

transitions originating from it; each transition is represented as a pair (rate-name,target-state). For the sake
of readability, in the table, expressions like

� ��� � � � 	 � � � ��� � � � 	 � � � ��� � are represented by
� � � 	 � � � � 	 � � in

the column of locality
�
; only the network component of configurations is shown, and the same names used

in the specification are used instead of those occurring in the representatives, after renaming, according to
the LTS definition.

Below we give some examples of quantitative and qualitative properties of the DMS model that can
be verified by means of the ETMCC model checker. The first issue we address is resource usage. More
specifically, we are interested in knowing a lower bound for the fraction or percentage of usage of the
computing resources of node

�
. This can be computed as the dual of an upper bound for the probability

that no process is running at locality
�
, in the long run, which corresponds to an upper bound for the steady

state probability of having value
� ��� 	

in locality
�

. We performed our analysis on $ �! $;� � �,��	 � � where� �
is the network expression of Fig.2 and

	5��� �
 ,
	 �+� � �

,
	 �+� � �*)

,
	 � � � 	 � � � � 	 � � � �	 � . � 	 � . � � 	 � . � � � 	 � . � �
 ,

	 � � . �+)
,

	 � � . � �-,
, and

	 � . � �
. We analyzed the case

11

��� � � �����	�

 ����	����� ��� ��� ���	��� � � � � ��� � � �����
� � ��� ��� ���	��� � � �	� �! � ��� � � ��"��$# � � ��%&�('
# �)� " ����� ��� ��� ���	��� � � � � ��� � � ��"��+*
' �)� % ����� ��� ��� ���	��� � � � � ��� � � ��%&�$,
* ���	�	� �� �" � � � � � ��� � � ��-�"	�$.
, ���	�	� �� &% � � � � � ��� � � ��-�%/��0
. ���	����1/� � � ��� �	2 �" � ��� � � � 2 �$3 � � -/"��
54
0 ���	����1/� � � ��� �	2 &% � ��� � � � 2 �
�
 � � -	%/�
 �
3 ����	��� ���	��� � � ��� �	2 �" � ��� � � ���
 # � � -�"��

�4 � ��� ��� ���	���	16� � � � � ��� � � � 2 �

�
 ����	��� ���	��� � � ��� �	2 &% � ��� � � ���
 ' � � -�%��
 *

 � ���	����1/� � � ��� ��7/� 8:9<; � � 2 �
 * � � - 7/� �
 ,

 # ���	��� � � ��� �! � �	2 6" � ��� � � ��"��
 . � � ��%/�
 0 �� -/"��+�

 ' ���	��� � � ��� �! � �	2 �% � ��� � � ��"��
 3 � � ��%/�$� 4 �� -	%&�+�

 * ����	��� ���	��� � � ��� ��7/� 8:9<; � �����
 � � - 7/� �$���

 , ���	����1/� � � � �	� � � 2 �+��� � � - � �$��#

 . �)� " ��� ���	��� � � ��� �	2 �" � ��� � � -/"��$#

 0 �)� % ��� ���	��� � � ��� �	2 �" � ��� � � -/"���'

 3 �)� " ��� ���	��� � � ��� �	2 &% � ��� � � -	%&�+�!'
� 4 �)� % ��� ���	��� � � ��� �	2 &% � ��� � � -	%&�+��*
�
 ���	��� � � ��� �! � ��7/� 8:9<; � ��"��+�!' � � ��%/�$��* �� - 7�� �$��,
��� ����	��� ���	��� � � � �	� � ������, � � - � �+��.
�!# � ��� ��� ���	���	16� � � � � � � � 2 �+��. � � -����
54
��' �)� " ��� ���	��� � � ��� ��7/� 8:9<; � - 7�� �$��0
��* �)� % ��� ���	��� � � ��� ��7/� 8:9<; � - 7�� �$��3
�!, ���	��� � � ��� �! �	� � ��"��+��0 � � ��%/�$��3 �� - � �$# 4
��. ����	����� ��� ��� ���	��� � � � � � � ���(# 4 � � -	�&�

�!0 �)� " ��� ���	��� � � � �	� � - � �$#

�!3 �)� % ��� ���	��� � � � �	� � - � �$#	�
# 4 � ��� ��� ���	��� � � �	� �! � � � ��"��$#
 � � ��%/��#	� �� -����+�

 �)� " ����� ��� ��� ���	��� � � � � � � ��"��$#�# � � -�����#
#�� �)� % ����� ��� ��� ���	��� � � � � � � ��%&�$#�' � � -����('
#�# ���	�	� �� �" � � � � � � � ��-�"	��#	* � � -��&�$*
#!' ���	�	� �� &% � � � � � � � ��-�%/��#�, � � -��&��,
#�* ���	����1/� � � ��� �	2 �" � � � � 2 �$#	. � � -/"	�$��# �� -����+.
#�, ���	����1/� � � ��� �	2 &% � � � � 2 �$#�0 � � -�����0
#�. ����	��� ���	��� � � ��� �	2 �" � � � ���(#�3 � � -�"��+��. �� -����$3
#�0 ����	��� ���	��� � � ��� �	2 &% � � � ���=' 4 � � -	�&�
�

#�3 ���	��� � � ��� �! � �	2 6" � � � ��"���'
 � � ��%/�('�� �� -/"��$# 4 � � -����
 #
' 4 ���	��� � � ��� �! � �	2 �% � � � ��"���'	# � � ��%/�('�' �� -����
 '
'
 �)� " ��� ���	��� � � ��� �	2 �" � � � -/"��$#
 � � -����
 .
'	� �)� % ��� ���	��� � � ��� �	2 �" � � � -/"��$#	� � � -����
 0
'�# �)� " ��� ���	��� � � ��� �	2 &% � � � -����
 3
'�' �)� % ��� ���	��� � � ��� �	2 &% � � � -����+� 4

Figure 3: DMS LTS

12

� � � � ���
��� �	�
��� ��

��� ���
��� �

��� ���
��� ��

��� ���
��� �	

��� ���
��� ��

���
��

������

������� �"!$#&%

'' (
)*+ ,
+ -. - /
0

Figure 4: Results for L

when the upper bound is

 � 1

by running ETMCC on the CTMC with the CSL formula � \ �32 � � � ��� 	�� � � ,
where the states of the CTMC satisfying atomic proposition

� ��� 	 � �
are those corresponding to the states

1, 2, 3, 4, 10, 23, 27, 30, 31 and 32 of the LTS. It has been found that the formula holds (in the initial
state). It is worth pointing out here that, for formula � @IBJD ��F � , ETMCC actually computes and reports also
the actual probability that F holds “in the long run”. So we can study such probability as a function of the
rates specified in the input model. Consequently we can vary

	
in $ �! $;� � � ��	 � , thus getting different

CTMCs and study them. In Fig. 4 the study is performed for all those
	

with
	 � �

varying from
�

to

and

	 � � 	 � �
otherwise. From the curve it can be seen that the probability of not using the resources in

�
decreases when

� �
increases, which means that, on the average, the percentage of usage of the resources in�

increases when the rate of the requests for Service ��� increases. With CSL also qualitative properties can
be expressed. For example, the following property specifies that it is possible that both agents are running
at the same time at

�
: G]O � � V �'�� ���� � � > �'�� ���� � � = �%$ � � � � � �

Verification with ETMCC shows that this property is not satisfied by any state (i.e. almost all paths orig-
inating from any state satisfy < � V � �� ���� � � > � �� ���� � � = �%$�� � � � � � . A further property shows that a
new service request for Service ��� or ��� can be issued when a previous request is still being processed at
locality

�
. G O � � V � � � ��� 	 � � = � ��� 	�� � � > ��� � � � �

This property is satisfied by all states.

5.2 A virus

This example has been inspired by a similar one in [10]. Although our example is slightly simpler than
the one presented in [10], we are able to show some quantitative results which we obtained by means of
model-checking, while the treatment of the example in [10] is essentially limited to system specification.
We model the spreading of a virus in a network. A network is modeled as a set of nodes and the virus
running on a node can move arbitrarily from the node to a subset of adjacent nodes, infecting them. At
each node, an operating system runs, which upon receiving the virus, can either run it or suppress it. In
this paper, for the sake of simplicity we consider simple networks which are in fact grids of

� , � nodes.
Each node is connected with its four neighbors (north, south, east, west), except for border nodes, which
lack some connections in the obvious way (e.g. the nodes on the east border have no east connection).
Moreover, in order to keep the state space at a size which permits us to graphically represent it in this

13

����� �� ��� ��� � ����� ��� �
� � �	� �

�
� � �
� ����

/* alternative present only for
 � /*
� ��� � ����� ��� �

� � �	� �
�
� � � � �&���

/* alternative present only for
 � � /*
��� ��� � ����� ����� �

� �	� ���
�
� � � �&���

/* alternative present only for � � /*
��� ��� � ����� � ��� �

� �	� ���
�
� �
� ����

/* alternative present only for �

/*

� ��� �� � � ��� � ��� � � ��� ��� �
� � ���
/* the received virus is undetected and will run/*
��� ��� � ��� � � ��� ��� �
� � ���
/* the received virus is detected and suppressed/*� ��� �� � � ��� � "!$#$� � ��� ��� �
� � ���
/* the virus is activated /*

Figure 5: Specification of an infected network

paper, we assume that the virus can move only to one adjacent node. Finally, we refrain from modeling
aspects of the virus other than the way it replicates in the network. In particular we do not consider the
local effects of the virus and we make the virus die as soon as it has infected one of the neighbors of its
locality.

The specification schema of the virus and the operating system running at each node is given in Fig. 5,
where a network is conventionally represented as a

� , � matrix of localities
� ���

. For the verification, we
chose

� � � � 1
with the following initial state:

� � �
::
� � � � � � ���

::
� � � � 	

, while
� ���

::
� ���

for �
 � � 1
with
 	� or 	� . The resulting LTS is shown in Fig. 8 where, for the sake of readability we represent
each state of the network as a square box with nine sectors. A blank sector
� corresponds to

� ���
::
� ���

, i.e. a
normally running node; a black triangle in sector
� corresponds to the expression

� ���
::
� ��� � � � ���

::
� ����� 	

, i.e.
a node which has been infected; a thick � in sector
� corresponds to

� ���
::
� ���

, i.e. a node which is going
to run the virus; and

� ���
::
� ��� � � � ���

::
�����

—i.e. the virus is running at the node—is represented by a black
sector
� .

There are several issues that can be analyzed. First of all we can study the probability that the virus is
running at node

� ���
within � time-units after the infection of node

� ���
; for instance we can check if such a

probability is smaller than a given upper bound 0 . This question becomes more interesting when we define
the rates associated to the detection (resp. undetection) of the virus in such a way that the operating systems
of the localities on the diagonal from bottom-left to top-right—

��� �
,
� �
� , and

� � �
—have a relatively high

rate of detection and can be considered as a firewall to protect the nodes
� � � ,

� �-�
, and

� � � .
We can now express the above property in CSL for locality

� � �
and 0 �
 � �

as follows:

G�� �32 � ��< � ����� ��� ��� � � � � ����� ��� ��� �
The ETMCC model checker gives as a result the list of states where the formula holds. Moreover, as

for the case of steady state probabilities, the tool provides also, for each state, the actual probability that
starting from such a state, the formula < � � ��� ��� ��� � � � � � ��� ��� ��� is satisfied. In Fig. 6 the probability to
reach, from the initial state, a state where the virus is running in locality

� � �
is presented for time values

ranging from to
 with
	 � � ��� � 	 � � ��� � 	 � � ��� � 	 � � ��� � 	 � � ��� � �

for �
 � � 1
,

	 � � � � �	 � � ��� � 	 � � � � �
 , and
	 � � ��� � otherwise,

	 � � � � � 	 � � �
� � 	 � � � � � , and
	 � � ��� �

otherwise. We performed similar analysis for different values of the detection (resp. undetection) rates of
the firewall. In particular for � � � � � �
� � � � � and

� � � � � ��� � � � � range over
* �	�����	�
 . , with � ��� �

�
�
� �

��� �
�
�
�

constant for �
 � 1 (and equal to '). For the sake of readability, in Fig. 7 we show the results only for
� � � � � �
� � � � � � 1 ��� �
 3 and

� � � � � ��� � � � � �21 � , �
 3 . The results clearly indicate that for high detection
rates the probability for locality

� � �
to run the virus within a certain time interval is lower.

14

� � � � � � � � � �
	 �
		
��� 		�����	�

��� 		�����	��

��� 		�����	��

��� 		�����	��

��� 		�����	��

��� 		�����	��

�������������

 "! #%$'&)(*! "+

, -.
/102 3
2 32 4
2 56 7
4 54 8

Figure 6: Probability that virus reaches
� � �

after t time-units

9 : ; < = > ? @ A 9
B
9�C B�B�D�E�B�>

9�C B�B�D�E�BF=

9�C B�B�D�E�B�<

9�C B�B�D�E�BF;

9�C B�B�D�E�B:

9�C B�B�D�E�B�9

9�C B�B�D�G�B�B

H�I�J�K�LNM�K
H�I�JPO�MPQ
H�I�J�KRMNK�L

S"T UWVYX[Z\T S�]^S

_ `a
b c
b de d f
gd h
d hd f
d c
e if
cf
j

Figure 7: Results for Firewalls with different detection capability

15

Finally we show two examples of qualitative properties. Both properties clearly show the limitations
of this, simplified, model of the spreading of a virus in a network. In STOcKLAIM more realistic models
can easily be specified. Their analysis requires adequate tool support, not vailable at the time of writing the
present paper, such as the automatic generation of a CTMC from a STOcKLAIM specification, in order to
generate their considerably larger state-spaces.

The first property states that it is never the case that the virus is running at two different localities in the
network at the same time. Actually this property is a conjunction of many properties, each of them stating
that a certain pair of localities cannot both have a virus running at the same time.

�
 �
 ����� ���6� 1
��
 	� � = 	� � �

G]O � � V � ����� ��� ��� > ���
	 ��� �
	 � �

For example, verification shows that the formula G�O � � V � ��� � ��� � � > ���� ��� �� � �
is not satisfied in any state.

The second qualitative property shows that we can always reach a state in which the network is free of
viruses forever.

G]O � � V G � � � V ���� � � � � � �
����� ��� ��� � � �

This highly desired property is satisfied in every state. The outer-most path-formula in the last formula
is satisfied only in state 28.

6 Conclusions and Future Work

In this paper we introduced STOcKLAIM, a stochastic extension of cKLAIM, that makes it possible to
integrate the modeling of quantitative and qualitative aspects of mobile systems. The starting point of
our proposal is to use continuous random variables with exponential distributions for modeling action
durations.

We presented a formal operational semantics for STOcKLAIM that associates a labelled transition sys-
tem to each STOcKLAIM network and showed how it can be transformed into a Continuous Time Markov
Chain (CTMC). We worked out two small examples, one modeling a distributed mobile service and another
modeling the spreading of a virus through a network. We analyzed some of the qualitative and quantitative
aspects of these examples such as resource usage and velocity of spreading of a virus.

The results in this paper show the viability of the approach and give a first impression of its practical
usefulness when addressing quantitative aspects of mobile systems. In particular, they show that the choice
of an asynchronous model of computation for the base-language greatly simplifies the definition of the
operational semantics of the stochastic extension. Such definition is further simplified by the fact that the
auxiliary structural congruence includes, among others, associativity and commutativity of parallel and
non-deterministic operators. These advantages are not restricted to KLAIM, but can be exploited for other
languages based on an asynchronous model of interaction, s.a. Linda-based languages.

The ideas proposed in this paper give rise to a whole range of related interesting research questions.
We address some of them briefly:

1. Logics for mobility & stochastic behaviour. STOcKLAIM provides an explicit way for addressing
quantitative issues of mobility and locality in specifications of dynamic wide area networks. The
examples presented in this paper show that the analysis of such issues can be addressed only in an
indirect way by means of stochastic model checking of CSL formulas. Therefore STOcKLAIM needs
to be equipped with a proper logic for the expression of both stochastic notions and mobility issues.
Obviously, good starting points seem to be the logic(s) for KLAIM [4] and CSL [1, 18].

2. Tools. Given the complexity of the state space of more realistic models for quantitative aspects of
mobility, a first necessary step is the development of a tool that generates CTMCs from cKLAIM

expressions. This tool could be designed as a front-end to the ETMCC model checker. A further

16

d11

u11

r11

s11

d12

r12

e12

s12

w12

u21

d13 w13

r21

n21

d21

e11 u12

u13 r13

e21

s21

d22

u22

d31

u31
r22

s13

r31

n31 e31

n22

e22

s22

w22

d23

u23

r23

d32

u32

r32

n32

w32

e32

w23 n23

s23

d33
u33

r33

n33

w33

1

2

3 4

10

5

28

6 7

16

8 9

19

11 12

13

14

15 23

17

18 20

21

22

26

24 25

27

Figure 8: LTS for the specification in Fig. 5

17

step is the development of a model checker for the new temporal logic for mobility and stochastic
behaviour.

3. Extending KLAIM coverage. In the present paper we addressed only a very limited subset of KLAIM.
It would be interesting to cover a more significant subset of the language, at least � KLAIM, or
KLAIM itself, or OPEN KLAIM. Moreover, the introduction of rate expressions would facilitate the
specification of rates, also by means of variables. The possibility to exchange rates in communica-
tions and to express rates as functions of localities should be addressed as well. Another interesting
extension would be the introduction of probabilistic choice and probabilistic parallel composition.

These are some of the topics we are currently investigating, on which we expect to obtain interesting results
in the near future.

7 Acknowledgments

We want to thank Joost-Pieter Katoen for fruitful discussions on the issues raised by the research presented
in this paper.

References

[1] C. Baier, B Haverkort, H. Hermanns, and J. Katoen. Automated performance and dependability
evaluation using model checking. In Computer Performance Evaluation, pages 261–289. Springer-
Verlag, 2002.

[2] C. Baier, J. Katoen, and H. Hermanns. Approximate symbolic model checking of continuous-time
markov chains. In J. Baeten and S. Mauw, editors, Concur ’99, volume 1664 of Lecture Notes in
Computer Science, pages 146–162. Springer-Verlag, 1999.

[3] L. Bettini, R. De Nicola, and M. Loreti. Formulae meet programs over the net: a frame-
work for reliable network aware programming, 2003. (submitted for publication. Available at:
http://music.dsi.unifi.it).

[4] L. Bettini, V. Non, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese, E. Tuosto,
and B. Venneri. The Klaim Project: Theory and Practice. In C. Priami, editor, Global Computing:
Programming Environments, Languages, Security and Analysis of Systems, volume 2874 of Lecture
Notes in Computer Science, pages 88–150. Springer-Verlag, 2003.

[5] J. Bradley and N. Davies. Reliable Performance Modeling with Approximate Synchronisations. In
J. Hillston and M. Silva, editors, Proceedings of the 7th workshop on process algebras and perfor-
mance modeling, pages 99–118. Prensas Universitarias de Zaragoza, September 1999.

[6] P. Buchholz, J.-P Katoen, P. Kemper, and C. Tepper. Model-checking large structured Markov chains.
The Journal of Logic and Algebraic Programming. Elsevier Science, 56(1-2):69–96, 2003.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999. ISBN 0-262-03270-8.

[8] C. Courcoubetis and M. Yannakakis. Verifying Temporal Properties of Finite STate Probabilistic
Programs. In 29th Annual Symposium on Foundations of Computer Science, pages 338–345. IEEE
Computer Society Press, 1988.

[9] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents interaction and
mobility. IEEE Transactions on Software Engineering, 24(5):315–329, 1998.

[10] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic KLAIM. In R. De Nicola, G. Ferrari,
and G. Meredith, editors, Coordination Models and Languages, volume 2949 of Lecture Notes in
Computer Science. Springer-Verlag, 2004.

18

[11] D. Gelernter. Generative Communication in Linda. Communications of the ACM, 7(1):80–112, 1985.

[12] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets: a structured performance modelling
formalism. Performance Evaluation - An International Journal. Elsevier, 54:79–104, 2003.

[13] D. Gorla and R. Pugliese. A Semantic Theory for Global Computing Systems, 2004. (Submitted for
publication. Available at http://www.dsi.uniroma1.it/˜gorla/papers/bis4k-full.pdf).

[14] S. Hart and M. Sharir. Probabilistic Temporal Logics for Finite and Bounded Models. In 29th Annual
Symposium on Foundations of Computer Science, pages 1–13. IEEE Computer Society Press, 1988.

[15] B. Haverkort. Markovian models for performance and dependability evaluation. In E. Brinksma,
H. Hermanns, and J. Katoen, editors, Lectures on Formal Methods and Performance Analysis, volume
2090 of Lecture Notes in Computer Science, pages 38–83. Springer-Verlag, 2001.

[16] O. Herescu and C. Palamidessi. Probabilistic Asynchronous � -Calculus. In J. Tiuryn, editor, FoSSaCS
2000, volume 1784 of Lecture Notes in Computer Science, pages 146–160. Springer-Verlag, 2000.

[17] H. Hermanns, J. Katoen, J. Meyer-Kayser, and M. Siegle. Towards Model Checking Stochastic
Process Algebra. In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated Formal Methods
- IFM 2000, volume 1945 of Lecture Notes in Computer Science, pages 420–439. Springer-Verlag,
2000.

[18] H. Hermanns, J Katoen, J. Meyer-Kayser, and M. Siegle. A tool for model-checking Markov chains.
International Journal on Software Tools for Technology Transfer, 4(2):153–172, 2003.

[19] V. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.

[20] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM:
A hybrid approach. In J.P. Katoen and P. Stevens, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 2280 of Lecture Notes in Computer Science, pages 52–66. Springer-
Verlag, 2002.

[21] D. Lehmann and S. Shelah. Reasoning with Time and Chance. Information and Control, 53:165–198,
1992.

[22] C. Priami. Stochastic � -Calculus. The Computer Journal. Oxford University Press., 38(7):578–589,
1995.

[23] H. Younes and R. Simmons. Probabilistic verification of discrete event systems using acceptance
sampling. In E. Brinksma and K. Larsen, editors, Computer Aided Verification, volume 2404 of
Lecture Notes in Computer Science, pages 223–235. Springer-Verlag, 2002.

19

