
On the fly model checking of communicating UML
State Machines1

Stefania Gnesi and Franco Mazzanti

Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo"
ISTI-CNR

Via A. Moruzzi 1
56124 Pisa, Italy

{stefania.gnesi,franco.mazzanti}@  isti.cnr.it   
http://matrix.iei.pi.cnr.it/FMT

Abstract. In this paper we present an ``on the fly'' model checker for the
verification of the dynamic behavior of UML models seen as a set of com-
municating state machines. The logic supported by the tool is an extension
of the action based branching time temporal logic µ-ACTL and has the
power of full µ-calculus. Early results on the application of this model
checker to a case study have been also reported.

1   Introduction

The Unified Modeling Language (UML) is a graphical modeling language for object-
oriented software and systems [18,25] It has been specifically designed for visualizing,
specifying, constructing and documenting several aspects of - or views on - systems.
Different diagrams are used for the description of the different views.
In this paper, our aim is to define an environment for the formal verification of behav-
ioral properties of systems modeled by a fixed number of message exchanging active
objects, each of them described by a UML Statechart Diagram.
The paper  proposes the use of a formal verification technique, namely model check-
ing [5], to verify the conformance of a design with respect to desired properties.  Since
model checking suffers the so called  "State Space Explosion" problem, that can arise
when a system is composed of several parallel subsystems we have developed an on
the fly algorithm for model checking UML communicating state machines. This
algorithm is able to check the validity of a formula without generating the global
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model of the system bypassing the state explosion problem that makes other verifica-
tion tools inapplicable.
UMC (UML on the fly Model Checker) is the results of a project recently started at
IEI (now ISTI) with the purpose of doing some experimentation in three different
directions.  First, we are interested in testing the appropriateness of the UML method-
ology (and in particular UML statecharts) for the design and the specification of the
dynamic behavior of a system.  The question here is if we can find a subset of UML
which from one side is reasonably well defined and powerful enough to allow a speci-
fication to be written without too much effort, and from the other side is still not to
complex to allow a verification/analysis tools to be developed for it.
As a second theme, we are interested in investigating the kind of user interface that
might help a non-expert user in taking advantage of formal specifications and verifica-
tion techniques. Nowadays formal methods still encounter many obstacles in being
widely used and accepted, and we believe that the kind of human interface they usually
provide does play a main role in this difficulty. UML, with all its standard graphic and
yet standard layout features, might present an opportunity to convey to the user a
more friendly way of specifying models and their properties.
Thirdly, we have already started an interesting experience (which is still ongoing) in
designing and implementing an "on the fly" model checker for full µ-calculus for
networks of automata, which has resulted in the integration of the FMC tool inside
the JACK environment  [4]. We are now interested in exploring the advantages given
by the "on the fly" approach for the verification of the dynamic behavior of UML
models.
UMC, indeed, is essentially an experiment in the design of an integrated tool for the
construction, the exploration, the analysis and the verification of the dynamic behav-
ior of UML models described as a set of communicating state machines.

The present paper is organized as follows: in Section 2 we discuss the problems we
have encountered in defining a formal verification environment for UML Statechart
Diagrams, related in particular to the description of the formal model on which to
perform the verification of behavioral properties; in Section 3 we debate the assump-
tions and limitations we have taken into account in the implementation of UMC by
passing some of the intrinsic limits imposed by the complexity of UML; Section 4
presents the logical framework used to express behavioral properties; in Section 5 the
on the fly algorithm is defined. The application of UMC to a case study is shown in
Section 6. We conclude the paper with a comparison with related works together with
some conclusions  (Section 7).

2 UML modeling difficulties

UML is a semi-formal language, since its syntax and static semantics (the model
elements, their interconnection and well-formedness) are defined formally, but its
dynamic semantics are specified only informally. As already hinted in the introduc-
tion, a problem is that full UML is a very complex framework, which at a first glance



looks even too complex for what might seem to be the needs and the capabilities of a
formal verification environment. Therefore have the need to identify a more tractable
subset of features of UML, which still allow in a reasonable way a well-defined and
consistent definition of a model.
Several approaches have been proposed in the literature for the definition of a formal
semantics of UML Statechart Diagrams, e.g. [1,20,28], starting from them in UMC
project we have proceeded with the process of UML subset identification in a bottom
up way, adding in the time more and more features, according to the specification
needs which have been identified, while more experience has been gained in the pro-
ject. The difficulty of achieving a really complete support of UML features can also
be observed in the current state of art of UML supporting tools. For example, we
have not yet been able to find a free or inexpensive implementation allowing the
design of statecharts with all their features, and even expensive environment are often
lacking some of them.
A problem encountered in modeling the dynamic semantics of UML statecharts is
introduced by the many aspects which UML explicitly and intentionally leaves as
"implementation dependent" or "implementation defined", or simply "not specified by
the standard". Examples of these "intentionally not specified" aspects are the precise
semantics of queue, the precise semantics of signal transmission, the precise seman-
tics of parallel evolutions of multiple state machine, the set of actions allowed inside
a transition, and so on.  For realizing a formal verification tool, the only way to deal
with these aspects is either to make some own implementation choice or to handle the
aspect as a parametric aspect, which could be in some way specified according to some
user choice.
Another problem is that we may also find "partially defined" aspects which look like
just incomplete or imprecise definition of the dynamic semantics of a state machine,
without any hint on the fact that this under-specification is intentional or not. Or we
may encounter contradictory / inconsistent aspects of the UML definition (e.g. the
behavior in presence of composite, dynamic choice transitions), or aspects defined in a
particularly ambiguous way (e.g. the handling of completion transitions).
Again a formal verification tool is forced to make its own implementation choices,
but in this case the question remain on whether or not the correct choice has been
made, of if a different choice left implicit behind the UML definition should have been
made (an example of that being the priority of join transitions).
Another difficulty, which is intrinsically related to the UML statechart design, is that
they may have a potentially infinite number of states. This happened because the
given state of a state machine includes a potentially unbounded queue of events, and
maybe also because the data types used and updated by the transition actions can be
potentially infinite data types.
A final additional, not strictly technical, difficulty is related to the fact that it is not
evident what could / should be considered as observable of a system configuration or
of a system evolution from the point of view of the abstract semantics of a state
machine.  At least the values of the object attributes or the signals generated during
the system evolution should be considered as "observable".  Already this minimal
assumption implies that a system evolution should contain not just one "observable



event" (as it usually happened for most process algebras) but also a certain number of
them and that a system configuration should not be a "black box”.

3   UMC: Assumptions and limitations

The difficulties mentioned in Section 2, and our desire to proceed in bottom up proc-
ess by adding more and more features to successive running versions of the UMC
prototype has led us to a certain number of assumptions and limitations built in the
current version.  As more experience is gained in the project assumptions might
change and limitations might be removed.

3.1 UMC Assumptions

- The whole sequence of actions constituting the actions part of statechart transi-
tion, is supposed to be executed as an indivisible atomic activity, i.e. two parallel
statechart transitions, fireable together in the current state-machine configuration,
cannot interfere one with the other, but they are executed in a sequential way (in
any order).

- Given a model constituted by more than one state machine, a system evolution is
constituted by any single evolution of any single state machine.  I.e. state-
machine evolutions are considered atomic and indivisible.

- The propagation of signals inside a state machine and among state machines is
considered instantaneous, and loss free.

- The events queue associated with a state machine handles its events in a FIFO
way.

- The relative priority of a join transition is always well defined and statically fixed.

3.2 UMC Limitations

-  Events: Only asynchronous signals are supported. Call events, time events,
change events, events deferring are not supported.

- States: Internal transitions, Enter / Exit/ Do activities, are not supported.  His-
tory states, Sync states, Choice pseudo-states are not supported.

-  Transitions: Initial default transitions do not have actions, static and dynamic
choice transitions are not supported. Completion transitions cannot appear in
more than one region of concurrent state.

- Other: Sub-machines are not supported. Actions can only be simple assignments
and sending of signals. The only data type for variables and signal parameters is
constituted by 32 bits integers. Boolean and Integer expressions have some sim-
plification.



4 µ-ACTL+ and UML state machines

In the previous sections we have analyzed the problems related to the definition of a
formal model for UML statecharts, we now introduce the logical framework used to
express the behavioral properties we whish verify on the model associated to a UML
specification. The logic we consider is µ-ACTL [7], an extension with a fixed-point
operator of the action based logic ACTL defined in [6], whose expressive power is the
same of full modal µ-calculus [17]. µ-ACTL is a branching time temporal logic suit-
able to express properties of communicating systems whose behavior is characterized
by the actions they perform. µ-ACTL is suitable to express properties of concurrent
systems whose behavior is characterized by the actions they perform and whose se-
mantics is defined by means of Labeled Transition Systems (LTSs). The logic can be
used to define both liveness (something good eventually happen) and safety (nothing
bad can happen) properties of reactive systems (with and without fairness constraints).
A µ-ACTL formula can be built with the following syntax:

Φ := true | Φ ∧ Φ | ¬ Φ | E X {χ }     Φ | E X{τ} Φ  | min Z:Φ

where χ are action formulae, that intuitively express sets of actions, having the fol-
lowing syntax:

χ::= true | a | χ ∧ χ | ~ χ

and  “a “ is an observable action belonging to a finite alphabet of actions. τ represents
instead a not visible action (not belonging to the finite alphabet of actions).

The formal semantic of µ-ACTL is given over Labeled Transition Systems. Infor-
mally, a formula is true on an LTS, if the sequence of actions of the LTS verifies
what the formula states. We hence say that the formula E X {χ }Φ is true in a state S
of an LTS when Φ is true in a successive state of S reached by an action satisfying χ
and the formula E X{τ} Φ is true when that Φ is true in successive state of S reached
by a τ action.
Starting from the basic µ-ACTL operators, some derived ones can be defined in the
usual way, among them: the Hennesy-Milner [13] state modalities  [ ] < >, the EF
(eventually) and AG (always) formulae, and the max Z:Φ (maximal fixed point).
We refer the interested reader to [7] for a more detailed description of µ-ACTL.

In this paper µ-ACTL is extended to make possible observations on UML model
evolutions and assertions on explicit local state variables of UML state machines.
We will call this logic µ-ACTL+. Unlike most process algebras, UML state machines
have an explicit set of objects attributes. This raises the question whether or not we
should allow the user to specify system requirements (e.g. logic formulae), which take
into account also the values of attributes during the execution. We have decided to
allow this kind of internal visibility inside the system configurations and this has
been achieved adding to the µ-ACTL logic a special ASSERT state predicate.  



Now χ formulae become evolution predicates, and “a” the observation of a signal
event being sent to a target object (here square parenthesis are used to denote optional
parts):

χ::= true | [target.]event[(args)] | χ ∧ χ | ~ χ  | χ ∨ χ

starting from this the syntax of µ-ACTL+ is the following:

Φ := true | Φ ∧ Φ | ¬ Φ | EX{χ}Φ | EX{τ}Φ | max Z:Φ | ASSERT(VAR=value)

ASSERT(VAR=value)is true if and only if in the current configuration the attribute
VAR has value equal to "value”.

Following the above syntax we will write using µ-ACTL+ formulae such as:
EX {Chart.my_event} true

that means: in the current configuration the system can perform an evolution in which
a state machine sends the signal my_event to the state machine Chart.  
Or the formula:

EX {my_event(3)} true
that means: in the current configuration the system can perform an evolution in which
a state machine sends the signal my_event(3)to some other state machine.
The action expression τ is supposed to match instead any system evolution, which
does not send any signal.
The following formula:
   AG ((EX {my_event}true) -> ASSERT(Object.Attribute=Value))
meaning that the signal my_event can be sent, only when the specified attribute of
the specified objec  has the specified value.

5 The on the fly model-checking approach

Our approach to the "on the fly" model checking of a µ-ACTL+ logic formula has
been initially presented in [12]. In that case the system to be verified was defined by a
network of synchronized agents working in parallel. The model checker, named FMC,
was included in Jack [4], an environment based on the use of process algebras, auto-
mata and temporal logic formalisms, supporting many phases of the system develop-
ment process. The model checker presented here, UMC, is based on the same ideas of
FMC, but working over a set of communicating (i.e. exchanging signals) UML State
machines.
Even though the code for both tools FMC and UMC has been almost completely
rewritten several times, the underlying logic schema has remained the same.
The basic idea behind FMC and UMC is that, given a system state, the validity of a
formula on that state can be evaluated analyzing the transitions allowed in that state,
and analyzing the validity of some sub-formula in only some of the next reachable
states, in a recursive way, as shown by the following simplified schema ( E: Env



represents the “current  context” in which a given subformula is evaluated, which
gives a precise meaning (in terms of already started computations)  to the free vari-
ables which appear in it):

Evaluate (F: Formula, E: Env, S: State) is
  if we have already done this computation and
              the result is available then
     return the already known result
  elsif we are are already trying to compute F in S with E then
     return  true or false depending on maximum or minimum
              fixed point semantics
  else
     Keep track of the fact that we are trying to compute
        F in S with E (e.g. push the pair (F,E,S) in a stack)
     for each sub-formula F’and
             next state S' which needs to be computed loop
           call recursively  Evaluate (F', E’, S');
        if the result of Evaluate (F', E’, S') is sufficient
                to establish the result of evaluate (F,E,S)
then
          exit from the loop;
        end if
     end loop
       (at this point we have in any case a final result)
     Keep track of the fact that we are
       no longer trying to compute F in S with E;
        (e.g. pop the pair (F,E,S) from the stack)
     Possibly keep track of the performed computation and result
        (e.g. push the triple (F, E, S, result) in a hash
table)
     return the final result
  end if
end Evaluate;

The big advantage of  the on-the-fly approach to model checking is that hopefully
only a fragment of the overall state space might need to be generated and analysed to
be able to produce the correct result (cf. [2,9]). This approach seems particularly
promising when applied to UML state machines (or groups of communicating state
machines) because it can easily be extended also to the case of potentially infinite
state space, as it may happen for UML state machines.  Indeed, a problem of the
above evaluation schema is that, in case of infinite state machines, it might fail to
produce a result even for some cases in which a result might be produced in a finite
number of steps. This is a consequence of the "depth first" recursive structure of algo-
rithm. The solution taken to solve this problem consists in adopting a bounded model
checking approach [3], i.e. the evaluation is started assuming a certain value as
maximum depth limit of the evaluation. In this case if a result of the evaluation a
formula is given inside the requested depth, then the result holds for the whole sys-
tem, otherwise the depth limit is increased and the evaluation restarted.
This approach, initially introduced in UMC to overcome the problem of infinite state
machines, happens to be quite useful also for another reason. Setting a small initial
depth limit, and a small automatic increment of it at each re-evaluation failure, when
we finally find a result we can have a reasonable (almost minimal) explanation for it,
and this could be very useful also in the case of finite states machines.



6 UMC and the Airport Case Study

Let us consider,  as a toy example, a system constituted by two airports, two passen-
gers (one at each airport), and a plane. The plane is supposed to carry at exactly one
passenger and flies (if it has passengers)  between the two airports. Before boarding
the plane the passenger must perform the check in. After the plane has arrived at the
destination airport, the passenger deplanes. We contemplate only one observable ac-
tion performed by the passenger  during the flight, namely the consumption of a
meal. Let us consider a scenario where a Passenger boards a plane in Airport1,
flies to Airport2 and deplanes there.  

BOARDING

LEAVING

LANDING

allow_takeoff /
   atLoc.takeoff_done;
   atLoc := null;
   T1.take_tray

allow_boarding(T,D) /
   T1 :=  T;  MyDest:=D;
   T1.onboard(Self);
   atLoc.boarding_done

takeback_tray /
   MyDest.landing_request(Self)

allow_landing  /
   MyDest.landing_done(Self);
   atLoc := MyDest;
   T1.deboard

landing_delayed  /
   MyDest.landing_request(Self);

FLYING

BOARDING

- / 
  atLoc.checkin(Destination,Self)

checkin_closed /
atLoc.checkin(Destination,Self)

EATING

DEPLANING

checkin_ok

onboard (Plane)/
   atLoc := Plane

take_tray / 
   OUT. eating (Self);
   atLoc.takeback_tray

deboard /
   atLoc :=  Destination

STARTING

TRYING
CHECKIN

PASSENGER   STATECHART PLANE   STATECHART
  

   

Figure 1: Plane and Passenger Statecharts

6.1 Model Definition

The model under investigation is specified by a textual description of a set of UML
statechart diagrams, one for each class of objects which constitute the system, and by
a set of object instatiations.  This description of the classes of the model can be di-



rectly edited in a simple textual form, or extracted from an UML model description
given in the XMI format. In Figure 1, and 2 we show the statechart diagrams of
classes Plane, Passenger and Airport. In Figure 3 we show the UMC textual notation
used to represent  the Passenger statechart.

created

- [MyPlane /= null]
landing_request(P) / 
  P.landing_delayed

checkin(D,T)  [D=MyLink ] /
   T.checkin_ok;
   MyPlane.allow_boarding(T,D)

HANDLING
BOARDING

landing_request(P) / 
  P.landing_delayed

   checkin(D,T) / 
      T.checkin_closed

HANDLING 
CHECKIN

boarding_done / 
    MyPlane.allow_takeoff

landing_request(P) / 
  P.allow_landing

- [ MyPlane = null ] 

landing_done(P)/
 MyPlane := P; 

takeoff_done / 
    MyPlane := null;

 

 

HANDLING
TAKEOFF

landing_request(P) / 
  P.landing_delayed

   checkin(D,T) / 
      T.checkin_closed

HANDLING 
LANDING

HANDLING
ARRIVALS

   checkin(D,T) / 
      T.checkin_closed

   checkin(D,T) / 
      T.checkin_closed

landing_request(P) / 
  P.landing_delayed

Figure 2: Airport Statechart

The initial deployment of the system is defined by the following object declara-
tions:

    OBJECT CLASS        INITIAL VALUE FOR ATTRIBUTES

Airport1:  Airport   (MyLink => Airport2, MyPlane => Plane1);
Airport2:  Airport   (MyLink => Airport1)
Traveler1: Passenger (AtLoc => Airport1, Destination => Airport2)
Traveler2: Passenger (AtLoc => Airport2, Destination => Airport1)



Plane1:    Plane     (AtLOc => Airport1)

Class Passenger
Vars: atLoc:obj, Destination:obj
Events: checkin_ok, checkin_closed, onboard(P:obj),
        take_tray, deboard
State Top = STARTING, TRYING_CHECKIN, BOARDING,
              FLYING, DEPLANING, FINAL

STARTING -( -/atLoc.checkin(Destination,Self) )-> TRYING_CHECKIN
TRYING_CHECKIN -( checkin_closed /  
               atLoc.checkin(Destination,Self) )-> TRYING_CHECKIN
TRYING_CHECKIN -( checkin_ok ) -> BOARDING
BOARDING -( onboard(P) /  atLoc := P )-> FLYING
FLYING -( take_tray /
            OUT.eating(Self); atLoc.takeback_tray )-> DEPLANING
DEPLANING -( deboard / atLoc := Destination )-> FINAL

Figure 3: textual notation for passenger  statechart

6 . 2 Model exploration

Once a description of a system has been successfully loaded its initial configuration
can be graphically visualized as a set of statecharts, in which the currently active
substates are highlighted. The allowed evolutions from the current configurations are
shown and they can be manually selected to visualize the subsequent configurations
reachable by applying them. The LTS representing all the possible system evolution
steps can be graphically visualized as a click sensitive graph. Clicking over a node
leads to the visualization of the structure of the node (its active, states, the values or
its variables, the content of the events queue).  

The whole formal model for our airport scenario is an LTS containing 240 states
and  595  transitions.

6 . 3 Model verification

After a system has been loaded, it is possible to enter a µ-ACTL+ formula to be
evaluated over its model. Once a formula has been edited its on the fly evaluation
starts.



In our case study we could be interested, for example, to check if it is true that a pas-
senger can eat (signal eating(Traveler1)), only when the plane is flying
(Plane1.atLoc=null). This can be done by checking the truth of following µ-
ACTL+ formula:

   AG((EX{eating(traveler1)}true) ->
      (ASSERT(Plane1.atLoc=Plane1=1)& ASSERT(Plane1.atLoc=null))

The evaluation of this formula asks that the whole reachable state space has to be
traversed,  not beneficing in this way of the on the fly approach.
This instead happens for the following formula, that means there exists an infinite
(unfair) path along which nobody eats:

    max Z: EX {~ eating} Z

This formula is TRUE on our model and only a small fragment of the state space is
visited to prove it.
Let us consider now the formula expressing the property: it is always true that, if
flying, Plane1 will eventually land.

   AG (ASSERT(Plane1.atLoc=null)-> AF ~ASSERT (Plane1.atLoc=null))

This formula is false on our system and at a first glance it may appear surprising.
Once the plane is moving from Airport1 to Airport2, it might happen that the objects
Airport2 and Traveler2, both, monopolize the system evolutions cycling in their
attempt to try to check-in and refusing it. Under these circumstances the unfairness of
the system scheduler might prevent the Plane1 to signal its landing request. Fairness
issues are likely to play a relevant role in UML as constraints for UML verifications,
and the power of full µ-ACTL+ is needed to express these properties in a general way.
After a formula has been evaluated, a complete explanation, in the style of the coun-
terexample facilities of classical model checking tools, can be visualized (both a
graphic and in textual format) showing the logic steps with have led to the result.
Each step of the explanation is essentially an assertion of the kind:

The formula <F1> is true / false in configuration <C1>
because <F2> is true /false  <C2>
and  because <F3> is true /false in configuration <C3>
and  because  … …

From each step of this explanation we can directly visualize the set of system evolu-
tion starting from the configuration to which the step refer.



 7 Related Works and Conclusions

Linear-time model checking of UML Statechart Diagrams is addressed in [19], [10]
and [24]. In [11] a simple (branching time) model-checking approach to the formal
verification of UML Statechart Diagrams was presented exploiting the “classical”
model checking facilities provided by the AMC model checker available in JACK. We
are currently aware of three available tools for model checking UML systems described
as sets of communicating state machines. HUGO [22,26] and vUML [21] take the
approach of translating the model into the Promela language using SPIN [14] as the
underlying verification engine. We have not had direct experience with these tools, but
clearly in this case the properties to be verified need to be mapped into LTL logic.
While vUML is restricted to deadlock checking, HUGO is mainly intended to verify
whether certain specified collaborations are indeed feasible for a set of UML state
machines. In both cases, the UML coverage of the tools is wider than ours because it
includes UML call operations, history states, and internal state activities. A timed
version of HUGO (called HUGO/RT [16]) has also been developed, which maps into
the UPPAAL verification engine, instead than into SPIN.
A third interesting approach is that one adopted in the ongoing UMLAUT [15,27]
project. In this case an UML execution engine has been developed, adopting the Open
Caesar standard interface of the CADP environment. In this way all the CADP [8]
verifications tools (including the “on the fly” Evaluator tool [23]) can be applied also
to this new engine.

As far as we now, FMC and UMC are the only "on the fly" tools supporting full µ-
calculus (SPIN uses LTL, CADP Evaluator the alternation free µ-calculus).
The fact of being able to state and check also structural properties of system configu-
rations (state attributes and predicates)  and not just events, opens the door to the
modelling and verification of several structural properties of parallel systems, like
topologic issues, state invariants, and mobility issues.

The approach adopted in UMC seems promising but there is still a lot work to do.
Certainly the UMC coverage must be extended to include at least call operations,
events deferring, and state internal activity. Moreover the semantic / logic issues still
need to be assessed (i.e. precisely which kind of property do we want to verify, and
which kind of optimizations do they allow to be implicitly performed by the tool).
The current alpha-version of the UMC prototype (which is now at version 2.5) is
accessible "online" through its www interface a t  the  address
http://matrix.iei.pi.cnr.it/umc/demo   .
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