
Institut für Informatik
Lehrstuhl für Programmierung und Softwaretechnik

LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Diploma Thesis

Neuroevolution for Robot Control

Test Framework and Experimental Evaluation

Michael Würtinger

Advisor: Prof. Dr. Martin Wirsing
Supervisor: Dr. Matthias Hölzl, Annabelle Klarl, Christian Kroiß
Hand in date: 15. December 2011

ii

Ich versichere hiermit eidesstattlich, dass ich die vorliegende Arbeit selbstständig
angefertigt, alle Zitate als solche kenntlich gemacht sowie alle benutzten Quellen
und Hilfsmittel angegeben habe.

München, den 15. December 2011
. .

(Unterschrift des Kandidaten)

iv

Zusammenfassung

Künstliche Neuronale Netze sind ein Ansatz der Künstlichen Intelligenz.
Sie sind frei modelliert nach dem menschlichen Gehirn und wurden als er-
stes von Frank Rosenblatt im Jahre 1962 eingeführt. Vier Jahre früher
stellte Friedberg genetische Algorithmen vor, welche die biologische Evolu-
tion nachahmen um Computer Programme zu optimieren. Nachdem das
Forschungsgebiet lange in Vergessenheit geraten war, wurden künstliche
neuronale Netze 1986 wiederentdeckt und konnten sich auf breiter Front
durchsetzen. Heutzutage finden sie in breitgefächerten Gebieten Anwen-
dung, sowohl in der Forschung, als auch in kommerziellen Produkten. Aber
selbst nach vielen Jahrzehnten der Forschung ist es immer noch eine Heraus-
forderung Neuronale Netze auf alltägliche Probleme anzuwenden. Die Kom-
bination aus neuronalen Netzen und genetischen Algorithmen wird als Neu-
roevolution bezeichnet und findet erfolgreich Anwendung bei vielen Prob-
lemstellungen. Diese Diplomarbeit konzentriert sich auf die Steuerung von
Robotern durch Neuroevolution.

Während die meisten Publikationen nur die Algorithmen veröffentlichen,
welche die erwünschten Ergebnisse liefern, vergleicht diese Arbeit systema-
tisch verschiedene Ansätze für die Steuerung von autonomen Robotern. Um
dies zu erreichen wird eine Aufgabe und eine passende Umgebung entworfen.
Für jedes Experiment wird eine Population von Robotern in die Umgebung
gesetzt. Jeder Roboter hat das Ziel so lange wie möglich zu überleben und
dabei so viele Ressourcen wie möglich zu sammeln. Der Hauptalgorithmus,
der in dieser Arbeit evaluiert wird, basiert auf Neuroevolution. Um die
Leistungsfähigkeit zu bestimmen werden zwei zusätzliche Algorithmen ent-
worfen. Der erste Algorithmus steuert den Roboter zufällig durch die Umge-
bung und soll so eine unter Schranke für die mögliche Leistung aufzeigen.
Der zweite Algorithmus ist hand-optimiert und besonders gut auf die Auf-
gabe und die Umgebung abgestimmt. Es ist leicht ersichtlich, dass dieser
Algorithmus nahe an das theoretische Optimum herankommt und er somit
verwendet werden kann um die obere Schranke für die mögliche Leistung
abstecken zu können. Um die Experimente effizient durchführen zu können
wird das BRAIn Framework entworfen und implementiert. Die Algorithmen
werden auf der marXbot Roboter Plattform getestet. Um die Umgebung
und die Roboter zu simulieren wird der ARGoS Simulator eingesetzt.

Die Ergebnisse zeigen, dass es immer noch schwierig ist, künstliche neu-
ronale Netze in der Robotik anzuwenden. Allerdings zeigt diese Arbeit auch
einige Hauptvorteile dieses Konzepts. Nicht zuletzt wird ein Überblick über
die Vor- und Nachteilen von neuronalen Netzen gegeben und mit anderen
Ansätzen verglichen.

v

vi

Abstract

Artificial neural networks are an approach towards creating artificial intelli-
gence, loosely modelled after the human brain and first introduced by Frank
Rosenblatt in 1962. Four years earlier Friedberg introduced genetic algo-
rithms, which mimic biological evolution to optimize computer programs.
Artificial neural networks were rediscovered in 1986 and later became widely
accepted. Nowadays they are successfully applied in a wide variety of com-
mercial and scientific fields. But even after many decades of research, ap-
plying neural networks to real world problems remains a challenge. This
thesis is about the combination of artificial neural networks and genetic al-
gorithms, which is called neuroevolution. This concept has been applied to
many real world problems, but this thesis focuses on the control of robots.

Whereas most research papers only present the algorithms producing the
desired results, this thesis systematically compares different approaches for
the control of autonomous robots. To accomplish this, a foraging task
along with an appropriate environment is designed. For each experiment,
a population of robots is placed within the environment. Each robot has
the goal to survive as long as possible and to collect as many resources as
possible. The main algorithm, which is evaluated in this thesis is based on
neuroevolution. To assess the performance, two additional robot controllers
were designed. The first controller steers the robots randomly through the
environment without any goal-oriented behavior and is supposed to delimit
the lower bound for the achievable performance. The second algorithm
is hand crafted and especially tuned for the defined task. It is apparent
that this algorithm performs close to the theoretical optimum and therefore
can be used to estimate the upper bound for the achievable performance.
In order to conduct these experiments in an efficient manner, the BRAIn
framework was designed and implemented. The algorithms were tested on
the marXbot robotic platform. The environment, as well as the robots were
simulated using the ARGoS simulator.

The results show that it is still difficult and tedious to apply artificial neu-
ral networks to robotics. However, the thesis also demonstrates some key
benefits of this concept. The thesis is concluded with an overview of the
advantages and disadvantages of neural networks and a comparison with
other approaches.

vii

viii

It is not my aim to surprise or shock you - but the simplest way I can
summarize is to say that there are now in the world machines that think,
that learn and that create. Moreover, their ability to do these things is going
to increase rapidly until - in a visible future - the range of problems they
can handle will be coextensive with the range to which the human mind has
been applied. — Herbert Simon, 1957

ix

x

Acknowledgements

I would like to thank Prof. Dr. Martin Wirsing for offering me the opportunity to
conduct research in the field of robotics and evolutionary algorithms. Special thanks
go to Dr. Matthias Hölzl, Annabelle Klarl and Christian Kroiß for supervising my
research and for supporting me in lengthy meetings and through countless emails.

Furthermore I want to thank Carlo Pinciroli from the Université libre de Bruxelles
for developing the excellent ARGoS simulator, which I used intensively during my
research, as well as for supporting me whenever I had trouble with the software.

Last but not least my gratitude goes to the Leibniz-Rechenzentrum for supplying
me with thousands of hours of computing time on their SuperMUC Petascale System.

xi

xii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 2

1.3 Outline . 3

2 Foundations and Related Work 5

2.1 Agents and their Environments . 5

2.1.1 Intelligent Agents . 5

2.1.2 Environments . 6

2.2 Learning Approaches . 7

2.2.1 Learning with a Teacher . 7

2.2.2 Learning without a Teacher . 8

2.3 Artificial Neural Networks . 8

2.3.1 The Human Brain . 8

2.3.2 Modeling a Neuron . 10

2.3.3 Neural Network Architectures . 12

2.3.4 Computational and Learning Capabilities of Neural Networks . . 13

2.3.5 Real World Applications: What are ANNs typically used for? . . 20

2.4 Genetic Algorithms . 21

2.4.1 Biological Evolution . 22

2.4.2 Simulating Evolution through Genetic Algorithms 23

2.5 Controlling Robots with Neuroevolution 26

3 Robotic Platform and Simulator 29

3.1 The marXbot Robotic Platform . 29

3.1.1 Sensors . 29

3.1.2 Actuators . 30

3.1.3 Controller . 30

3.1.4 Programming Model . 30

3.2 The ARGoS Simulator . 31

3.2.1 Configuration . 32

3.2.2 Programming Model . 32

4 BRAIn - BRAIn Robot Algorithm Insight 37

4.1 Requirements . 37

4.1.1 General Software Requirements 37

4.1.2 Domain Specific Requirements 38

4.2 BRAIn’s Architecture . 40

4.2.1 Module Overview . 40

xiii

xiv CONTENTS

4.2.2 Execution Model . 41
4.2.3 Core Classes . 42
4.2.4 ARGoS Specific Features . 44
4.2.5 The Directory Structure . 46
4.2.6 Implementation . 47

4.3 Using BRAIn to Run Experiments . 49
4.3.1 Invoking BRAIn From the Command Line 50
4.3.2 Using Predefined Functionality 51
4.3.3 Extending BRAIn . 55

4.4 Further Improvements . 56
4.4.1 User Configuration File . 56
4.4.2 Remote Simulator Invocation . 57
4.4.3 Multiple Simulator Instances Within a Variation 57
4.4.4 Reduced Number of Runtime Files 57

5 Using BRAIn for Foraging Experiments 59
5.1 The Environment . 59

5.1.1 The Foraging Task . 59
5.1.2 The Fitness Function . 63
5.1.3 The EnvironmentGenerator . 63
5.1.4 Experiment Configuration . 64

5.2 The Experiments . 65
5.2.1 Experiment 1 - Random Walk . 65
5.2.2 Experiment 2 - Genetic Random Walk 67
5.2.3 Experiment 3 - Neuroevolution 71
5.2.4 Experiment 4 - The UberController 78
5.2.5 Experiment 5 - Genetically Optimizing the Uber Controller . . . 80

6 Interpretation of Results and Conclusion 83
6.1 Algorithm Performance Comparison . 83
6.2 Conclusion . 84
6.3 BRAIn Review . 85
6.4 Outlook . 86

Appendix A ARGoS Configuration Reference 87

Appendix B Working with the Source Code 93
B.1 Directory Layout . 93
B.2 Preparing the System . 94

Appendix C Perceptron Learning Script 97

Appendix D Top Performing Genomes of Experiment 3 99

List of Figures 102

List of Tables 103

Contents of the attached DVD 105

References 111

Chapter 1

Introduction

After the establishment of artificial intelligence in 1956 the research was coined by
enthusiasm and great expectations [RN03]. Among the broad variety of developed
algorithms were artificial neural networks (introduced by Frank Rosenblatt in 1962)
and genetic algorithms (introduced by Friedberg in 1958). Just one decade after the
formation of this research field, researchers realized that the developed algorithms were
unable to fulfill the expectations when applied to real life problems. This setback lead
to a depression and it wasn’t before 1980 that the first solutions became commercially
available. Although abandoned in the late 1970s, neural networks were rediscovered
in 1986 and are now successfully applied in a wide variety of fields. But even after
many decades of research and a great amount of successful applications, it still remains
challenging to use ANNs in new projects. The sheer number of different network types,
learning algorithms and pre- and post-processing algorithms makes it difficult to get
started.

Robotics is the research field of the intelligent connection between perception and
action [SK08]. The word robot was first introduced in the Czech play Rossum’s Univer-
sal Robots in 1920. It is derived from the Slav robota and means subordinate labour.
As mentioned before, the field of artificial intelligence dates back to the middle of the
twentieth century. Around the same time the first actual robots were created. Early
robots were entirely controlled by humans and had only few sensors. After the invention
of integrated circuits, researchers had the tools which were necessary to make robots
more intelligent. One of the earliest applications of this new generation of robots was in
industrial manufacturing. Industrial robots are an example for so called manipulators,
because they are capable of manipulating their environment through actuators, but are
stationary [RN03]. Mobile robots, on the other hand, are not necessarily capable of
manipulating their environment, but are not bound to a certain location. Unmanned
land vehicles (ULV), for example, are capable of moving around using legs, wheels or
similar devices. Popular ULV examples include autonomous cars or military robots.
Similarly, unmanned air vehicles (UAV) and autonomous underwater vehicles (AUV)
are capable to move through air or water.

All of these types of robots have in common, that they are hard to program. The
more actuators and sensors a robot has, the harder it gets. Many scenarios expect
robots to adapt to new environments or even to learn entirely new behavior. A car
manufacturing robot, for example, might have to adapt to new car models from time to
time. For many real world applications, it is sufficient to program the required behaviors
manually, but often this is impossible, since environments might simply change too often
or might even be unknown to the engineers, programming the robot.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

To solve these problems, the machine learning research field, a branch of artificial
intelligence research, has been established [RN03]. This research area deals with ma-
chines, which are capable of learning new behavior and adapting to environmental
changes [Alp04]. This research is not limited to robotics, but is applied to a wide range
of areas. A search engine, for example, might learn what a user typically searches for
and use this information to present more relevant results. An online shop might be
capable of learning a user’s consuming behavior to offer more appropriate products or
to present targeted advertising. However, one of the most interesting applications of
this technology is robotics, because is is often hard or impossible to implement the
desired behavior.

Many different learning algorithms exist for controlling robots. A particularly inter-
esting approach are artificial neural networks (ANN), which utilize a simplified model
of the mechanisms used by the human brain [Hay08]. What makes this approach so
interesting is that the human brain is capable of performing a vast variety of different
tasks. It is capable of processing image and audio signals, extracting the relevant details
of massive amounts of data and above all to learn new behavior. It seems tempting to
exploit these mechanisms for robots and other applications.

What makes ANNs powerful is the capability to learn and adapt [Hay08]. To
achieve this behavior, learning algorithms are required. One particularly interesting
algorithm is neuroevolution, which is a combination of artificial evolution and neural
networks [MD89]. This type of algorithm automatically evolves neural networks for
a particular task and environment. The advantage of this is that one only has to
define the desired behavior in an abstract way and the algorithm optimizes the ANN
as much as possible to fulfill the requirements. However, it still is challenging to apply
neuroevolution, or ANNs in general, for robotics and the achieved performance is often
lower than expected. As ANNs in general and neuroevolution algorithms in particular
have many advantages and disadvantages, compared to alternatives, it is interesting to
compare them to other approaches in a systematic manner.

To compare different algorithms, one needs a carefully selected scenario. In the
course of this thesis, a foraging task, along with an appropriate environment is designed.
Foraging is defined as “wander[ing] in search of food or provisions” [for]. As this is a
fundamental task of most animals, it is often used in artificial intelligence experiments.

1.2 Objectives

The goal of this thesis is to compare the performance of a randomly operating algo-
rithm (random walk), a neuroevolution algorithm and a hand crafted special purpose
algorithm for different configurations.

To accomplish this, BRAIn (BRAIn Robot Algorithm Insight), a scalable and flex-
ible framework, which simplifies experiment execution and analysis, is designed and
implemented. The framework’s architecture provides maximum flexibility. It is inde-
pendent of concrete simulator implementations or experiments. To improve statistical
significance, the framework supports multi experiment execution and result aggrega-
tion.

The algorithms are tested using the marXbot robotic platform and the ARGoS
simulator. To compare the algorithms, an environment and a task is designed and
implemented for ARGoS. The environment contains several resources and a base. Mul-

1.3. OUTLINE 3

tiple robots, which have to collect energy from the resources and drop it of in the base,
are placed in the environment. The goal for the robots is to transfer as much energy
as possible from the resources to the base. The environment provides flexible configu-
ration options to support many different scenarios. The task is tuned in a way that it
is both simple enough for various types of algorithms, as well as challenging enough to
encourage complex algorithm behavior.

To be able to compare the algorithms a fitness evaluation methodology is designed,
which provides a simple way of ranking different algorithms, according to their behavior
during experiments. The results of the experiments are presented and analyzed. The
different algorithms are compared and their performance is discussed, focusing on the
advantages and disadvantages of the approaches.

1.3 Outline

The required theoretical and conceptual foundations are introduced in Chap. 2. It starts
by giving a general overview of intelligent agents and their environments, continues by
introducing different learning approaches and presents a broad overview about artificial
neural networks and genetic algorithms.

Chap. 3 presents the robotic platform and the simulation software used for the
experiments in this thesis.

After establishing the theoretical foundations, Chap. 4 presents the BRAIn frame-
work, which was developed to conduct the above mentioned experiments of this thesis.
After introducing the requirements for the software, the architecture and some key
implementation details are outlined.

Chap. 5 contains a detailed description of the foraging task and the environment.
It also describes all of the five experiments conducted using the BRAIn framework, the
marXbot platform and the ARGoS simulator. The chapter introduces three different
algorithm types, which are then applied to a common task to explore their performance
characteristics. The results of all of the experiments are also presented in this chapter.

At last, Chap. 6 compares and discusses the collected experiment results. The
chapter gives an overview of the performance characteristics, which can be drawn from
the results. The chapter is concluded by giving an outlook to possible future extensions
of this work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Foundations and Related Work

The purpose of this chapter is to introduce all the concepts needed to understand
this thesis. Circumstantial background information is provided where appropriate.
The chapter starts by giving a general overview about intelligent agents and learning
approaches before explaining the structure and functionality of the human brain, thus
smoothing the way for the introduction of artificial neural networks. Next, genetic
algorithms and their application to neural networks are explained. The last part of this
chapter covers controlling robots with neuroevolution.

2.1 Agents and their Environments

This section, which is based on Chap. 2 of Artificial Intelligence: A Modern Ap-
proach [RN03], introduces the general concept of intelligent agents, how they interact
with the environment and what environments typically look like.

2.1.1 Intelligent Agents

An agent is an entity which is capable of perceiving its environment using sensors as well
as acting on its environment using actuators. This principle is presented in Fig. 2.1. A
human is an example for an agent, which uses eyes, ears and further sensory organs to
perceive the environment and feet, hands and other actuators to act appropriately. A
typical robot has at least cameras and distance sensors and acts using electric motors.
Agents are not necessarily tangible objects, but can also exist entirely in software. An
Internet search engine, for example, perceives its environment through user inputs and
acts by returning search results.

Figure 2.1 – Schematics of an intelligent agent (adopted from [RN03], p. 33).

5

6 CHAPTER 2. FOUNDATIONS AND RELATED WORK

Agents usually can perceive their own actions, but not necessarily the effects of these
actions on the environment. The entire history of what an agent perceived is called
the percept sequence. An agent can be mathematically described by an agent function,
which determines the agent’s action based on its entire percept sequence. Therefore,
the behavior of an agent can be fully described by defining the action for every pos-
sible percept sequence. As these sequences can have arbitrary length, it is virtually
impossible to fully describe an agent function this way. A concrete implementation of
an agent function is called an agent program.

When designing an agent, the goal is to get the right behavior. But which agent
functions are good and which are bad? Performance measures are usually applied to
determine the answer to this question. The performance measures depend on the type
of task the agent is supposed to fulfill. If designing an agent capable of driving a car,
for example, one might base the performance measures on fuel consumption, journey
time and the degree of complying with the road traffic act. Generally speaking, an
agent does the right thing if it is successful at accomplishing the task it is supposed to
do.

2.1.2 Environments

The environments agents perceive and act on can be very diverse. They might be
as simple as a board game or as complex as a busy road with lots of other cars,
pedestrians, traffic signs and lights. To better understand environments, they can be
classified according to several properties, which are now introduced. These properties
are used in Chap. 5.1 to classify the environment designed for this thesis.

If an agent can perceive the entire state of the environment at any point in time
it is called fully observable, otherwise it is called partially observable. An environment
might not be fully observable, because the agent’s sensors are not capable of measuring
all the relevant inputs or because the sensor readings are noisy. Often it is also the
case that aspects of the environment are hidden and thus cannot be observed. A fully
observable environment simplifies the task of the agent because it does not have to
explore and it does not have to keep track of any previously encountered facts.

An environment is called deterministic, if its state only depends on its previous
state and the actions of the agent. If this is not the case, the environment is called
stochastic. Driving a car is an example for a stochastic environment, because engine
failures might occur without premature warnings and tires might blow from time to
time. If an environment is deterministic, with the exception of the actions of other
agents, it is called a strategic environment.

If an environment is subdivided into independent tasks, consisting of a set of inputs
and a single action, it is called episodic. In episodic environments, the actions of the
agent are only based on the inputs of the current episode, but not on any previous
episodes. An example for an episodic environment is a classification agent, the task of
which is to determine whether parts on an assembly line are good or not. The opposite
of episodic is sequential. Driving a car is a typical example for a sequential environment.

Environments can either be static or dynamic. The state of a static environment
does not change if the agent is not acting on it. This has the advantage that the
agent does not have to keep track of the environment while idling and that it can take
arbitrarily long to make a decision. However, most environments are dynamic, which
means that while the agent is deciding what to do next, it is interpreted as doing
nothing, which might have a negative effect on the agent’s performance. Driving a

2.2. LEARNING APPROACHES 7

car is also an example for a dynamic environment. If the car in front of the agent’s
car brakes, the agent’s car crashes, if it does not decide to act accordingly in a timely
manner.

If an environment has only a finite amount of states, it is called a discrete envi-
ronment, otherwise it is called a continuous environment. An example for a discrete
environment is a simple board game, the state of which solely consists of the positions
of the gaming pieces on the board. Driving a car, on the other hand, clearly is not
a discrete environment, because the possible positions and velocities of other cars on
the road are infinite. Strictly speaking, any form of simulated environment is discrete,
because computers cannot represent continuous values. However, as the amount of
possible states in a simulated 3D environment are virtually endless, these environments
are also classified as continuous.

If an agent is acting on an environment together with other agents, it is called a
multiagent environment. If the agent is alone in its environment it is called single
agent. However, it sometimes is not clear whether other entities should be treated as
agents or simply as stochastically behaving objects. If an agent is driving a car on a
busy road, are the other vehicles agents or not? The answer of this question depends
on whether the other entities influence the agent’s performance measures or not. In
the driving example this is typically not the case because the performance of the agent
(arriving on time, obeying traffic rules, optimizing fuel consumption) in general does
not depend on the behavior of other vehicles. If the performance measure is extended
to include “avoid collisions”, however, it depends on the behavior of other drivers,
which are therefore referred to as agents. An environment, where a key aspect of the
performance measures (avoiding collisions) leads to an improved performance for all
of the agents, is called a cooperative multiagent environment. In a car race, however,
it is the other way around, because the performance (winning the race) of one agent
increases, the performance of other agents decreases. Such an environment is called a
competitive multiagent environment.

2.2 Learning Approaches

To make intelligent agents powerful, they have to be able to adapt to environmental
changes. To allow this, it is important to utilize appropriate learning algorithms. These
algorithms are not only used to allow robots to adapt to their environments, but also to
learn entirely new behaviors, that might be too complex to be specified manually. Just
like humans, artificial agents can learn in various different ways [Hay08]. Therefore,
learning algorithms can be divided into different classes, which are introduced in the
following sections.

2.2.1 Learning with a Teacher

In this type of learning algorithms, which is also known as supervised learning, the agent
is accompanied by a teaching instance [Hay08]. This instance has built-in knowledge
about the desired functionality. The learning process is iterative. In each iteration,
an example input vector is presented to the agent and the teacher. The agent then
calculates an output according to its current knowledge and the teacher produces the
desired output. The difference between the agent’s output and the desired output,
which is referred to as error signal, is then fed to the agent. By using this signal, the
agent can gradually improve its behavior. Eventually, the agent learns to emulate the

8 CHAPTER 2. FOUNDATIONS AND RELATED WORK

teacher, which is then no longer necessary. The set of example input values, along with
their desired output values, is called the training set of the learning process [RN03].

2.2.2 Learning without a Teacher

In many cases learning with a teacher is impossible, because no preliminary knowledge
about the target function is available. If this is the case, a separate class of algorithms
can be used, which is known as learning without a teacher [Hay08]. This group of
algorithms can be subdivided into reinforcement learning and unsupervised learning.

Reinforcement Learning

The algorithmic class of reinforcement learning is the most general of all learning algo-
rithms and can be applied to many real world problems [RN03]. Reinforcement learning
is based on a cost function, which calculates the cost for a sequence of actions [Hay08].
This cost function acts as a rewarding system. If the agent behaves correctly, the cost
goes down, if it behaves in an undesirable way, the cost goes up. It is important that
the cost function considers a whole sequence of actions instead of a single one, because
expensive actions might lead to reduced cost in the future. The challenging part of
this type of algorithm is the correct mapping between a calculated cost and individual
actions. It is difficult to identify the actions, which are responsible for high cost and the
actions, which are responsible for low cost. Another challenging part of this algorithm
is the definition of the cost function itself. This function has to be chosen carefully, as
it directly determines the success or failure of the application.

Unsupervised Learning

The process of discovering patterns in the input data is called unsupervised learn-
ing [RN03]. No desired output values are supplied to this type of algorithm and the
agent is unable to observe its environment. Therefore, the only possibility to learn is
to look at the data fed to the agent and to determine, whether it is possible to divide
it into some sort of classes. It is important to note, that an agent, which is trained
entirely unsupervised is unable to determine how to act, because it is unable to perceive
the consequences of its outputs and has no information about what is desirable and
what is not.

2.3 Artificial Neural Networks

This section, which is based on the introduction, as well as Chap. 1 and 4 of Neural
Networks and Learning Machines [Hay08], introduces the basic concepts behind ar-
tificial neural networks. The idea to use neural networks for computations was first
introduced by McCulloch and Pitts in 1943. Research in this field has been motivated
by the fact that the human brain - and other nervous systems - process information in
an entirely different way than Von-Neumann machines do. This section introduces the
concepts behind neural networks and their computational capabilities.

2.3.1 The Human Brain

The human brain consists of an enormous amount of nervous cells. These cells, which
are called neurons, were first discovered by Ramón y Cajál in 1911. A neuron basically

2.3. ARTIFICIAL NEURAL NETWORKS 9

Figure 2.2 – Schematics of a biological neuron (c©Quasar Jarosz, License: CC-BY-SA-
3.0).

consists of four parts, which are illustrated in Fig. 2.2. The soma (also called cell
body) is the central component of the neuron and connects all the other parts. The
body serves as the origin for the so called dendrites and the axon, a long and thin part
of the cell which forks into a great amount of synaptic terminals at its end. Both ends
of the cell are tree like and can contain thousands of branches. While the dendrites
collect the cell’s inputs and transmit it to the body, the axon and its synaptic terminals
are responsible for broadcasting information to other cells. Therefore, the cell is divided
into a receiving and a transmitting end. Neurons can exchange information if they are
connected through a so called synapse, which is formed by one cell’s axon and another
cell’s dendrite. A typical neuron (the pyramidal cell) can receive data from about ten
thousand other neurons and can send data to thousands of receivers.

There are different types of synapses, but the most common one is the chemical
synapse, which converts the electrical signal of one cell’s axon into a chemical trans-
mitter substance, which is then received by the dendrite of another cell and converted
back into an electrical signal [Hay08, SK90]. Instead of communicating with steady
potentials, the output of neurons is typically encoded as a series of voltage spikes. This
can be explained using electrical engineering. Axons can be seen as a long cable having
high resistance and high capacity. If a potential were applied to one end of the axon it
would quickly drop while propagating through the line until it would be undetectable.
Short spikes, however, are an elegant way to circumvent this problem. It was discovered
that inter-neuron communication actually is based on precise timing between the spikes
sent by a neuron [Maa97]. This concept was adopted into so called spiking neural net-
works, a special type of artificial neural networks which is more closely modelled after
biological neural networks.

Neurons operate in the time frame of milliseconds, which translates to a clock rate
in the kilo Hertz range [Hay08, Mor98]. State of the art micro processors, on the other
hand, operate with up to 4GHz. Therefore, neurons are approximately six magnitudes
slower than current silicon circuits. What makes the brain so powerful is massive
parallelization. There are approximately 1010 neurons in the human cortex, which are
connected to each other with about 6 · 1013 synapses. The overall axon length in a
twenty year old man’s brain was found to be 176,000 km [LJYB03].

10 CHAPTER 2. FOUNDATIONS AND RELATED WORK

2.3.2 Modeling a Neuron

As researchers realized how powerful neural networks like our brain can be, they tried
to learn more about their unique architecture, which enabled them to do complex tasks,
like image processing, much more efficient than any man made computer. The goal was
and still is to exploit some of the concepts to make computers more powerful. This is
especially eligible for tasks, which are hard to accomplish with conventional algorithms.

To emulate biological neural networks in software or on dedicated silicon hardware
one first needs a suitable model of all of its elements. As mentioned in the previous
section, a neural network’s most important components are neurons and synapses,
which is why most models concentrate on these parts. The number of components is
not only reduced, but the components themselves are also simplified greatly.

Many models exist, each having different computational complexity and capabili-
ties [Maa97]. One of the simplest models consists of a list of connections, each of which
has its own weight, an adder which sums up all of the weighted inputs collected by the
connections and an activation function (see Fig. 2.3). The purpose of this function is to
limit the output of the artificial neuron to certain boundaries, thus ensuring that other
neurons can process the values correctly. The model can be summarized using Eq. 2.1,
2.2, 2.3 where yk is the output, xkj are the inputs, wkj are the connection weights, bk
is the bias and ϕ is the activation function of neuron k.

uk =

m∑
j=1

wkjxkj (2.1)

vk = uk + bk (2.2)

yk = ϕ (vk) (2.3)

In this model, the neuron first applies a weight factor wkj (which can be positive or
negative) to each of its inputs xkj . The resulting values and the neuron’s bias are then
summed up to form the input vk for the activation function, which produces an output
value yk within a certain range. All three equations can be combined into Eq. 2.4:

yk = ϕ

 m∑
j=1

wkjxkj + bk

 (2.4)

Figure 2.3 – A simple model of a neuron consisting of various inputs, weighted connections,
an adder, an activation function, a bias and one output (adopted from [Hay08], p. 41).

2.3. ARTIFICIAL NEURAL NETWORKS 11

It is worth pointing out that neurons, using this simple model, are stateless. This
limits the computational power, because it is not possible to produce outputs based
on the development of input signals over a certain period of time. As mentioned
in Sec. 2.1.1, agents usually act according to the entire percept sequence. However,
this simple model allows agents to act only according to the current sensor readings.
Recurrent neural networks are an example for a more advanced type of neural network,
which is stateful and therefore more powerful [WZ89].

The argument of the activation function vk is also referred to as the induced local
field or the activation potential. Applying bias bk is effectively an affine transformation
to the output uk. To simplify the model even further, the bias is often removed and
replaced by an additional input xk0 with a fixed value of +1 and an additional weight
wk0. According to the following equation, wk0 successfully replaces the bias bk.

bk = xk0wk0 = +1 · wk0 = wk0 (2.5)

As mentioned previously, the main task of the activation function is to limit the
neuron’s output to a specific range. A broad variety of possible activation functions
exists in literature. The two most widely used are the threshold and the sigmoid
function.

The threshold function, which is defined in Eq. 2.6, is simple, easy to implement
and fast to compute. The output of a neuron using this activation function can either
be 1 or 0 (see Fig. 2.4(a)), depending on whether the input value is above or below
the threshold. Neural networks using threshold functions were first introduced by
McCulloch and Pitts in 1943.

ϕ (vk) =

{
1 : vk ≥ 0
0 : vk < 0

(2.6)

In most cases, the threshold is 0, but other thresholds can be used as well. However,
a threshold of 0 is ubiquitous, as neural networks are using a bias value. If extending
Eq. 2.6 with Eq. 2.2, one gets Eq. 2.7, which can be transformed into Eq. 2.8. Therefore,
the bias value successfully replaces the variable threshold thus simplifying the equation.

ϕ (uk + bk) =

{
1 : uk + bk ≥ 0
0 : uk + bk < 0

(2.7)

ϕ (uk + bk) =

{
1 : uk ≥ −bk
0 : uk < −bk

(2.8)

The most widely used activation functions are the so called sigmoid functions, which
are a class of strictly increasing functions with an “S” shaped plot (see Fig. 2.4(b)).
A popular example for a sigmoid function is the logistics equation, which is defined in
Eq. 2.9. The results of this equation lie within [0; 1] [Hay08, MMMR96]:

P (t) =
1

1 + e−t
(2.9)

Usually an additional constant s is added, which controls the steepness of the func-
tion. Doing this forms the most commonly used activation function [Hay08, MMMR96]:

ϕ (vk) =
1

1 + e−st
(2.10)

12 CHAPTER 2. FOUNDATIONS AND RELATED WORK

(a) Threshold function. (b) Sigmoid function.

Figure 2.4 – Two very common activation functions: The threshold function (a) and the
sigmoid function (b).

In many cases it is desirable to have activation functions with an output range of
[−1; +1]. The corresponding version of the threshold function is

ϕ (vk) =

+1 : vk > 0

0 : vk = 0
−1 : vk < 0

(2.11)

and the corresponding sigmoid function is:

ϕ (vk) = tanh(vk) (2.12)

2.3.3 Neural Network Architectures

The architecture of biological neural networks differs greatly. Primitive invertebrates
like insects seem to have completely hard wired nervous systems, where the purpose of
each neuron, as well as its connections to other neurons, are completely predetermined
in the animal’s genome [Mor98]. The nervous system of humans, on the other hand,
consists of such a vast amount of components that it is simply impossible to encode its
entire structure in the genome, which is in the order of 109 bits long. It appears that
most of the human brain, instead, consists of regular structures without predetermined
purpose, which are later allocated and modified as new skills are learned.

When designing artificial neural networks, structure plays an important role [Hay08].
Most of the networks used are static in a way that only connection weights, but not
the overall network graph is allowed to change. The following types of networks are
commonly used.

Stand-alone Neuron

Thinking about the enormous size of most biological neural structures, it might seem
that one neuron on its own cannot accomplish much. Frank Rosenblatt, however,
dedicated a great amount of his work to this type of neural “network” which he called
Perceptron. The theoretical background as well as the perceptron’s capabilities are
discussed in Sec. 2.3.4.

2.3. ARTIFICIAL NEURAL NETWORKS 13

(a) single (b) multi (c) recurrent

Figure 2.5 – A single layer (a), a multi layer (b) and a recurrent (c) neural network
(adopted from [Hay08], p. 51ff).

Feedforward Networks

If several neurons are combined to a neural network the units are usually arranged
in the form of layers. One of the layers is usually the dedicated input layer, the sole
purpose of which is to collect information from the outside world. This input layer is
not a real neural layer as it does not perform any computations. It merely forwards its
current state to all connected neurons of the next layer.

In most layered networks neurons within the same layer are not connected at all, but
all neurons within one layer are connected to all (or some) neurons of the next layer. If
this is the case and if all connections are oriented in the same way, thus allowing infor-
mation to flow only in one direction (towards the output layer), the network is called a
feedforward network. If each neuron is connected to all neurons in its consecutive layer
the network is called fully connected, otherwise it’s called partially connected.

If a feedforward network has only one input layer as well as one layer of real neurons,
it is called a single layer feedforward network. This originates from the fact the the
input layer does not perform any computations and is therefore usually not considered
when counting the layers. If the network contains more than one layer of real neurons, it
is called a multilayer feedforward network. Figures 2.5(a) and 2.5(b) show both network
types. Layers, which are neither input nor output layer are referred to as hidden layers
because they are not visible from either side. By adding hidden layers the network can
become more powerful.

Recurrent Networks

While the distinguishing feature of feedforward networks is that information flows only
in one direction (towards the output layer), recurrent networks are allowed to contain
so called feedback loops, which transfer calculated results in the opposite direction.
The concept of a neuron feeding its output directly back into its own input is called
self feedback loop. Unlike feedforward networks, recurrent networks can have a state,
which makes them applicable to a much wider area of problems, but also much harder
to understand.

2.3.4 Computational and Learning Capabilities of Neural Networks

Before being able to apply neural networks to any problems, it is important to un-
derstand their computational and learning capabilities. This section introduces several

14 CHAPTER 2. FOUNDATIONS AND RELATED WORK

learning algorithms and explores the capabilities of single neurons and multilayer feed-
forward networks.

Rosenblatt’s Perceptron

Applying learning algorithms to neural networks was first introduced by Frank Rosen-
blatt in 1958, using the so called Perceptron [Ros58, Hay08]. Rosenblatt’s model is
based on a single neuron using the McCulloch Pitts model (i.e. having a threshold
activation function). Several inputs are multiplied with their corresponding weights,
then summed up together with the bias and fed into the threshold activation function,
producing either −1 or +1 (see Eq. 2.4 and 2.11). While the threshold function in
Eq. 2.11 can also produce a result of 0, the activation function is often altered in a way
that the 0 case is assigned to the positive or negative case, thus reducing the number
of possible outputs to two.

The Perceptron is capable of classifying the applied inputs x1, . . . , xm into one of
two classes C1 and C2, which are indicated by either +1 or −1. In the Perceptron’s
most elementary form, the decision regions of these two classes are separated by a
hyperplane, defined by:

m∑
i=1

wixi + b = 0 (2.13)

A hyperplane is the generalization of a plane for an arbitrary amount of dimen-
sions [Cur84], p. 73. A hyperplane of an m-dimensional space is a m − 1 dimensional
subset. An m − 1 dimensional hyperplane divides an m-dimensional space into two
half-spaces [DT03], p. 8.

For the case of m = 2, the hyperplane becomes 1-dimensional and therefore becomes
a straight line, separating both classes as indicated in Fig. 2.6. All the points below
the line are part of class C1 and everything above the line is part of C2.

The perceptron is capable of reliably classifying any set of input data as long as it is
linearly separable, which means that there has to exist a hyperplane which successfully
divides the input sets into the classes C1 and C2.

To allow the perceptron to work correctly its weight vector ~w = b, w1, . . . , wm has
to be set to the right values. This can be achieved automatically by presenting training
data to the iteration based perceptron convergence algorithm. Given that the data is
linearly separable, an upper bound can be provided for the number of steps necessary

x
2

x1

C1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C2

Figure 2.6 – Classification of two dimensional input data.

2.3. ARTIFICIAL NEURAL NETWORKS 15

for the algorithm to converge. While explaining the algorithm the following conventions
are used [Hay08]:

• Input vector of step n: ~x(n) = [+1, x1(n), . . . , xm(n)]T

• Weight vector of step n: ~w(n) = [b, w1(n), . . . , wm(n)]

• Actual response of the perceptron in step n: y(n)

• Desired response in step n: d(n)

• Learning rate: 0 < α < 1

The algorithm consists of three simple steps, which are executed until a convergence
criterion is reached. Each iteration of the algorithm uses one pair of sample input value
and desired result. The entire algorithm is presented in Fig. 2.7. The first step is to
initialize the perceptron’s weights ~w(0). In step two, the response y(n) for the first
training data is calculated. In step three, this response is compared to the desired
response d(n) and used along with the learning rate α to change the weight vector ~w.

1. Initialize ~w(0) = ~0.

2. Calculate the perceptron’s actual response y(n)

3. Adapt the weights: ~w(n+ 1) = ~w(n) + α[(d(n)− y(n)]~x(n)

4. Continue with step 2.

Figure 2.7 – The perceptron convergence algorithm.

By looking at the difference between the computed result and the expected result,
the error d(n) − y(n) can be calculated. Each of the weights is then adjusted by the
product of its current input ~x, the learning rate α and the error d(n) − y(n). If the
result is larger than expected the algorithm decreases the weights, if it is smaller than
expected, the algorithm increases the weights [RN03]. The learning rate α determines
by how much the weights are adjusted in each iteration. This value has to be selected
with care, as too small values might result in a very slow learning rate, whereas too
large values lead to divergence, meaning that the algorithm does not work at all.

The functionality is now demonstrated using the AND function as an example.
Tab. 2.1 shows the results of the AND function for all possible input values. A sin-
gle perceptron with two inputs and a bias, using the threshold activation function, is
used to learn the AND function. Tab. 2.2 shows the weights, the desired result, the
actual result and the computed error of the perceptron for each learning step. The bias
is represented as b = w0. The training data is fed to the algorithm in order, meaning

x1 x2 x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1 – Tabular representation of the AND function.

16 CHAPTER 2. FOUNDATIONS AND RELATED WORK

step w0 w1 w2 d(n) y(n) d(n)− y(n)

0 0.00 0.00 0.00 0.00 1.00 -1.00
1 -0.10 0.00 0.00 0.00 0.00 0.00
2 -0.10 0.00 0.00 0.00 0.00 0.00
3 -0.10 0.00 0.00 1.00 0.00 1.00
4 0.00 0.10 0.10 0.00 1.00 -1.00
5 -0.10 0.10 0.10 0.00 1.00 -1.00
6 -0.20 0.10 0.00 0.00 0.00 0.00
7 -0.20 0.10 0.00 1.00 0.00 1.00
8 -0.10 0.20 0.10 0.00 0.00 0.00
9 -0.10 0.20 0.10 0.00 1.00 -1.00
10 -0.20 0.20 0.00 0.00 1.00 -1.00
11 -0.30 0.10 0.00 1.00 0.00 1.00
12 -0.20 0.20 0.10 0.00 0.00 0.00
13 -0.20 0.20 0.10 0.00 0.00 0.00
14 -0.20 0.20 0.10 0.00 0.00 0.00

Table 2.2 – The progress of the perceptron learning algorithm for the AND example.

that step 0 uses (0, 0), step 1 uses (0, 1) and so on. The table was produced by a short
Ruby script, the source of which can be found in App. C.

Multilayer Neural Networks

After explaining the capabilities of a single neuron, or single layer neural networks in
general, the question remains, how additional layers change the computational capa-
bilities.

Before explaining multi-layer networks, a quick example of a function, that cannot
be learned by a single neuron is appropriate. Tab. 2.3 shows the so called exclusive or
(XOR) function, which is usually denoted as x1⊕x2 [BSMM01]. The function has two
parameters, which can either be 0 or 1 and one output, which also can be either 0 or
1. As is clearly visible in the table, the output is 1, if exactly one of the inputs is 1. In
all other cases the output is 0.

x1 x2 x1 ⊕ x2

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.3 – Tabular representation of the XOR function.

As the perceptron is capable of learning every linearly separable classification, it
now has to be determined, whether the XOR function fulfills this criterion. The two
possible outputs can be interpreted as the two possible classes. Fig. 2.8 shows the
four sample values along with their class in an x1, x2 chart. It is apparent that it
is impossible to draw a line, which separates the two classes. This means that the
XOR function is not linearly separable and is therefore a very simplistic example for a
function, which cannot be learned by the perceptron.

To solve the XOR problem using a neural network, at least three neurons are re-

2.3. ARTIFICIAL NEURAL NETWORKS 17

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

x
2

x1

Class 0

Class 1

Figure 2.8 – Graphical representation of the XOR function.

Figure 2.9 – Neural network emulating the XOR function (adopted from [Hay08], p. 173)

quired, leading to a feed forward network with one hidden layer. Figure 2.9 shows
a possible solution. Neurons are represented as large circles named N0, N1 and N2.
Input nodes are represented by smaller circles. Note that bias values are also supplied
by input nodes, which are marked by +1 labels. The threshold function is used in this
example.

The ANN output is now calculated manually for the example values x1 = 0, x2 = 1,
to show that this network successfully emulates the XOR function. Calculating the
results for the remaining three possible inputs is accomplished in a similar way. The
first thing to calculate are the results of neurons N0 and N1:

N0 = sgn(−1.5 + 1 · x1 + 1 · x2) = sgn(−1.5 + 1 · 0 + 1 · 1) = sgn(−0.5) = −1 (2.14)

N1 = sgn(−0.5 + 1 · x1 + 1 · x2) = sgn(−0.5 + 1 · 0 + 1 · 1) = sgn(+0.5) = +1 (2.15)

Now the result of neuron N2, which is the overall result, can be calculated. Accord-
ing to Tab. 2.3 the calculation produced the desired result.

N2 = sgn(−0.5−2 ·N0+1 ·N1) = sgn(−0.5−2 ·(−1)+1 ·1) = sgn(+2.5) = +1 (2.16)

As this example shows, multilayer neural networks are more powerful than their
single layer pendants. The hidden neurons actually function as feature detectors by

18 CHAPTER 2. FOUNDATIONS AND RELATED WORK

x1 x2 N0 N1

0 0 1 -1
0 1 1 1
1 0 1 1
1 1 -1 1

Table 2.4 – The results of the XOR ANN’s hidden layer.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

N
2

N1

Class 0

Class 1

Figure 2.10 – The results of the XOR ANN’s hidden layer.

performing a non-linear transformation on the input data into the so called feature
space. By looking at this feature space instead of at the raw input data, the classification
job of the output neurons is simplified greatly.

It turns out that feedforward networks with one hidden layer are capable of repre-
senting any possible continuous function with arbitrary accuracy given that the hidden
layer is sufficiently large [RN03]. However, the number of required hidden units grows
exponentially with the number of inputs. The number of hidden neurons h required
to represent all possible Boolean functions with i inputs can be calculated using the
following equation:

h =
2i

i
(2.17)

The outputs of the hidden layer are now analyzed to give a better understanding
of the capabilities of feedforward networks. Tab. 2.4 shows the results of neurons N0

and N1 for all possible inputs. The results are visualized in Fig. 2.10. Apparently the
hidden layer transforms the input in a way that it is now linearly separable.

A neural network is mostly worthless without an adequate learning algorithm.
Training the perceptron is simple, because there is only one parameter that needs to
be adjusted for each input value. In multilayer networks, however, this task becomes a
lot more complicated, due to an issue called the credit assignment problem. Learning
is based on the idea of evaluating the result and assigning positive or negative credit
to the individual units of the network. Assigning credit to hidden units, however, is
a non trivial task. Looking back at the XOR example, what weight would have to be
changed if the result turned out to be wrong for a certain input?

The answer to this question lies in the so called back propagation algorithm, which is
presented now. The main problem of having a hidden layer is that it is not clear, which
values are to be expected [RN03]. This is in contrast to the output layer, where train-

2.3. ARTIFICIAL NEURAL NETWORKS 19

ing data clearly shows the expected results, which can be compared to the computed
results, thus allowing to calculate the error. It turns out that this error can be back-
propagated from the output to the hidden layer. The following equations specify the
back propagation algorithm. Eq. 2.18 defines the current error of the network, which
is the difference of the desired output ~d and the computed output ~y. By multiplying
the j-th component of the error with the partial derivative of the activation function
ϕ, one gets the modified error as defined in Eq. 2.19. Each weight vector component
wkj is now simply incremented by the modified error Mj , multiplied with the learning
rate α and the computed output yk.

~E = ~d− ~y (2.18)

Mj = Ej ·
∂ϕ (xj)

∂xj
(2.19)

wkj ← wkj + α · yk ·Mj (2.20)

Search Space

In the beginning of this section it was mentioned, that the free parameters of an ANN
with fixed structure are its connection weights. If the number of connections is denoted
by N , the network’s parameters can be formulated as an N dimensional vector ~w.
Assuming that an optimal solution for a problem to which an ANN is applied exists, it
would therefore be a point in an N dimensional space. If no further constraints exist,
the connection weights all lie within R, which leads to an overall search space of RN .

As fully connected feedforward networks with one hidden layer are the most common
type of networks, this case will now be discussed thoroughly. Assuming that an ANN
has i input, h hidden and o output neurons. To be able to represent any Boolean
function with i inputs, the number of required hidden neurons has to be as specified in
Eq. 2.17. Assuming further that the simplification according to Eq. 2.5 is applied, the
total number of connections N in the network can be calculated with Eq. 2.21.

N = (i+ 1) · h+ (h+ 1) · o = (i+ 1) · 2i

i
+ (

2i

i
+ 1) · o (2.21)

By applying some approximations, this equation can be simplified and the appro-
priate O-notation can be deduced as indicated in Eq. 2.22.

N ≈ 2i +
2i

i
= O(ei) (2.22)

This implies, that if the number of output neurons o is fixed, the number of con-
nections N in the network only depends on the number of inputs i. According to
Eq. 2.22, the correlation between i and N is exponential. This means, that the search
space grows exponentially with the number of inputs and therefore the amount of time
required to learn a specific behavior grows exponentially with the number of input
neurons. Thus, it is desirable to minimize the amount of required inputs for proper
functionality of the network. However, this task proves to be tedious and often the only
way to determine a good set of input variables is trial and error. In most applications
not the full amount of hidden neurons is required but a substantially smaller amount
might suffice. In a recently published paper about neuroevolution, for example, the

20 CHAPTER 2. FOUNDATIONS AND RELATED WORK

number of input neurons was selected to be 6 [WFK11]. According to Eq. 2.17 the
amount of hidden neurons required for full Boolean computational functionality would
be 32

3 ≈ 10.7. However, in this paper a neural network with only 3 hidden neurons
proved to be sufficient for the task.

2.3.5 Real World Applications: What are ANNs typically used for?

The purpose of this section is to give an overview about what artificial neural networks
are used for in real life. The examples presented in this section also show that ANNs
are usually not the sole technology used to solve a problem, but are integrated with
many other algorithms, which pre- or post-process data. Unfortunately it is hard to
find information about the usage of ANNs in actual products. However, the research
papers presented in the following paragraphs should give a good overview about what
is possible.

Medical Applications

To prevent birth asphyxia it is required to monitor the heart rate of the fetus during
labour [GPMR11]. Usually this data is collected and analyzed by hand, which is tedious
and error prone. Recently a team from Oxford University successfully trained a com-
mittee of six neural networks to analyze the heart rate time series data. Despite being
in a very early stage, the system might one day be able to assist doctors interpreting
the data more rapidly and to circumvent false diagnoses.

Over ten percent of all women in developed countries might be affected by breast
cancer during their life, which makes it the most common cause of death for women in
these parts of the world [can, JMW+05]. To fight cancer, early diagnosis is vital. A
team from Orissa, India successfully utilized linear wavelet neural networks to improve
breast cancer detection and classification success rates [SMDD11].

Vision

Back in 2008 BMW and Opel introduced cars with integrated traffic sign recogni-
tion [Gru09]. The purpose of the system is to prevent the driver from missing an
important sign. This is achieved by permanently displaying the most important cate-
gories, like the last speed limit sign, in the vehicle’s head up display. The technology
can also be connected to warning systems, that notify the driver when significantly
exceeding the current speed limit. Recognizing traffic signs is a complicated problem,
which is solved using multistage algorithms, often containing neural networks [PdY].

Financial

Ever since the establishment of stock exchanges people tried to forecast stock prices to
maximize profits. Neural networks are often combined with various other technologies,
like feature selection algorithms and genetic programming, to achieve a high prediction
accuracy [Hsu11]. Researchers from Taiwan applied an even more complex chain of
algorithms to this problem, using genetic programming, the artificial fish swarm algo-
rithm and gray model neural networks, to predict Taiwan stocks [HCP11]. Another
research group also focuses on the Taiwan market, trying to predict the Taiwan Stock
Index, using a probabilistic neural network, trained with historic data, showing that it
significantly outperforms competing approaches [CLD03].

2.4. GENETIC ALGORITHMS 21

Another possible use of ANNs in the financial sector is the prediction of possible
acquisition targets, using a broad variety of well known factors [CWY99]. A portfolio,
containing stock selected by this algorithm, significantly outperformed the market.

Control

Standard direct current (DC) motors use brushes and a mechanical commutator to
supply an alternating current to the moving rotor. Brushless DC motors, on the other
hand, have a permanent magnet rotor and stationary electrical magnets. This, however,
leads to the need for a control circuit, which emulates the mechanical commutator.
Chinese researchers successfully applied a single neuron, along with other components,
to control such a motor and achieved high performance [XWX11].

Researchers from the University of Chicago successfully used a neural network to
control energy usage in a modern home, using grid, as well as battery power, while
optimizing electricity cost [HL11].

In database systems, a huge number of transactions has to be executed in paral-
lel [KE06]. When using optimistic concurrency control, transactions might get canceled
if a conflict occurs. As canceling transactions means losing a lot of already executed
work, one of the goals is to minimize conflicts and therefore maximize performance.
Researchers from Tehran, Iran, managed to use a neural network, based on adaptive
resonance theory, to improve performance at various transaction rates [SRA11].

Analysis

As gear faults are one of the main causes of machine unavailability, it is important to
detect these defects as early as possible. Scientists developed a way of using, so called,
fuzzy lattice neuro-computing, to analyze frequencies along with other components to
successfully detect the current state of a gear [LlZsM+11].

Other mechanical engineering applications include the identification of cracks in
curvilinear beams, which can be useful to detect otherwise hard to observe failures in
complex machines [SGP11].

Optimization

When operating an online shop, one of the most important aspects is usability. Neural
networks, in combination with genetic algorithms and other techniques, can be used to
automatically optimize an e-commerce site [SMR11].

In material engineering, it was discovered that ANNs provide good performance
when analyzing and optimizing the compressive strength of concrete [YKID11].

One of the greatest challenges in civil engineering is the analysis of the behavior of
structures during an earth quake [AJA+11]. Using artificial neural networks, genetic
programming and simulated annealing, a model was developed to estimate the base
shear of steel structures. Base shear is the maximum lateral force, appearing at the
base of a building during an earthquake and depends on various factors.

2.4 Genetic Algorithms

This section establishes a basic understanding, of both biological and artificial evo-
lution. The first part explains the concepts of biological evolution, natural selection

22 CHAPTER 2. FOUNDATIONS AND RELATED WORK

and survival of the fittest. After that, artificial implementations of these ideas are in-
troduced and last but not least the application of these algorithms to artificial neural
networks is presented.

2.4.1 Biological Evolution

The theory of biological evolution dates back to Charles Darwin, was first published
in his groundbreaking book On the Origin of Species and is the well accepted theory
about the past and future development of life on earth [Gre09]. According to Jerry A.
Coyne “[evolution] shows how everything from frogs to fleas got here via a few easily
grasped biological processes” [Coy06]. The following paragraphs explain the concepts
behind these processes.

Basic Concepts

Evolution can only function properly, if all of the underlying concepts are in place.
Leaving only one of them out might lead to completely different results.

Overproduction and the Struggle for Existence The first concept is the power
of biological reproduction [Gre09]. Assume one individual is capable of producing 10
offspring. This means, that the second generation, consisting of 10 individuals, is
capable of producing 100 offspring. The third generation, which now already consists
of 100 individuals, is capable of producing 1000 offspring, and so on. Therefore, the
growth is exponential. This means, the total number of produced individuals is N = rn

where n is the number of reproduction cycles or generations and r is the number of
individuals, a single individual can produce.

The potential of this simple rule is enormous. Assuming, one has a single Escherichia
coli bacterium and assuming that cell division happens twice per hour, the overall
bacteria population would exceed the earth’s mass in less than a week [Gre09]. This
concept also applies for other species and is called overproduction. But, as populations
on our planet appear to be rather stable, there has to be some other concept which
neutralizes this massive reproduction.

Most of the offspring never gets the chance to reproduce, because they simply do not
survive long enough [Gre09]. This is mostly caused by the limited amount of available
resources, as well as by predators. The massive discrepancy between the number of
created offspring and the number of individuals, surviving long enough to produce
offspring themselves, creates a so called “struggle for existence”.

Variation and Inheritance Darwin discovered, that the individuals of a species are
not equal, but have different traits [Dar]. He also realized, that individuals related to
each other are more similar to each other than unrelated individuals. Darwin knew,
that these concepts are critical for natural selection to happen. However, Darwin was
not capable of understanding the background of variation and inheritance.

Nowadays, it is well understood that both observations can be explained through
genetics [Gre09]. Inheritance functions by recombining strands of DNA from both
parents. This process is not perfect and therefore introduces defects into the offspring
from time to time. These defects are known as mutations and happen completely
randomly. Odds are, mutations will have negative effect for the offspring. But there is
also a small chance, that it might turn out to lead to a competitive advantage. Most
of the time, the mutations have no measurable effect at all. Mutations, along with the

2.4. GENETIC ALGORITHMS 23

recombination of both parents’ DNAs, are the effects responsible for new variation to
appear.

The Natural Selection Process Variation leads to the fact, that individuals of
the same species all have different traits, which make some of them slightly better
equipped for their environment, which in turn might give them a slightly better chance
of survival [Gre09]. Individuals, capable of surviving longer, might in turn on average
be capable of producing more offspring. Variations might occur at random, however,
the selection process that determines, which of these variations is passed on to the next
generation, is not random at all.

Darwinian Fitness The economist Herbert Spencer summarized the natural selec-
tion process in the well known term “survival of the fittest” [Gre09]. This term was
later adopted by Darwin in one of his articles. However, the word “fitness” in this
context does not refer to physical condition or strength, as is assumed by many people.
What Darwin actually meant is the reproductive success compared to alternatives.

Another key aspect, which is often ignored, is that fitness is mostly referring to
an individual’s reproduction capabilities [Gre09]. While it is obvious, that individuals
have to survive for a certain amount of time to produce offspring, it might happen that
evolution actually leads to shorter lives of individuals, while improving reproduction
e.g. by increasing fecundity.

Combined Concepts Lead to Evolution

None of the concepts introduced so far is capable of leading to evolution on its own,
but all of them combined do [Gre09]. Producing massive amounts of offspring alone
has no effect. Neither have differences between the individuals of a species as long as
they cannot be passed on to future generations. Variation alone also does not work, if
it does not lead to different reproduction rates. Only if all of Darwin’s concepts hold,
natural selection can happen.

The selection process alone is incapable of producing new properties [Gre09]. It
turns out that a two step process is required to achieve this goal. First new variations
are generated by recombining existing genomes and by erroneous manipulations of
those, which are known as mutations. The second step is to determine, which of those
randomly created traits are passed on to future generations.

2.4.2 Simulating Evolution through Genetic Algorithms

Many artificial intelligence researchers share the opinion, that it is hard to encode all
the rules, which make up intelligent behavior by hand [Mit95]. Therefore, they are
looking for ways to provide simple rules, from which complex and intelligent behavior
emerges on its own. One promising attempt to realize this are genetic algorithms.

The concept of Genetic Algorithms (GAs) was first introduced in the 1960s by
John Holland as an attempt to understand the ability of adaptation as it appears in
nature [Mit95]. Holland’s goal was to build computer software, that could adapt to new
requirements and environments. The GA introduced by Holland was an abstraction
from natural evolution, featuring multiple generations of a population and a method
to create a generation from its predecessor. This method uses all the concepts known
from natural evolution, like selection, recombination and mutation.

24 CHAPTER 2. FOUNDATIONS AND RELATED WORK

Binary Genome Decimal Genome

Chromosome 1 10100100 00010011 164, 019
Chromosome 2 00110000 11101010 048, 234

Result for Integer Symbols 10100100 11101010 164, 234
Result for Binary Symbols 10110000 11101010 176, 234

Table 2.5 – Possible crossover results for integer and binary symbols.

A Basic Genetic Algorithm

Many different genetic algorithms were developed in the past decades, each of them
optimized for a specific purpose, but all of them share some common basics, which are
introduced now.

A genetic algorithm simulates multiple generations of populations of individuals,
the first of which is usually generated in a random fashion [Mit95]. The algorithm
determines the fitness of each individual in each generation and then decides, which of
the individuals is allowed to reproduce. Usually pairs of individuals are chosen and their
genomes are combined. Combining the genome from the parents can happen in different
ways. One of the most widely used algorithms is called crossover. This algorithm
randomly selects a position within the genome. Everything up to this position is copied
from the first parent and everything after this position is copied from the second parent.
Other algorithms randomly decide for each position within the genome, whether it is
copied from the first or the second parent. The result of this recombination phase is
then usually randomly mutated to create offspring, which forms the next generation.

The genome of an individual is usually represented as a string or an array of symbols,
which are called alleles [RN03, Mit95]. The alphabet these symbols are chosen from
influences how the algorithm behaves. For example if one wants to encode an 8-bit
integer, one could either interpret the entire integer as a symbol with 256 different
states, or one could interpret the individual bits as symbols with only two different
states (0 and 1). The information contained in the genome is the same for both cases,
but when it comes to crossover the solutions provide different results. As the crossover
operator works on symbol basis, it will always divide the genome of the first solution
at integer boundaries whereas the genome in the second solution might be divided in
the middle of an integer, leading to more or less random results.

Both algorithms are illustrated in Tab. 2.5 for a 16-bit genome, representing two
8-bit integers. Using 8-bit integer symbols, the only possible crossover point is between
the first and second symbol. Using bit symbols, the crossover can happen at any bit
position. Note how the resulting integers are chosen from existing integers for case
one, but a new integer is generated for case two. It is important to choose the symbol
alphabet depending on whether or not this behavior is acceptable or even desirable.

The following algorithm summarizes the concepts introduced so far. It is based on
the algorithm introduced in [RN03].

1. Create the first generation of N individuals with random genomes.

2. Evaluate each individual and calculate its fitness.

3. Repeat the following steps N times to create the next generation.

(a) Mating: Randomly pick two individuals. The probability for being cho-
sen should be directly proportional to the individual’s fitness. It is usually
possible that an individual gets chosen multiple times or not at all.

2.4. GENETIC ALGORITHMS 25

(b) Crossover: The genomes of the selected individuals are combined through
crossover by using a randomly selected crossover point.

(c) Mutation: Randomly select some of the symbols of the produced genome
and set them to random values.

4. Replace the current population with the newly created individuals and start again
with step (2).

Many variations of this algorithm exist. It is, for example, very common to discard
a certain amount of individuals at the lower end of the fitness scale before starting the
reproduction [RN03]. This procedure, which is called culling, is inspired by the fact
that, in nature, many individuals die before they get the chance to reproduce. It can
be shown that GAs converge faster when using culling [BBG95].

Neuroevolution - ANNs and GAs Combined

It turns out that artificial neural networks and genetic algorithms are a perfect match.
The combination of both worlds is called neuroevolution and was established around
1988 [MD89]. GAs are an interesting alternative (as well as an addition) to the more
commonly used learning algorithms introduced in Sec. 2.2 and can be applied to neural
networks in many ways. Typical properties of neural networks, which can be evolved,
include the connection weights, the network structure or the parameters of a separate
learning algorithm.

Evolving Connection Weights The idea of training neural networks using genetic
algorithms was first introduced by Montana and Davis in 1989 [MD89]. They en-
coded the weights of a fixed topology neural network as a list of real numbers, which
formed the genome. Fig. 2.11 shows an example for such a mapping. By applying
a genetic algorithm to a population of individuals (i.e. neural networks), the weights
can be progressively adjusted until reaching a satisfying solution for the specified prob-
lem. Montana and Davis also showed that neuroevolution can easily outperform back
propagation algorithms.

Evolving Network Topology Designing a neural network architecture for a given
problem can be a complex task, which often involves a lot of guessing, experience
and experimentation [Mit96, RN03]. Often, the network topology decides, whether a

Figure 2.11 – Mapping the connection weights of a neural network to the genome.

26 CHAPTER 2. FOUNDATIONS AND RELATED WORK

(a) Neural Network

to unit: 1 2 3 4 5 6 7

from unit: 1 0 0 0 1 1 0 0
2 0 0 0 1 0 0 0
3 0 0 0 0 1 0 0
4 0 0 0 0 0 0 1
5 0 0 0 0 0 1 1
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0

(b) Connection Matrix

Figure 2.12 – A binary matrix is used to encode the connections of a neural network
to be used in genetic algorithms. The genome is obtained by serializing the matrix:
[0001100‖0001000‖0000100‖0000001‖0000011‖0000000‖0000000].

particular ANN application succeeds or fails. It would reduce the developer’s workload
if there was an algorithm, which could automate this tedious job. As it turns out
genetic algorithms can also be applied for this task.

There are two possible ways to encode the network structure in the genomes [Mit96].
The first one is direct encoding, which uses a fixed number of N neurons. All possi-
ble connections are represented as a binary N by N matrix, each element of which
represents a possible connection. If an element is 1, the corresponding connection is
present. If it is 0, the corresponding connection is left out. This matrix can then be
serialized to form a binary string genome, which is used in a genetic algorithm as usual
(see Fig. 2.12 for an example). Note that the connection matrix is capable of represent-
ing recurrent neural networks. If a pure feedforward network is preferred, the bottom
left half of the matrix can simply be ignored. The connection weights of the resulting
structures can be trained by a separate learning algorithm, which might again be a GA
or a conventional algorithm like back propagation.

Direct encoding is simple, but fails to encode complex structures as the length of
the genome increases quadratically with the number of neurons in a network [Mit96].
Additionally, the method is unable to encode repeated or nested structures in a network.
Due to these shortcomings Kitano invented the grammatic encoding, which uses a graph
generation grammar to define network architectures. For more information about this
type of encoding consider reading [Kit90].

2.5 Controlling Robots with Neuroevolution

Neuroevolution can be applied in a wide variety of fields. For example, Faustino John
Gomez successfully used neuroevolution to control a finless rocket, which is a par-
ticularly hard job, as finless rockets are unstable and would tumble without active
control [Gom03]. Another popular usage of neuroevolution is the control of robots.
Stanley et al. developed a real time neuroevolution algorithm, which can be used to
control agents in the NERO video game [SBM05]. The agents in this game constantly
improve their behavior and are able to adapt to the strategies of other players.

To control a robot using neuroevolution, it is required to connect the sensors and
actuators of the robot to the neural network. This can be accomplished in various
different ways. One of the simplest possibilities is to connect each of the sensors, to
one or more input neurons, and each of the actuators to one or more output neu-

2.5. CONTROLLING ROBOTS WITH NEUROEVOLUTION 27

Figure 2.13 – Controlling robots with neuroevolution.

rons, as illustrated in Fig. 2.13. This approach has been widely tested. For example,
Waibel et al. used this approach to control robots, which are supposed to collect food
items [WFK11].

Many problems would require ANNs of massive proportions or are simply easier to
implement using other types of algorithms. Therefore, it often makes sense to add some
data pre- and/or post-processing to the neural network. ANN-based face-detection, for
instance, requires several pre- and post-processing steps [Row99]. Another example
is the above mentioned NERO video game. The neural network of an agent outputs
abstract commands, like walk forward/back, turn left/right, fire weapon, using three
output neurons [SBM05]. These commands are then executed accordingly by additional
logic. The input of this neural network is also pre-processed, using complex algorithms.
Each robot has a so called enemy radar, which determines where enemies are located
around the robot. This information is aggregated and then fed into five input neurons.
Five additional input neurons are fed with information about the distance of objects
around the robot. Two inputs are fed with information about whether an enemy is in
the line of fire and one input is active, only if an enemy is directly in front of the robot.
This configuration, which is very successful within the NERO video game suggests how
important it is, to carefully select and pre-process input data.

This chapter introduced all the conceptual foundations, especially neural networks
and genetic algorithms, required to understand the next chapters. The following chap-
ter presents the marXbot robotic platform and the ARGoS simulator, both fundamental
tools for the experiments of this thesis.

28 CHAPTER 2. FOUNDATIONS AND RELATED WORK

Chapter 3

Robotic Platform and Simulator

This chapter introduces the two most essential tools used for the experiments in Chap. 5:
The marXbot, which is a multi-purpose robot, and ARGoS, which is used to simulate
robot instances and their environment.

3.1 The marXbot Robotic Platform

Some of the tools used for this thesis have been developed in the Swarmanoid project1.
The researchers of this project employ three different types of robots with various
different capabilities.

The hand-bot is capable of climbing vertical surfaces as well as manipulating objects.
The eye-bot has eight rotors, which allow it to fly like a helicopter. It is also capable
of attaching itself to the ceiling, thus providing a bird’s eye view. Last but not least
the foot-bot, which is based on the marXbot robotic platform, is capable of driving and
docking with other robots.

The marXbot platform was chosen as the robotic platform for all experiments in
this thesis and is therefore explained thoroughly. Fig. 3.1 shows a rendering of the
robot, which was generated using the ARGoS simulator (see Sec. 3.2) and POV-Ray2.
The robot has a diameter of 17cm, a height of 29cm and a mass of 1.8kg [RMV11].

3.1.1 Sensors

The marXbot has a great amount of sensors that make it very versatile. First of
all the robot has two cameras, both using a three megapixel sensor [RMV11]. One
of the cameras is looking straight up towards a hyperbolic mirror, which allows the
robot to observe 360◦ of its environment. The camera and its mirror are clearly visible
in the upper half of Fig. 3.1. The second camera is optional and is either looking
forward or also up, but without a mirror. A long range rotating infrared distance
sensor is capable of detecting objects in a range of 4cm to 150cm. Additionally, 24
static infrared proximity sensors can be used to observe nearby obstacles. A three
dimensional accelerometer and a three axis gyroscope allow the robot to determine its
current orientation and estimate its current position in space. Eight infrared and four
visual ground sensors can be used to determine various properties of the surface, the
robot is currently on. Last but not least, an RFID reader can be used to detect and
read RFID tags in the environment.

1http://www.swarmanoid.org/, accessed 17. Dec. 2011
2http://www.povray.org/, accessed 17. Dec. 2011

29

30 CHAPTER 3. ROBOTIC PLATFORM AND SIMULATOR

Figure 3.1 – The marXbot rendered using the ARGoS simulator and POV-Ray.

3.1.2 Actuators

The robot has two so called treels, which are combinations of tracks and wheels
[RMV11]. The rendering in Fig. 3.1 shows what this construction looks like. Both
treels can be controlled individually which allows the robot to move forward, backward
and to turn like a tank. A rotatable attachment device consisting of two small fingers
can be used to connect mechanically to other robots or objects with a compatible spline.
Lastly, the robot has a powerful 3.5W RGB beacon LED on its top and 12 RGB LEDs
arranged around its body. The LEDs can be used to communicate with other robots
or to simplify locating robots visually.

3.1.3 Controller

A complete marXbot consists of ten microcontrollers, which are interconnected through
a CAN and an I2C bus [RMV11]. Each of the microcontrollers is responsible for con-
trolling one or more of the sensors or actuators. An embedded computer is responsible
for coordinating all of the microcontrollers and for executing logic and behavioral al-
gorithms. This computer is based on an ARM 11 CPU with 533MHz and 128MiB of
RAM. It can communicate with the outside world over TCP using either WiFi or USB.

3.1.4 Programming Model

The microcontrollers use a high level, event based, scripting language called ASEBA,
which was developed to simplify marXbot programming [RMV11]. Each of the mi-
crocontrollers runs a small virtual machine, which is responsible for executing ASEBA

3.2. THE ARGOS SIMULATOR 31

Figure 3.2 – The ARGoS Qt4/OpenGL user interface.

programs. The embedded computer runs a Linux based operating system, which con-
trols the hardware and simplifies programming by providing a familiar environment
without having to deal with low level tasks like memory management or networking.

3.2 The ARGoS Simulator

The ARGoS (Autonomous Robots Go Swarming) simulator was developed within the
Swarmanoid project [PTO+11]. It is written in C++ and features a modular architec-
ture with a focus on extensibility and scalability. A diverse set of robots is supported
and it scales easily up to several thousand robots within the same simulation. All enti-
ties like robots, sensors, actuators and physics engines are realized as separate modules,
which can easily be replaced to provide the optimum solution for all types of experi-
ments. By providing different implementations of the same entity type, the user can
select the best trade-off between realism and performance. Scalability is obtained by a
multi-threaded architecture focusing on high CPU utilization. One of ARGoS’ unique
features is the ability to use multiple physics engines within the same simulation, as-
signing each of them a part of the available space and allowing objects to seamlessly
transition between the engines. This allows, for instance, to assign flying robots to a
3D and wheel based robots to a 2D physics engine, which improves performance with-
out limiting capabilities. ARGoS supports multiple visualization engines, which, again,
concentrate on performance or realism. Fig. 3.2 shows a screenshot of the Qt4 and
OpenGL based user interface. It is also possible to turn off visualizations all together
for unattended batch runs.

Robots are programmed using a special controller interface, which is the same for
simulated and real robots [PTO+11]. Therefore, it is possible to write controllers for
the simulator and cross compile them for real robots, once they are mature enough.
On real robots, the controllers are executed on the built-in computer. The robot’s

32 CHAPTER 3. ROBOTIC PLATFORM AND SIMULATOR

microcontrollers cannot be programmed using this model, but have to be programmed
using the ASEBA scripting language. However, for most usecases, there is no need to
change any of the built in ASEBA programs.

3.2.1 Configuration

Experiments can be configured using a flexible XML format, which allows to control
global options like multi-threading, physics engines, visualizations, as well as the ex-
periment itself [PTO+11]. The experiment is specified by setting up the space and the
robots. The space consists of a rectangle of arbitrary size, on which static and dynamic
blocks, as well as robots and other entities can be placed. The configuration file is also
the place where custom modules can be specified and implementations can be chosen.
A reference manual for the configuration file format can be found in App. A.

3.2.2 Programming Model

The following sections describe the programming model, which is used to extend
ARGoS. The architecture distinguishes between robot controllers, which govern a robot’s
behavior, loop functions, which can be used to execute arbitrary code within the simu-
lation and Qt/OpenGL user function, which can be used to extend the rendered scene.

Robot Controllers

Robots are governed by so called controllers, which are defined by extending the CCI -

Controller class. This class offers several lifecycle methods, which are called on various
occasions. The class also offers methods to access robot sensors and actuators. The fol-
lowing listing shows an overview of the interface. Modifiers like const, public, virtual
or = 0, constructors, some utility methods and default values have been omitted for
the sake of brevity.

1 c lass CCI_Controller : public CBaseConfigurableResource , public CMemento

{

2 void Init(TConfigurationNode& t_node);

3 void ControlStep ();

4 void Reset () {}

5 void Destroy ();

6

7 CCI_Robot& GetRobot () {

8 return *m_pcRobot;

9 }

10

11 bool IsControllerFinished () const {

12 return fa l se ;
13 }

14 }

The lifecycle methods Init(), ControlStep(), Reset() and Destroy() of lines 2-5
are used to specify custom controller behavior. The Init() method is called exactly
once, when the robot is initialized. A reference to the <parameters> XML node within
the tag, specifying this controller, is passed to the method. This reference can be
used to access custom configuration options. The Init() method is used to initialize
the controller and to request references to sensors and actuators. The ControlStep()

method is executed for each simulation step. It therefore contains all of the controller’s
logic. A typical ControlStep() method implementation consists of querying sensor

3.2. THE ARGOS SIMULATOR 33

data, performing calculations and adjusting actuator settings. The Reset() method is
called whenever ARGoS decides to reset the simulation. This is usually only the case
if the user clicks on the reset button. This method should be used to restore the state,
which existed immediately after the Init() method has been called. The Destroy()

method is called when ARGoS terminates. This method should be used to free all of
the allocated resources and to persist collected information.

The GetRobot() method can be used to get a reference to the robot entity, this
controller is assigned to. This reference can be used, for example, to query the current
location of the robot. The IsControllerFinished() method can be overwritten to
inform ARGoS, whether or not the controller is still active. If all the controllers return
false in this method, ARGoS is able to terminate the simulation prematurely. Oth-
erwise, the simulation would run for the entire predefined duration. Obviously, these
methods only make sense within the simulator and cannot be used in real robots.

Controllers are registered using the REGISTER CONTROLLER macro. The following
listing shows an example:

1 REGISTER_CONTROLLER(CSomeController , "some -controller")

The controller can be specified within the ARGoS XML configuration using the
following using syntax (see App. A for a detailed configuration reference):

1 <controllers >

2 <some -controller id="foac" library="libsome_controller.so">

3 <actuators >

4 <!-- List of actuators -->

5 </actuators >

6 <sensors >

7 <!-- List of sensors -->

8 </sensors >

9 <parameters param1="value1" param2="value2" ... />

10 </some -controller >

11 </controllers >

The tag name (<some-controller> in this case) has to match the string specified
in the REGISTER CONTROLLER macro. The library parameter contains the path to the
shared object file containing the controller. The parameters tag can be used to pass
custom parameters to the controller.

Loop Functions

Loop functions are a concept, which allows the programmer to run arbitrary code
during the simulation and to control many aspects of the simulator. Loop functions
are implemented by extending the CLoopFunctions() class provided by ARGoS. This
class contains several virtual methods, allowing to execute code for various occasions
during the simulation. The following listing gives an (incomplete) overview over the
CLoopFunctions interface.

1 c lass CLoopFunctions : public CBaseConfigurableResource {

2 void Init(TConfigurationNode& t_tree) {}

3 void Reset () {}

4 void Destroy () {}

5 void PrePhysicsEngineStep ();

6 void PostPhysicsEngineStep ();

7 bool IsExperimentFinished ();

8 CColor GetFloorColor(CVector2& c_position_on_plane);

9 };

34 CHAPTER 3. ROBOTIC PLATFORM AND SIMULATOR

Modifiers like const, public, virtual or = 0, constructors, some utility methods
and default values have been omitted for the sake of brevity. The Init() method
is called just once during the initialization phase of ARGoS. It allows the module to
perform all the necessary initialization tasks. The parameter passed to this method
is a reference to the <loop functions> XML element defining the module within the
experiment configuration. The reference can be used to read custom configuration
parameters and sub nodes from the configuration file.

Reset() is called, when the simulation is reset and Destroy() is called immediately
before ARGoS terminates. The IsExperimentFinished() method allows the loop
functions to terminate the simulation by returning true.

The methods PrePhysicsEngineStep() and PostPhysicsEngineStep() can be
used to execute custom code in each simulation step (either before or after the physics
engine invocation).

Last but not least, GetFloorColor() can be used to specify a custom floor pattern.
This method is invoked for every pixel on the floor, which is then drawn in the specified
color. The floor color is perceivable for the robots using the ground sensors.

Loop functions are specified in the experiment configuration using the following tag:

1 <loop_functions library="libsomeloopfunctions.so" label="

some_loop_functions" />

The library parameter has to point to the shared object file containing the loop
functions and the label has to specify the loop functions within the library. The label
is registered within the C++ code by using the REGISTER LOOP FUNCTIONS macro:

1 REGISTER_LOOP_FUNCTIONS(CSomeLoopFunctions , "some_loop_functions")

Qt/OpenGL User Functions

While loop functions are used to change the behavior of simulations, Qt/OpenGL user
functions can be used to customize the rendered scene. These two interfaces are kept
separate, because ARGoS is designed to function entirely headless, i.e. without Qt and
OpenGL. The user functions interface offers several methods to draw 3D primitives.
The following listing gives an overview about the user functions interface. Modifiers
like const, public, virtual or = 0, constructors, some utility methods and default
values have been omitted for the sake of brevity.

1 c lass CQTOpenGLUserFunctions {

2 void Draw(CCylinderEntity& c_entity) {}

3 void Draw(CFootBotEntity& c_entity) {}

4 void Draw(CEyeBotEntity& c_entity) {}

5 void Draw(CEPuckEntity& c_entity) {}

6 void DrawOverlay(QPainter& c_painter) {}

7

8 void DrawTriangle(CVector3& c_center_offset , CColor& c_color , bool
b_fill , CQuaternion& c_orientation , Real f_base , Real f_height);

9 void DrawCircle(Real f_radius , CVector3& c_center_offset , CColor&

c_color , bool b_fill , CQuaternion& c_orientation , GLuint

un_vertices);

10 void DrawCylinder(Real f_radius , Real f_height , CVector3&

c_center_offset , CColor& c_color , CQuaternion& c_orientation ,

GLuint un_vertices);

11 void DrawSegment(CVector3& c_end_point , CVector3& c_start_point ,

CColor& c_segment_color , bool b_draw_end_point , bool
b_draw_start_point , CColor& c_end_point_color , CColor&

c_start_point_color);

3.2. THE ARGOS SIMULATOR 35

12 void DrawPoligon(const std::vector <CVector3 >& vec_points , CColor&

c_color);

13 void DrawPoint(const CVector3& c_position , CColor& c_color , Real

f_point_diameter);

14 }

Lines 2-6 contain methods, which are invoked by ARGoS, whenever it wants to
draw one of the entities. For example, the method in line 3 is executed when ARGoS
is drawing the marXbot model. By overriding these methods it is possible to add 3D
elements, like gauges, to the scene. Lines 8-13 contain the actual drawing commands,
which are an abstraction of the OpenGL interface. These methods can be used in the
overwritten methods to add custom elements, like cylinders, to the scene.

User functions have to be registered using the REGISTER QTOPENGL USER FUNCTIONS

macro. The following listing shows an example:

1 REGISTER_QTOPENGL_USER_FUNCTIONS(CSomeUserFunctions , "

some_user_functions")

Qt/OpenGL user functions are specified in the ARGoS configuration using the
following tag within the <qtopengl render> tag. The library parameter specifies the
location of the shared object file containing the user functions. The label has to be
identical to the string specified in the REGISTER QTOPENGL USER FUNCTIONS.

1 <user_functions library="libsomeuserfunctions.so" label="

some_user_functions" />

36 CHAPTER 3. ROBOTIC PLATFORM AND SIMULATOR

Chapter 4

BRAIn - BRAIn Robot
Algorithm Insight

In Chap. 5, several experiments are introduced, where robots are placed in an envi-
ronment, which contains several food items and a base. The goal for the robots is to
collect as much energy from the food items as possible and to drop it off in the base.
To be able to execute these experiments in an automated fashion, a framework had to
be developed first. This framework is named BRAIn, which is a recursive acronym1 for
BRAIn Robot Algorithm Insight. This chapter first describes all the requirements for
a software to successfully fulfill the needs. After that, an architecture is introduced,
which enables the software to conform with all the requirements. One section deals
with ARGoS specific features and a separate section deals with implementation details.
The following four sections contain an in depth description of how to use and extend
BRAIn. The chapter is concluded with a list of features, which have not been realized
yet, but would be worthwhile implementing.

4.1 Requirements

This section describes all the requirements, which were regarded during the design
of BRAIn. This list contains entries of the initial brainstorming phase as well as
requirements added later on. Early versions of BRAIn were already used to conduct
experiments. The experiences earned during these early applications were then used to
update and extend the list of requirements.

4.1.1 General Software Requirements

The first group of requirements apply to most types of software, but are explicitly
mentioned here to emphasize their importance.

1. Correctness. The software has to be reliable and correct, because a software
producing wrong results is worthless and might lead to wrong assumptions, if
errors are not detected on time.

2. Reliability. Reliability is also a key issue, because the software is supposed
to run on large super computers or clusters for several days or even weeks. An

1http://www.wordspy.com/words/recursiveacronym.asp, accessed 28. Nov. 2011

37

38 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

unreliable software would waste computing time and would require a lot of manual
interference, which is not desirable.

3. Extensibility. Adding a new type of simulator should be easy and straight
forward and should not require any complex changes of existing code. Above all,
adding new types of experiments should be as simple as possible, while providing
the flexibility to add experiments not conceived during the design of the software.

4. Scalability. As BRAIn is supposed to run on various different computer ar-
chitectures, ranging from one to hundreds of processors, scalability is important.
Additionally it is vital that the software is capable of utilizing as many processors
as possible to speed up experiment execution.

5. Portability. The software needs to be portable, because the computers executing
the experiments might be significantly different from the computers on which the
software was developed. In the case of this thesis the software was developed on
an Ubuntu 11.04 based dual core machine, but the experiments were executed
on the SuperMUC 2, which is based on Xeon processors and has 40 cores per
partition.

6. Usability. The software should be easy to use despite its flexibility to allow as
many people as possible to conduct their own experiments.

4.1.2 Domain Specific Requirements

After dealing with the more general requirements for BRAIn, this paragraph deals
with the domain specific requirements, mostly extracted from real life experience with
development versions of this software.

7. Running Arbitrary Experiments. BRAIn has to be capable of running ar-
bitrary experiments. The framework’s architecture must not limit the types of
experiments that it can support. This is especially important because a wide
variety of different experiment types exists, all of which are executed slightly
differently.

8. Traceability. The software has to be capable of persisting all the information
required to re-run any part of an experiment at a later point in time. This implies
that BRAIn behaves entirely deterministically.

9. Support For Other Simulators. Right now, ARGoS is the only simulator
supported by BRAIn, as all the experiments in this thesis have been conducted
with it. However, it is important to support any other type of simulator as well,
which implies that BRAIn must not make any assumptions considering simulator
architecture or interface.

10. Flexible Experiment Configuration. To simplify usage as much as possible,
BRAIn has to support specifying experiments in configuration files. This con-
cept allows to change parts of an experiment, without recompiling any parts of
the framework or of corresponding experiment modules. The configuration file
format has to be flexible enough to allow the specification of a great amount of
experiments in a systematic manner.

2http://www.lrz.de/services/compute/supermuc/systemdescription/, accessed 17. Dec. 2011

4.1. REQUIREMENTS 39

11. Large Scale Experiment Execution. One of the key aspects about BRAIn is
to enable the execution of large amounts of experiments, without manual interven-
tion. This allows users to specify a large amount of slightly different experiment
configurations, that can be set off simultaneously and do not require any user
interaction until their completion. By doing this it can easily be determined how
specific experiment parameters influence the results.

12. Flexible Simulator Communication. Experiment execution is based on pass-
ing information to the simulator, launching the simulator and collecting the re-
sults. Two of these three steps involve transferring data between BRAIn and the
simulator. The type of information transferred depends on the type of experi-
ment as well as on the simulator. Some simulators might need configuration files,
while others expect their configuration on the command line. What makes this
task especially challenging is that many experiments require to pass information
directly to the robots, running inside the simulator. Therefore, it is important
to provide a flexible way of communication between BRAIn and the selected
simulation software.

13. Parallelization. Some types of experiments take up very long time. For example
one of the experiments presented in Chap. 5 took over two weeks to complete. If
these experiments were executed sequentially, one would have to wait months or
years for the results. The solution is to execute as much as possible in parallel.
BRAIn has to support this paradigm and it is the framework’s responsibility to
schedule computation tasks as efficiently as possible.

14. Suspend and Resume. To ensure that already partially computed experiments
are not lost due to system failures, the software has to support suspend and
resume. This implies that the execution of an experiment can be resumed even
if it is terminated in an uncontrolled way, i.e. due to a power failure or system
reboot. The loss of data has to be kept to a minimum under all circumstances.
Without this feature it could happen that after days or even weeks of executing an
experiment, a simple handling error could force the user to restart the experiment
from the beginning.

15. Reporting. One of BRAIn’s key aspects is to provide insight into algorithms,
applied to robots. To accomplish this, the software has to collect and report
detailed statistics. As the type and amount of data to collect largely depends
on the experiment, these mechanisms have to be easily extensible. To allow
the user to monitor the experiment progress and to gain an overview about the
development of already executed parts, it is important to display human readable
experiment overviews.

16. Logging. As experiments and the framework itself can be complex, it is ap-
propriate to offer detailed logging information to the user. Everybody who has
to handle logs on a regular basis, knows that these files can get confusing very
quickly. Consequently, BRAIn should support fine grained log output filtering.

17. Epoch Based Simulation. Many experiments (especially evolution based ex-
periments) are epoch based, which means that they are composed of several sim-
ulator runs, which might have slightly different configurations. These types of

40 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

experiments commonly contain several hundred epochs, which have to be ex-
ecuted sequentially. BRAIn has to support this type of experiments with all
arising consequences, like statistics processing and configuration generation.

18. Epoch Variations. To improve the quality of measured results, it is some-
times required to run each experiment epoch several times with slightly different
parameters. These runs are called variations and have to be supported by the
framework. The statistics information collected during each of these runs has to
be aggregated into one consistent epoch data set.

4.2 BRAIn’s Architecture

Now that all the requirements are defined, the architecture, which enables the code to
fulfill each of them, can be presented. The following sections first describe BRAIn’s
overall architecture and then present the classes and services, which form the execution
model. A special section deals with ARGoS specific architectural details. BRAIn’s
design follows the state-of-the-art software design methodologies and was essentially
influenced by Effective Java [Blo08], Java Concurrency in Practice [GPB+09] and De-
pendency Injection [Pra09].

4.2.1 Module Overview

Just like any other complex software, BRAIn is divided into several modules, as this
serves the low coupling, high cohesion principle, besides improving overall readability
(requirement 1) and understandability of the code. Fig. 4.1 provides an overview of
BRAIn’s architecture, including the experiment code. It is important to understand
that while the dependencies in this drawing exist during compile time, additional de-
pendencies might appear at runtime. The following paragraphs describe all of the
modules and their responsibilities.

Figure 4.1 – Core and experiment modules of the BRAIn framework.

4.2. BRAIN’S ARCHITECTURE 41

Only the top row of components (brain-launcher, brain-common and brain--

argos) actually belongs to the BRAIn infrastructure. The remaining modules contain
code specific for the experiments conducted in Chap. 5, as indicated in the drawing.

It is apparent, that the brain-common module is the only module without any
dependencies to other components. The reason for this is that brain-common is the core
module of the framework, containing the data model and all the services required for
experiment execution. The code in this module is independent of a specific simulator,
as well as independent from any user interface implementation.

The module brain-launcher contains all the command line interface specific code.
The responsibility of these classes is to parse the command line as well as the config-
uration files, to wire everything together, to load all the required modules, if any, and
to kick off the execution.

The last remaining core module is brain-argos. As its name suggests, it contains
all the ARGoS specific code, which includes a service to launch ARGoS with specified
parameters, as well as utility classes, required for passing information to ARGoS. It
also contains the base classes for all experiments, utilizing the ARGoS simulator. It
is worth pointing out, that ARGoS utilizes a pseudo random number generator, the
seed of which can explicitly be configured in BRAIn based experiments. Bundling all
of the ARGoS specific code into a separate module keeps dependencies to this code to
a minimum and therefore reduces the barrier for adding other simulators in the future
(requirement 9).

As mentioned earlier, all the remaining modules contain experiment specific code.
The brain-foraging-common module provides functionality similar among all the ex-
periments. The focus lies on experiment set up and the calculation of statistics.

The module brain-foraging-evolution is responsible for executing evolution
based foraging experiments, while brain-foraging-basic is capable of executing stan-
dard experiments, consisting of just one epoch, without much logic.

4.2.2 Execution Model

Before being able to understand BRAIn’s core classes, one must first understand its
experiment execution model, which is illustrated in Fig. 4.2 and which is now explained,
starting from the outside.

The first thing BRAIn does, when starting execution is to create a so called Batch,
which is basically a group of experiments. The class DefaultBatch is the standard
and, at the moment, the only implementation of Batch. It simply contains a list of
experiments, that are executed in sequence or in parallel, according to the selected level
of parallelism. It would, however, make perfect sense to write special Batch implemen-
tations, which execute experiments according to certain specifications. Although this
case is not supported right now, it could be easily implemented.

No matter what Batch implementation one chooses, in the end, each instance of
them consists of a list of Experiments, which have to be executed. As one of BRAIn’s
key requirements is scalability (requirement 4), these experiments are usually executed
in parallel by a special Executor service, which is explained in more detail in the fol-
lowing section. By default, the framework starts running all of the experiments in
parallel, but one can limit the number of concurrent experiments with a configuration
parameter, which is explained later. The reason why executing all experiments simul-
taneously usually does not pose any problems, is that experiments are not doing much
work, except some administrative tasks. The actual work is done two levels down by

42 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

so called Variations, which are explained later.

As mentioned earlier, each experiment consists of so called Epochs (requirement
17). Unlike other parts of the execution model, epochs of the same experiment have
to be executed strictly in order, because each of them depends on the results of its
predecessor. As the first Epoch obviously does not have any predecessor it has to be
dealt with separately in code. As epochs of the same experiment cannot be run in
parallel, they are the constraining factor for overall execution time.

The deepest hierarchy level is occupied by so called Variations, which represent
minor variations of the Epoch parameters (requirement 18). As briefly mentioned ear-
lier, these are the instances, which do the actual work. This means that this is the
point where ARGoS, or any other simulator, is invoked. To avoid system overload,
the number of variations, that are allowed to run in parallel, is limited by a special
configuration parameter, which is discussed later. As variations are the only part of
the system doing actual work, it is also the only part of the system, which must not
run with an arbitrary amount of threads. To ensure that, again, a special Executor
service is used. All of the epochs running in parallel are submitting their variations
to the same Executor instance, which limits concurrency. This is also the reason why
parallelism is not a problem for experiments as mentioned earlier.

BRAIn’s execution model is especially designed for large scale experiment execution
(requirement 11) and therefore allows to run great amounts of experiments in parallel
without manual intervention.

4.2.3 Core Classes

Now that the execution model of BRAIn has been introduced, the more elementary
building blocks can be explained. Fig. 4.3 provides an overview of the classes, reflecting

Figure 4.2 – BRAIn’s execution model.

4.2. BRAIN’S ARCHITECTURE 43

Figure 4.3 – The central architecture of BRAIn.

the execution model just explained. One key aspect in the design of BRAIn is the
separation of the model and the logic, which is clearly visible in the UML diagram.
The top row of classes represents BRAIn’s core model. Theses classes hold all the
information as well as the structure. Just like it was explained in the previous section,
a Batch forms the base object for each BRAIn invocation. This object contains a list
of Experiments, which in turn contain a list of Epochs, which in turn contain a list of
Variations.

All of these classes are designed to have minimal state. Minimizing mutability
eliminates a huge share of typical software reliability problems as indicated in “Effective
Java” [Blo08]. According to this book, a class should be immutable, unless there is a
very good reason to make it mutable. As the Batch, Experiment, Epoch, Variation
object tree cannot be constructed entirely during initialization, at least some of the
classes have to be mutable. It should be noted, that the classes mentioned in the
diagram are in fact immutable, but this might not be the case for their sub-classes, due
to reasons just explained.

The second row in the diagram contains the so called controllers. As mentioned ear-
lier, BRAIn uses separation of model and logic. While the model classes have just been
explained, the controller classes, which contain the logic, are explained now. It’s ap-
parent that each model class has a corresponding controller class. A special property of
controllers is that they are completely stateless and therefore immutable, as demanded
by Effective Java [Blo08]. As “immutable objects are always thread-safe” [GPB+09],
only little effort is required, to fulfill BRAIn’s high concurrency demands (requirement
4). Being stateless, the controller classes should actually be seen more like services, an
idea suggested in [Pra09]. Each controller offers the service to execute one particular
Batch, Experiment, Epoch or Variation type and each controller utilizes the services
of other classes. All of these classes are designed to be extended to provide maximum
flexibility for the experiment execution (requirement 7).

BRAIn uses a couple of other services, most of which are living in the brain-common
module. The ResourceUtil service is used to read, write or copy files, to create
directories or to read Java resources. Random serves as the central source of random
numbers. It uses a pseudo random number generator internally, the seed of which can
be configured to produce deterministic results.

BRAIn’s execution model is reflected in its working directory structure, the details
of which are explained in Sec. 4.2.5. The service, responsible for managing this file

44 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

system structure, is called Path. This class provides methods, which return the correct
file system location for batches, experiments and so on. It also provides access to many
commonly used files.

In the previous section it was mentioned, that concurrency in BRAIn is actually
controlled by a special service. The corresponding interface is called Executor and
there are two implementations, the first of which is for single threaded execution. By
providing a separate class for this, the code stays clean and simple and it is possible to
decide at runtime to turn off multithreading altogether. The second implementation
obviously is multithreaded. It utilizes a thread pool to execute all submitted jobs. The
size of this pool determines the details of the timing behavior. Two independently
configurable instances of this service are created at runtime, one for experiments and
one for variations. The former is usually unconstrained in pool size, while the latter
should be constrained to the amount of available CPU cores. This architecture reflects
the details mentioned in the execution model earlier and leads to high parallelization
(requirement 13).

4.2.4 ARGoS Specific Features

As ARGoS is the only supported simulator by now, BRAIn has several components
targeting this software, all of which are located in the brain-argos module. The
following sections describe the most important features of this module.

Argos Configuration Substitution

BRAIn supports ARGoS configuration templates, which are simple text files, which
contain most of the experiment configuration, as usual. However, the templates can
also contain special predefined or custom variables, which are then substituted by their
specific value, just before ARGoS is executed.

The classes responsible for this process are ArgosConfigSubstitution and Argos-

Launcher. The former class, which is described in the following section, defines the
mapping from variable names to values and the latter class performs the string substi-
tution before launching ARGoS.

Variable names have to start with a $ sign to distinguish them from other strings.
The ArgosConfigSubstitution contains several predefined variables:

$randomSeed The pseudo random number generator seed, assigned to this ARGoS
instantiation.

$modulesBaseDir The directory containing all the ARGoS modules. All module paths
should be specified relative to this folder.

$epochDir The directory containing the current epoch (see Sec. 4.2.5).

$epochVariationDir The directory, which contains the current epoch variation (see
Sec. 4.2.5).

$numBots The number of robots to use in the experiment.

Launching ARGoS

The ArgosLauncher interface and its default implementation ArgosLauncherImpl al-
low to start ARGoS with a specific configuration. The class takes care of all the

4.2. BRAIN’S ARCHITECTURE 45

necessary steps, like creating the ARGoS configuration file from the template, execut-
ing the process in the right directory, redirecting the output to the logging system and
checking the exit code.

The ArgosLauncher interface contains only one method, which allows to start the
simulator. The method is blocking, which means that it does not return until ARGoS
terminates successfully or unsuccessfully. If the exit code is not 0, the method throws
an exception.

1 public interface ArgosLauncher {

2 void run(String workingDir , String argosConfigTemplatePath ,

ArgosConfigSubstitution argosConfigSubstitution);

3 }

The workingDir parameter specifies the directory, where ARGoS is executed. The
argosConfigTemplatePath argument specifies the ARGoS configuration template file
to use and the argosConfigSubstitution specifies the configuration substitution map
introduced in the previous section.

Controller BRAIn Communication

To implement complex experiments and to provide maximum flexibility, BRAIn sup-
ports two separate communication channels to pass information from BRAIn to ARGoS
and to the robot controllers and vice versa. To avoid inter process communication, the
channels are based on files, which are written by BRAIn and read by ARGoS and/or
by the controllers or the other way around. Google Protocol Buffers (see Sec. 4.2.6) are
used to specify the file format and to serialize and deserialize data. Fig 4.4 illustrates the
communication architecture, along with the components typically participating during
an experiment.

The first communication channels is the ARGoS experiment configuration file, which
is indicated in the upper part of Fig. 4.4. A template of this file has to be provided
for each experiment within the BRAIn batch configuration. The template can contain
predefined or custom variables, which are replaced according to the specific experiment,

Figure 4.4 – BRAIn to ARGoS / ARGoS to BRAIn communication.

46 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

epoch and variation. Therefore, this file can be used to pass arbitrary information to
ARGoS or to one of its modules, including robot controllers.

The second channel, which is indicated in the lower part of Fig. 4.4, is designated
for BRAIn-to-controller and controller-to-BRAIn communication. As indicated in the
figure, this channel is bidirectional and made up of two files per robot controller. Within
each experiment variation, BRAIn creates one of these files for each controller. After
the experiment is finished, each controller writes statistics information into its own
statistics file. The entire set of statistics file can then be read and processed by BRAIn.

As the entire communication is based on files, all of the experiments are automat-
ically documented, which leads to a high level of traceability (requirement 8). As all
of the information is stored on disk, experiments can be easily suspended and resumed
(requirement 14).

4.2.5 The Directory Structure

The execution model introduced in Sec. 4.2.2 is reflected in the directory structure,
which is created while BRAIn executes a batch of experiments. Fig. 4.5 shows an
example directory structure, which is explained in the following paragraphs.

The root directory (some-experiment in the example) for a batch has to be specified
in the BRAIn batch configuration using the working dir parameter. As the same
batch configuration often is executed multiple times, a sub directory (called the batch
directory) is created using a timestamp (2011-09-30 13-49-26). To be able to resume
batch execution after a planned or unplanned cancellation, the batch configuration is
copied into this directory. The configuration is always named config.rb, no matter
what the original file name is.

Within this directory, a sub-folder is created for each experiment. This folder is
named experiment-<id>, where id is the experiment identifier, which is an arbitrary
integer. The assigned ARGoS configuration template file is copied into each experiment
directory, which again is necessary to be able to resume batch execution.

During execution BRAIn creates two statistics files for each experiment. The con-
tent of these files is specific to the experiment of Chap. 5, but can be easily adapted, to
support other experiments. The file summary.txt is human readable and contains ex-
periment progress information, as well as base energy, relative survival time and fitness
trend information. The graph.data file contains character separated values, intended
to be either plotted or analyzed further. The file contains one line per epoch, containing
the average and maximum fitness, the average and maximum relative survival time and
the average and maximum collected energy.

Each epoch has its own sub directory in the associated experiment directory, which
contains all epoch specific files. As the epoch defines the configuration of the robot
controllers, this is the place for the controller configuration files, which form the second
communication channel. Just like it is the case for experiments, the epoch directories
contain human readable statistics in the summary.txt file. These files contain the
collected energy, relative survival time and calculated fitness for each robot in a ranked
list (i.e. the fittest controller is at the top) as well as average values. The success file
marks the epoch as successfully completed. It is an empty file, serving as a flag, that
is required for telling BRAIn which epochs have been successfully completed, when
resuming a batch (requirement 14).

The summary.txt and graph.data files are the result of the reporting feature of
BRAIn, as demanded in requirement 15.

4.2. BRAIN’S ARCHITECTURE 47

Figure 4.5 – The file system structure created during a typical BRAIn run.

Each epoch variation has its own sub directory in the corresponding epoch folder.
This directory contains a success file, as well, to tell BRAIn, which of the vari-
ations have been successfully completed. The complete ARGoS configuration file
is also present in this directory as it is specific for each epoch variation. While
ARGoS is running, its standard and error output is redirected to the argos.log file.
Each controller can place information collected during the experiment in its own file
(controller-stats-<id>). These files constitute the second communication channel.

4.2.6 Implementation

This section describes several key implementation aspects of BRAIn and the reasons,
which lead to the choices while developing.

Java SE 6

As correctness (requirement 1), reliability (requirement 2), portability (requirement 5)
and implementation speed were key requirements during the project, Java SE 6 and
the Java programming language were chosen [NK05]. After almost two decades of
development Java is now one of the most popular and most reliable software platforms.
Just-in-time compilation and adaptive optimization make the HotSpot Virtual Machine
(also known as Java Virtual Machine, JVM) one of the fastest on the market, thus
virtually closing the performance gap to native code. As BRAIn does not perform
any complex computations, performance is not an issue anyway. However, the Java

48 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

ecosystem was definitely the crucial factor in the selection of Java. Tools like Eclipse
and Maven and libraries like Guice and log4j significantly reduce the programming
burden and lead to improved code quality.

Maven

Maven (see [mav]) is one of the most popular build systems for Java based projects. It
uses convention over configuration to define exactly how projects have to be structured,
which significantly reduces the amount of work required to set up and maintain projects.
Maven’s dependency management capabilities enable simple third party library usage
by specifying its group and artifact ID in the project configuration. These capabilities
can also be used to divide a project into several sub projects or modules, thus improving
the extensibility of the software (requirement 3).

JRuby

The JVM supports many different languages, among them the Ruby scripting language.
The JRuby (see [jrub]) project is a re-implementation of the popular Ruby language,
which compiles scripts into JVM byte code, thus allowing to run Ruby scripts just like
Java programs. The advantage of this approach is that Ruby code can use Java code
and vice versa. This allows, for example, to define a class in Java and then instantiate
or even extend it in Ruby.

This powerful system was chosen as the foundation for BRAIn configuration files.
The choice of a scripting language for the configuration files has the advantage that
experiments can be specified in a flexible way (requirement 10). One can use loops
and conditions within the configuration or even query data from external sources, thus
improving the usability of the software (requirement 6).

Using a general purpose language like Ruby for configuration files is an example for
internal domain specific languages (DSL) as defined by Martin Fowler [Fow].

JUnit and Mockito

To guarantee correctness (requirement 1), BRAIn was developed with a high emphasis
on unit testing. To test the software in an efficient and fully automated way, the JUnit
framework (see [jun]) is used. This framework allows to test small units of a software
(i.e. classes) with test cases, which report any faulty behavior. JUnit is one of the
most famous frameworks in this area and was chosen because of its low implementation
overhead and good integration into Maven. The Mockito framework (see [moc]) allows
to replace (i.e. mock) the dependencies of a class for testing purposes, thus ensuring
that only the class under test and not its dependencies are tested. Mockito was chosen
because it is easy to use and extremely flexible. The framework uses an internal DSL
based on Java for configuration.

Guice

Google’s Guice (see [gui]) is a novel and light weight dependency injection library,
which allows to write massive projects in a modular way, thus improving extensibility
(requirement 3). Dependency injection eliminates the need for compile time dependen-
cies between classes, thus allowing effective unit testing by plugging in mock objects
for all of the dependencies of the class under test. Guice is very light weight and causes
almost no runtime overhead.

4.3. USING BRAIN TO RUN EXPERIMENTS 49

Argument Description

-c FILE Specifies a configuration file.
-r DIRECTORY Resumes a previously started batch.
-s Enforces single-threaded execution.

Table 4.1 – BRAIn command line options.

log4j and slf4j

The log4j (see [log]) and slf4j (see [slf]) libraries are a popular choice for flexible and
configurable logging in Java applications. The latter library provides a logging inter-
face, for which multiple different implementations can be plugged in, thus allowing
maximum flexibility. One of these implementations is log4j. The big advantage of the
latter is its configurability, as each class has its own logger, which is usually named
after the fully qualified name of the class. A configuration file can define multiple ap-
penders, which redirect the log output to a destination, like a file, standard out or a
service like an SMTP server. The exact format of each log message can be configured
and the minimum log level can be set for each logger independently. This allows to
get the maximum possible details, when necessary, without flooding log output with
unimportant messages, thus fulfilling requirement 16.

Google Protocol Buffers

The Google Protocol Buffers (see [pro]) provide a way to encode data structures in
a very lightweight format. The project was initially developed at Google to improve
internal data center communication, but it can just as well be used to write structured
data to a file and read it later on. One of the key advantages is that the data format
can be specified in a domain specific language, which is then compiled into the required
target languages. This allows to specify data formats once and then use them from
every programming language imaginable, which improves extensibility (requirement 3)
and correctness (requirement 1) and allows a flexible communication between BRAIn
and the simulator (requirement 12). The following listing shows an example protocol
definition:

1 message Person {

2 required int32 id = 1;

3 required string name = 2;

4 optional string email = 3;

5 }

Protocol Buffers are used for the BRAIn / controller communication channel im-
plementation, which is based on various files as mentioned earlier.

4.3 Using BRAIn to Run Experiments

This section describes how to use BRAIn to run experiments and how to extend BRAIn
to support custom experiments and simulators. To start using BRAIn, the system first
has to be prepared according to App. B.2. The BRAIn command line options are
summarized in Tab. 4.1.

50 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

4.3.1 Invoking BRAIn From the Command Line

After building BRAIn, using the included Maven configuration files, according to
App. B.2 several .jar files are created. The build process is configured to create a
special JAR file, which contains the BRAIn launcher, along with all of its required de-
pendencies (brain-launcher-1.0-SNAPSHOT-jar-with-dependencies.jar). There-
fore, starting BRAIn is as easy as executing the following command:

1 $ java -jar brain -launcher -1.0- SNAPSHOT -jar -with -dependencies.jar

Executing a Batch Configuration

However, executing the framework without any parameters simply prints an error mes-
sage to the screen. By adding the -c parameter, followed by the path to a batch
configuration file, BRAIn starts executing the specified experiments:

1 $ java -jar brain -launcher -1.0- SNAPSHOT -jar -with -dependencies.jar -c

batch.rb

Resuming a Previously Started Batch

The details of the ARGoS batch configuration files are explained in the next section.
If a batch has already been started, but was aborted, for example due to service in-
terruption, BRAIn can resume the experiments, reusing all the successfully completed
simulator invocations. This can be accomplished, by adding the -r flag, followed by
the path to the batch directory. The complete path is made up of the BRAIn working
directory, followed by the batch name and followed by a timestamp.

1 $ java -jar brain -launcher -1.0- SNAPSHOT -jar -with -dependencies.jar -r

some -batch /2011 -10 -31

Enforcing Single Threaded Execution

As mentioned earlier, one of BRAIn’s essential features is parallelism, which is imple-
mented by using multiple threads. As multi-threading can make debugging a lot more
complicated, BRAIn supports the command line switch -s, which disables this feature
and enforces single threaded execution. This flag overrides the settings of the batch
configuration.

1 $ java -jar brain -launcher -1.0- SNAPSHOT -jar -with -dependencies.jar -s -r

some -batch /2011 -10 -31

Debugging BRAIn

When developing new experiments, it is often necessary to use a debugger to step
through the code, use break points and to analyze internal data structures during
runtime. Fortunately, the JVM includes excellent debugging support, which can be
enabled at the command line using several flags:

1 $ java --Xdebug -Xrunjdwp:transport=dt_socket ,server=y,suspend=y,address

=8000 jar brain -launcher -1.0- SNAPSHOT -jar -with -dependencies.jar -s -

r some -batch /2011 -10 -31

4.3. USING BRAIN TO RUN EXPERIMENTS 51

Not all of the flags are required, but this combination should support most usecases.
The address=8000 option specifies the TCP port, which is used to listen for the debug-
ger. This port, therefore, has to be specified in the debugging application (eg. Eclipse).
The suspend=y flag ensures that the application is not executed until a debugger is
connected, which is useful for debugging initialization code. If it is preferred to start the
application immediately this flag can be omitted. While debugging, it is recommended
to enforce single threaded execution by appending the -s flag.

4.3.2 Using Predefined Functionality

This section describes how to run experiments by writing batch configuration files. The
first part gives an overview about the syntax and semantics of these configuration files,
before giving an overview of all the built in options. The second part shows the power
of the JRuby based configuration solution, using several examples.

Running a Predefined Experiment Class

As mentioned previously, the experiments to execute are specified in a batch configura-
tion file. The configuration is entirely based on JRuby, which means that the files are
actually Ruby scripts, executed during BRAIn initialization. To learn more about the
Ruby programming language consider reading [Fit07]. This section explains the syntax
as well as all options, usable in this file. The following listing shows an example batch
configuration with only one experiment:

1 working_dir "#{Dir.pwd}/ results"

2 module_base_dir "#{Dir.pwd}/argos -modules"

3 batch_name ’test -batch’

4

5 num_experiment_workers 0

6 num_variation_workers 10

7

8 require ’brain -foraging -evolution -1.0- SNAPSHOT.jar’

9 require ’brain -foraging -common -1.0- SNAPSHOT.jar’

10 require ’brain -argos -1.0- SNAPSHOT.jar’

11

12 add_module Java::de.lmu.ifi.pst.ascends.brain.argos.ArgosModule.new

13 add_module Java::de.lmu.ifi.pst.ascends.brain.experiments.foraging.

evolution.common.EvolutionModule.new

14

15 import Java::de.lmu.ifi.pst.ascends.brain.experiments.foraging.evolution

.ForagingEvolutionExperiment

16 import Java::de.lmu.ifi.pst.ascends.brain.experiments.foraging.evolution

.common.CrossoverType

17

18 add_experiment ForagingEvolutionExperiment.new(0, 17, "argos.xml", 300,

10, CrossoverType ::UNIFORM_8 , 0.05, 2, 2, 7, {}, [42])

The contents of this simple configuration file are explained line by line. In the
first line the working directory is set, using the working dir command. The working
directory is the place, where BRAIn creates a directory for each batch type, which in
turn contains the batch directory that is named using the current timestamp. This line
makes use of the built-in Ruby class Dir, which allows to access the current working
directory, using the pwd method.

The second line defines the path to a directory, where ARGoS looks for loadable
modules, using the module base dir command. Again, this line utilizes the Dir class

52 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

to access the current working directory.
Lines 5 and 6 configure the Executor services. Two of these services exist in

BRAIn. One of them is responsible for executing experiments. The maximum number
of simultaneously executed experiments can be set using the num experiment workers

parameter. Usually it is not necessary to limit the number of experiments executed in
parallel, because the number of simultaneous simulator invocations is limited by the
second Executor service. Specifying 0 workers means that the number of worker threads
is unlimited. The second executor is responsible for executing epoch variations and can
be configured using the num variation workers command. As epoch variations are
the lowest level in the execution model, this parameter directly controls the number of
simulator instances running in parallel. Therefore, it is required to set this parameter
to a sane value. Usually, the number of available CPU cores is a good choice. If one of
the parameters mentioned in this paragraph is not specified, BRAIn sets it to 0, which
leads to unlimited parallelism.

To make use of the classes defined within the BRAIn framework, the according Java
modules first have to be included using the require command as in lines 8-11. The
argument of this command has to be the full path to the .jar file to include. In this
case, however, it is assumed that all of the .jar files are in the same directory, which
reduces the path to just the file name.

Each of the modules, included using the require command, has to be initialized
once by calling add module. The argument of this command consists of three parts.
The first part is the Java:: prefix, which tells JRuby that a Java class is referenced,
instead of a Ruby class. The second part is the fully qualified Java class name of the
module to load. Last but not least, the module has to be instantiated by appending
the new method. These lines actually instantiate a Java class, pass the resulting object
to the add module method, which then invokes a method withing BRAIn, thus loading
the module.

In lines 15-16, two Java classes are imported using the import statement, which is
JRuby specific and does not appear in the Ruby programming language. The semantics
of this statement is similar to the identically named Java statement. The purpose is to
make the specified class available, without having to use the fully qualified class name
every time. Again, the Java:: prefix is used to indicate that this is not a Ruby, but a
Java class.

Finally, in line 18, an experiment is defined, by instantiating the experiment class
(ForagingEvolutionExperiment in this case). The result has to be passed to the
add experiment method, to add the experiment to the batch. The parameters of the
experiment depend on the specific experiment class constructor.

Advanced Experiment Configuration

As batch configuration files are essentially Ruby scripts, they can be used to define a
huge set of experiments with only a few lines of code. The following listing shows an
excerpt from a more advanced configuration file:

1 def calculate_num_connections(num_hidden)

2 return (10 + 1) * num_hidden + (num_hidden + 1) * 2;

3 end
4

5 experiment_id =0

6 (2..5).each do |num_hidden|

7 CrossoverType.values.each do |crossover_type|

8 [0.1, 0.01, 0.001]. each do |mutation_probability|

4.3. USING BRAIN TO RUN EXPERIMENTS 53

9 [-1, -2, -3].each do |power_exp|

10 standbyPower = 10** power_exp

11 drivingPower = 10**(power_exp -1)

12 genome_length = calculate_num_connections(num_hidden)

13 argosParams = {’$numHiddenNeurons ’ => num_hidden , ’$standbyPower

’ => standbyPower , ’$drivingPower ’ => drivingPower}

14 ex = ForagingEvolutionExperiment.new(experiment_id , 17, "argos.

xml", 300, 10, crossover_type , mutation_probability , 2, 2,

genome_length , argosParams , [1, 2, 3, 4])

15 print "#{ex}\n"

16 add_experiment ex

17 experiment_id +=1

18 end
19 end
20 end
21 end

The omitted lines are similar to lines 1-16 from the first example. This configu-
ration creates 108 experiments with various different parameters using Ruby control
statements. In line 5 a variable is defined, which is incremented in the inner most loop
(line 17) to create unique IDs for the experiments.

The outer most loop (line 6) iterates over different numbers of hidden neurons used
for the experiment. The 2..5 statement creates a range, containing the numbers 2,
3, 4, and 5. The each do |num hidden| iterates over all the numbers in the range,
assigning one of them to the num hidden variable during each iteration.

When conducting neuroevolution experiments, BRAIn has to know the exact length
of the genome, which is equal to the number of connections in the neural network. This
number can be calculated using Eq. 2.21. If the number of input and output neurons is
fixed, this parameter only depends on the number of hidden neurons. As this parameter
changes due to the loop in line 6, the script needs a way to calculate the correct number
of connections and therefore the correct genome length. Thanks to the usage of a real
programming language it is easy to define utility methods. In this example, the method
in lines 1-3 performs the task of calculating the number of connections and therefore the
genome length. The method is used in line 12 to calculate the experiment argument.

The second loop (line 7) iterates over all possible cross over types of the genetic
algorithm. The third loop (line 8) iterates over three possible mutation probabilities
for the genetic algorithm. The details of these parameters are explained in Sec. 5.2.2.

The inner most loop (line 9) controls the power consumption of the robots in the
environment. The loop iterates over three different exponents, which are then used
in lines 10 and 11 to compute different standby and driving power parameters for the
robots in the experiments. The details of these parameters are explained in Sec. 5.1.1.

Using Ruby control statements, the example script manages to create all possible
combinations of four different parameters and to instantiate an experiment for each of
them, with only few lines of code. For debugging purposes it is also possible to print
each experiment configuration using the Ruby print method. This statement (line 15)
calls the objects’ toString() method to produce human readable output.

All of the commands built into the BRAIn configuration system are listed in Tab. 4.3.
For non BRAIn specific statements consider reading Learning Ruby [Fit07], the Ruby
reference documentation [rub] and the JRuby documentation [jrua].

54 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

Statement Type Required Description

working dir String yes Sets the BRAIn working di-
rectory path. The batch di-
rectories are created within
this directory.

module base dir String yes The directory where ARGoS
will look for loadable mod-
ules.

batch name String yes The name of the batch de-
fined in this configuration
file.

num experiment workers int no The number of experiment
worker threads. If 0 (the de-
fault) the number of workers
is unlimited.

num variation workers int no The number of epoch vari-
ation worker threads. If 0
(the default) the number is
set to the number of avail-
able CPU cores.

add experiment Experiment no Adds an experiment to the
batch.

add module Module no Loads a module into BRAIn.
Table 4.3 – BRAIn batch configuration referencce.

4.3. USING BRAIN TO RUN EXPERIMENTS 55

4.3.3 Extending BRAIn

While the previous sections dealt with invoking BRAIn and using pre-defined exper-
iments, this section explains how to extend the framework and how to write custom
experiment classes.

Adding a New Project

As mentioned in Sec. 4.2.1, BRAIn is divided into several modules or sub-projects. The
reason for that is to keep the source code modular and understandable. Before being
able to define new experiment classes, it is recommended to create a new sub-project.
It is also possible, but not recommended to add the classes to an existing module.

The following instructions assume that the new experiment project is created within
the BRAIn source tree. This is not required, but simplifies things a little bit. To add
a new experiment project, go to the brain-experiments sub-folder within the BRAIn
source tree and execute the following command. The -DartifactId parameter specifies
the name of the project and can be replaced by an arbitrary string. However, it is
recommended to stick to the brain- prefix.

1 mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes -

DarchetypeArtifactId=maven -archetype -quickstart -DinteractiveMode=

false -Dversion ="1.0 - SNAPSHOT" -DgroupId=de.lmu.ifi.pst.ascends.

brain.experiments -DartifactId=brain -myexperiment -DpackageName=de.

lmu.ifi.pst.ascends.brain.experiments.myexperiment

After the command finishes, it will have created a new directory named like the specified
artifactId (brain-myexperiment in this example). To include the new project into
BRAIn’s build process it has to be added to the list of modules in the pom.xml file of
the brain-experiments directory. If Maven has been invoked correctly, this should
have happened automatically. You can verify this by opening the file and looking for
the <modules> section, which should look something like this:

1 <modules >

2 <module >brain -foraging -common </module >

3 <module >brain -foraging -basic </module >

4 <module >brain -foraging -evolution </module >

5 <module >brain -foraging -neat </module >

6 <module >brain -myexperiment </module >

7 </modules >

Verify that the new project was added to the list (line 6 in this case). Now also open
the brain-myexperiment/pom.xml file in the newly created project folder and look for
the <parent> section.

1 <parent >

2 <artifactId >brain -experiments </artifactId >

3 <groupId >de.lmu.ifi.pst.ascends.brain </groupId >

4 <version >1.0- SNAPSHOT </version >

5 </parent >

If it looks like in this example, the project was successfully added to BRAIn’s build
system. To build BRAIn and the new project, go up one level to BRAIn’s root source
folder and execute the following command:

1 $ mvn install

56 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

After Maven finishes building the project, it prints a summary to the screen. Verify
that the new project is part of that list. To use the new project in the Eclipse IDE
follow the instructions in App. B.2.

Maven creates an example class, called App and an example test, called AppTest in
the newly created project. Both classes can be safely removed.

Defining Custom Experiment Class

Now that a new project has been defined, the actual classes representing the exper-
iments can be written. As introduced in Sec. 4.2.3 and in Fig. 4.3, there are eight
core classes, which define the behavior of an experiment. It is possible to extend each
of these classes to introduce new behavior. However, in many cases it is sufficient to
extend only few classes and utilize existing ones for the missing parts.

The first pair of classes (Batch and BatchController) usually does not need to
be changed, as a batch of experiments is always executed in the same way. Using a
custom Batch or BatchController is unsupported right now, as the Launcher always
uses DefaultBatch and BatchControllerDefault.

The remaining three pairs of classes (Experiment, Epoch, EpochVariation and
their associated controllers) are usually extended to define new experiments. However,
it is also possible to extend one of their sub-classes or to extend only some of them and
reuse others.

Defining Modules

As mentioned in Sec. 4.2.6, BRAIn uses Google Guice for dependency injection. Guice
is configured, using modules, which are Java classes, extending the AbstractModule

class from the com.google.inject package. The modules are specified using a domain
specific language, built on top of Java. For further details about dependency injection
and Guice module definition refer to the Guice homepage3.

4.4 Further Improvements

BRAIn has reached a mature state and can be used for various types of experiments
in many environments. Nevertheless, there are many features, which didn’t make it
into the code base yet. The following is a list feature ideas, which might be worth
implementing in the future.

4.4.1 User Configuration File

It would be useful to add a user specific BRAIn configuration file, located in the user’s
home directory (~/.brain.rb). This would allow users to specify common parameters
like the number of execution threads locally on their machine, instead of changing the
experiment configurations all the time. The system should be implemented in a way
that configuration parameters can be overwritten in the experiment configuration, if
necessary.

3http://code.google.com/p/google-guice/, accessed 18. Dec. 2011

4.4. FURTHER IMPROVEMENTS 57

4.4.2 Remote Simulator Invocation

As many experiment batches consist of thousands of individual ARGoS calls, computing
resources become the limiting factor in many cases. To overcome this issue and to
facilitate cluster architectures, a remote execution service should be implemented. This
could be realized as an additional ArgosLauncher, which takes the remote host as a
parameter. The remote execution itself could be realized via SSH. Assuming that a
shared file system exists, this would solve all of the communication requirements. To
utilize the available computing resources as efficiently as possible, an additional service
would have to keep track of existing resources, their properties as well as the assigned
and the queued computing jobs.

4.4.3 Multiple Simulator Instances Within a Variation

Sometimes it would be interesting, whether an experiment would end differently if the
robots were unable to influence each other. Therefore, it would make sense to add
an additional flag to the epoch variation controllers, which would lead to each robot
getting simulated in its own ARGoS instance. This approach could be designed in an
even more flexible way if the user were able to decide, how many robots should be
assigned to the same simulator instance. For example, one could have an experiment
with 20 robots and two simulator instances, assigning 10 robots to each of them.

4.4.4 Reduced Number of Runtime Files

Last but not least, BRAIn produces a huge amount of files during a typical execution.
The number of files quickly becomes so large, that backing up the data with archiving
tools, like tar, takes a very long time. It would make sense to think about ways to
reduce the number of files created during execution to overcome these problems.

58 CHAPTER 4. BRAIN - BRAIN ROBOT ALGORITHM INSIGHT

Chapter 5

Using BRAIn for Foraging
Experiments

This section describes the experiments, conducted and analyzed using the BRAIn
framework and the ARGoS simulator. The first experiment uses a random-walk ap-
proach. The second experiment applies a genetic algorithm to optimize the random-
walk controller. The third experiment uses a neuroevolution based controller. The
fourth experiment uses a special purpose controller, which is designed especially for the
task and the last experiment applies the genetic algorithm to optimize this controller.
While the first two experiments are designed to provide a lower bound, the last two
experiments are designed to provide an upper bound for the achievable performance.
To conduct these experiments an environment and a task has to be designed, which
is explained in the first part of this chapter. The second part describes the five ex-
periments and presents their results. As the special purpose controller is especially
tuned for this task, it is expected to perform better than all of the other algorithms.
Therefore this controller is named Uber Controller.

5.1 The Environment

Designing a challenging, yet simple enough task to test different algorithms is anything
but easy. Inspired by the papers A Quantitative Test of Hamilton’s Rule for the Evolu-
tion of Altruism [WFK11] and Genetic Team Composition and Level of Selection in the
Evolution of Cooperation [WKF09] an environment was designed, that is easy enough
to survive but features properties that encourage the development of complex strate-
gies, to outperform competing robots. Like in most experiments used in the literature,
the environment consists of a rectangular arena, containing robots, a base and food
items. The environment is illustrated in Fig. 5.1.

5.1.1 The Foraging Task

As mentioned in Sec. 1.1, foraging is the task of searching for food or provisions [for].
This type of task is often used for artificial intelligence experiments, as it is vital for
all animals to collect food.

Each robot i in the simulation has an energy level E(i)(t), which is initialized with a
certain value E0 and cannot exceed Emax. Every robot has a standby energy consump-
tion Ps and a driving energy consumption Pd. The former applies all the time, even if

the robot is at rest. The latter is multiplied with the current power settings d
(i)
l (t) and

59

60 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

Figure 5.1 – The foraging environment with bots, resources and a base area.

d
(i)
r (t) of the left and right treel. Therefore, the overall energy consumption at time t

can be calculated according to Eq. 5.1. For each simulation step with the duration ∆t,
the robot’s energy is updated according to Eq. 5.2. The moment E(i)(t) reaches zero,
the robot dies and remains dead until the end of the experiment.

P (i)(t) = Ps +
(∣∣∣d(i)l (t)

∣∣∣+
∣∣∣d(i)r (t)

∣∣∣) · Pd (5.1)

∆E(i)(t) = −∆t · P (i)(t) (5.2)

A rectangular area along one of the walls of the arena forms the so called base (often
also referred to as nest). The base spans the entire width of the arena and is about
one robot diameter broad. To allow robots to perceive the location of the base, a green
LED is placed at the center of the wall, adjacent to the base area. Technically, each
robot has its own base, but all the bases are at the exact same location. Each robot
base has an energy level B(i)(t), which is initialized with zero. While the robot is in
its base area, energy is transferred from its internal energy storage to the base with
the energy drop off rate d > 0, according to Eq. 5.3 and 5.4. Therefore, the robot can
control the amount of energy, transferred to the base, by the amount of time it spends
in the designated area.

∆B(i)(t) = ∆t · d (5.3)

∆E(i)(t) = −∆t · d (5.4)

Several food items (also referred to as resources) are distributed randomly across
the arena. Each food item j has circular shape and, unlike in most other experiments, is
drawn as a gray spot on the white floor by the EnvironmentGenerator (see Sec. 5.1.3),
instead of being a three dimensional object in the simulation. Each resource has an

5.1. THE ENVIRONMENT 61

initial value of V
(j)
0 and a current value of V (j)(t). The brightness C(j)(t) of resource j

is defined by Eq. 5.5.

C(j)(t) = 1− V (j)(t)

V
(j)
0

(5.5)

A full resource (V (j)(t) = V
(j)
0) is rendered as a black spot (i.e. C(j)(t) = 0),

whereas an empty resource (V (j)(t) = 0) is rendered white (i.e. C(j)(t) = 1) and
therefore cannot be distinguished from the white floor. When a robot i is within the
area of a resource j, energy is transferred from the resource to the robot according to
Eq. 5.6, 5.7 and 5.8, where h is the global harvesting rate and H(j)(t) is the current
harvesting rate for resource j.

H(j)(t) = h · V
(j)(t− 1)

V
(j)
0

(5.6)

∆E(i)(t) = ∆t ·H(j)(t) (5.7)

∆V (j)(t) = −∆t ·H(j)(t) (5.8)

This means that the current harvesting rate H(j)(t) between resource and robot de-

creases with the amount of energy already harvested (V
(j)
0 −V (j)(t)) from that resource.

Therefore, the harvesting rate H(j)(t) declines exponentially, but never reaches zero.

This behavior is illustrated in Fig. 5.2 for a resource j with V
(j)
0 = 5000J , h = 10J

s ,
∆t = 0.1s.

In the center of each resource is a red LED, which allows the robots to locate the
items using their omnidirectional camera. However, the LEDs brightness is constant
and equal among all of the resources, thus circumventing remote resource value esti-
mation. This way robots are forced to drive to a resource, before they can measure its
value, using their ground brightness sensors.

As introduced in Sec. 2.1.2, the foraging task can be classified according to several
properties. The environment is partially observable, because the robots cannot perceive
the values of the resources unless standing on top of them. A robot also cannot per-
ceive another robot’s current energy or base energy level. It is strategic, because it is
deterministic, except for the behavior of other robots. The experiments are sequential,
because the robots can perceive the environment and act accordingly for a long period
of time. As the state of the environment changes, even if the robot decides not to act for
a certain amount of time, it can be classified as a dynamic environment. Each robot and
each resource has a two-dimensional position in space and robots additionally have an
orientation. Furthermore, each resource, base and robot has an energy level. Assuming
that an experiment consists of four resources and ten robots and assuming that 32-bit
floating point numbers are used to represent the state, the total state space adds up to
32 · (4 · (2 + 1) + 10 · (2 + 1 + 2)) = 1984 bits or 1.8 · 10597 possible states. Therefore, the
environment can be considered as continuous. As several agents compete for a limited
amount of resources, this is a competitive multiagent environment. The environment
properties are summarized in Tab. 5.1.

62 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800 900 1000
 0

 5

 10

 15

 20

V
(j
) (t

)

H
(j
) (t

)

t (s)

V
(j)

(t)
H

(j)
(t)

Figure 5.2 – Harvesting simulation for a resource with V
(j)
0 = 5000, a global harvesting

rate of h = 10 and simulation interval of ∆t = 0.1.

Property Foraging Task Classification

Observability Partially
Determinism Strategic
Episodic Sequential
Static Dynamic
Discrete Continuous
Agents Competitive Multiagent

Table 5.1 – Properties of the foraging task environment.

5.1. THE ENVIRONMENT 63

Figure 5.3 – Three environments generated with the EnvironmentGenerator.

5.1.2 The Fitness Function

To determine a robot’s performance, a fitness function has to be defined. As the goal
is to collect as much energy from the resources as possible, the amount of energy B(i)

transferred to the base is intuitively part of the fitness function. A higher survival
time should also be honored in the fitness function, as it usually leads to a higher
chance of reproduction in nature. Combining these two values leads to Eq. 5.9, where

0 < t
(i)
s ≤ 1 is the relative survival time of robot i. If a robot survives throughout

the entire simulation, the relative survival time is 1. The base energy is divided by 1
joule (J), to get a unit less fitness value. The variable tmax indicates the end of the
simulation.

F (i) =
B(i)(tmax)

1J
· t(i)s (5.9)

5.1.3 The EnvironmentGenerator

The EnvironmentGenerator is responsible for distributing, drawing and updating the
resources, as well as for placing the marker LEDs. To support the simulation of various
environments, the plugin can be configured in the ARGoS experiment configuration
file. The logic is implemented using the ARGoS loop functions concept (see Sec. 3.2.2).

Fig. 5.3 shows three example environments, generated with the plugin for different
configurations. The black circular shapes represent the resources. The resource radius
r(j) can be configured independently for each resource, but does not affect its value. All
of the resources are black, because they still contain the initial amount of energy, i.e.
they haven’t been harvested yet. The red circular object at the center of each resource
is the marker LED, which allows robot to locate the resources.

The following listing shows an example configuration of the plugin:

1 <loop_functions library="libenvironment_generator.so"

2 label="environment_generator" gap="0.5">

3 <resources >

4 <resource radius="0.5" value="5000" position="1,1.5" />

5 <resource radius="0.5" value="5000" position=" -1,-1"/>

6 <resource radius="0.5" value="5000" />

7 <resource radius="0.5" value="5000" />

8 </resources >

9 </loop_functions >

64 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

Parameter Required Description

gap yes Minimum distance in meters between two resources.
position no Position of a resource.
radius yes Radius in meters of a resource.
value yes Energy in joule initially stored in the resource.

Table 5.2 – The EnvironmentGenerator parameters.

All distances and coordinates are specified in meters and the coordinate origin is
in the center of the arena. The EnvironmentGenerator supports resources with and
without specified position. If the position attribute of a <resource> tag is missing,
the resource is placed at a random location. The gap parameter specifies the minimum
distance between two resources. This parameter is ignored when the position of a
resource is explicitly defined in the configuration. The radius parameter of a resource
determines its size. The value specifies the total amount of energy (in joule), stored
in the resource. Tab. 5.2 summarizes the configuration options.

5.1.4 Experiment Configuration

As mentioned in Sec. 5.1.1, the environment has several parameters, which are summa-
rized in Tab. 5.3. The level of difficulty of the foraging task fundamentally depends on
these parameters. During several manually executed experiments, the parameters have
been tuned to a reasonable level. The results are presented in the second column of
the table. For all the experiments, the EnvironmentGenerator is configured with four
resources, each of which having a radius of r = 0.5m and a value of 500J ·N , where N is
the number of robots. Therefore, the total energy in the arena is 4·500J ·N = 2000J ·N ,
which is 2000J per robot. The resources are distributed randomly. To keep the rate of
collisions between the robots low, the number of robots in the arena has been chosen
to be N = 10. The total simulation time has been selected to be tmax = 1000s, which
is a trade off between simulation execution duration and quality of results.

Parameter Default Description

N 10 Number of robots in the arena.
Eh 100J Initial robot energy level.
Emax 200J Maximum robot energy level.

Ps 0.2J
s Robot standby power consumption.

Pd 0.05J
s Robot driving power consumption.

d 10J
s Energy drop off rate while inside the base.

V0 5000J The initial energy for all resources.
r 0.5m The radius of all resources.

h 10J
s The global foraging rate.

tmax 1000s The total simulation duration.

Table 5.3 – The foraging task parameters and their selected default values.

5.2. THE EXPERIMENTS 65

5.2 The Experiments

The following sections describe all of the experiments conducted using BRAIn and
ARGoS for simulating the environment, introduced in the previous section. Each ex-
periment is designed to analyze the performance of a particular algorithm or a group
of algorithms. The first algorithm tests the performance achievable by robots that are
moving randomly in the arena. The intention behind this experiment is to get a lower
bound for the performance. To prove the concept behind the genetic algorithm, the
second experiment uses this concept to tune the parameters of the random walk con-
troller. The following experiments evaluate the performance of neuroevolution based
algorithms. The last two experiments use a special purpose controller, which is de-
signed specifically for the foraging task. The purpose of these experiments is to show
the maximum achievable performance.

Although any other wheel based robot with basic sensors would suffice, the marXbot
(see Sec. 3.1) is used for all experiments, because ARGoS (see Sec. 3.2) supports it out
of the box. Each robot has its own controller instance, which is written in C++. How-
ever, the modules cannot be transferred to real robots without modification, because
they contain the foraging logic, which has to access internal ARGoS features like the
simulation ticks, required to record the relative survival time. Besides, the filesystem
has to be accessed to communicate with BRAIn, as presented in Sec. 4.2.4. The con-
troller can query readings from all available sensors and can choose actuator settings
like wheel speeds.

5.2.1 Experiment 1 - Random Walk

The random walk experiment is supposed to give a lower bound for the achievable
fitness. The robots in this experiment keep driving straight until they encounter an
obstacle, which can either be another robot or one of the arena perimeter walls. In this
case, the robot starts turning away from the obstacle, until it can go straight again. The
overall movement is therefore random, depending on the initial position and orientation
and on the behavior of other robots. However, the robots occasionally hit the base or
one of the resource areas by accident, giving them a moderate chance of succeeding.

Controller Architecture

The controller is essentially based on the footbot obstacle avoidance controller

from the argos2-examples1 package. The robots start driving straight forward until they
encounter an obstacle, which can be either one of the perimeter walls or another robot.
Once an obstacle is recognized, using the proximity sensors, the controller calculates
the angle between its driving direction and the obstacle. The robot then starts to turn
by stopping one of the treels and driving the other treel forward with the specified speed
v. The turn direction (i.e. which of the treels is stopped) is determined by the sign
of the previously calculated collision angle. A negative angle means that the collision
happened on the right hand side of the robot, leading to a left turn and vice versa.

The algorithm has three parameters, which influence its performance. The first
parameter is the treel velocity v, which has to be in the range of]0; 20]. If the robot
drives faster, it can potentially collect more resources within a specified amount of time,
but it also has a higher power consumption and it increases the chance of getting stuck
due to an unavoidable collision.

1http://iridia.ulb.ac.be/argos/download.php, accessed 18. Dec. 2011

66 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

The second parameter α determines the angular range, for which objects reported
by the proximity sensor are taken into account. The third parameter δ specifies the
minimum proximity value, necessary for collisions to be recognized. For the random
walk experiment, the following default values are in use: α = 7.5◦, δ = 0.1 and v = 5.

The following listing shows the C++ implementation of this algorithm:

1 const CCI_FootBotProximitySensor :: TReadings& tProxReads =

GetProximitySensor ()->GetReadings ();

2

3 CVector2 cAccumulator;

4 for (size_t i = 0; i < tProxReads.size(); ++i) {

5 cAccumulator += CVector2(tProxReads[i].Value , tProxReads[i].Angle);

6 }

7 cAccumulator /= tProxReads.size();

8

9 CRadians cAngle = cAccumulator.Angle ();

10 i f (m_cGoStraightAngleRange.WithinMinBoundIncludedMaxBoundIncluded(

cAngle) && cAccumulator.Length () < m_fDelta) {

11 SetLinearVelocity(m_fWheelVelocity , m_fWheelVelocity);

12 } else {

13 i f (cAngle.GetValue () > 0.0f) {

14 SetLinearVelocity(m_fWheelVelocity , 0.0f);

15 } else {

16 SetLinearVelocity (0.0f, m_fWheelVelocity);

17 }

18 }

In line 1, the controller retrieves the readings from the robot’s 24 proximity sensors,
which are equally spaced around the robot’s chassis. The readings contain the angle of
the sensor and the measured value, which gets higher when an obstacle gets closer. Lines
3 - 7 aggregate all the readings into one collision vector. In line 10, the angle, as well
as the length of the vector, are checked. If the angle is within [−α;α] (represented by
m cGoStraightAngleRange) and the length does not exceed δ, the robot can continue
to go straight. Otherwise, the comparison in line 13 determines, whether to turn left
or right.

Experiment Results

To achieve a high degree of statistical significance, the experiment was conducted for
four different pseudo random number generator seeds. As the starting positions, as well
as the initial orientations of the robots and the positions of the resources are determined
using a peuso random number generator, this results in four entirely different starting
configurations. The aggregated results of all four runs are summarized in Tab. 5.4
where F is the fitness, B is the base energy and ts is the relative survival time.

Parameter Average Minimum Maximum

F 116.71 10.33 206.65
B 194.20J 52.50J 269.00J
ts 0.56 0.09 0.80

Table 5.4 – The results of the random walk foraging experiment.

5.2. THE EXPERIMENTS 67

5.2.2 Experiment 2 - Genetic Random Walk

As mentioned in Sec. 5.2.1, the random walk controller has three parameters (α, δ
and v) that influence its performance. To test the genetic algorithm implemented for
the BRAIn framework, the controller from the previous section is extended to accept
its parameters as the genome vector ~g. As is explained in the next section, each element
of ~g is in the range [0; 1]. The α parameter has to be in the range [0◦; 180◦], therefore
its value is calculated according to Eq. 5.10, where g0 refers to the first element of
the genome. The δ value has to be in the range [0; 1] and therefore can be directly
obtained from the genome (Eq. 5.11). The treel velocity parameter v has to be in the
range [0; 20] and therefore is calculated according to Eq. 5.12. As the genome only has
a length of 3 and 10 robots are in use, the mutation probability is selected to be 0.1,
which means that, on average, 3 · 10 · 0.1 = 3 mutations appear within each epoch.

α = 180◦ · g0 (5.10)

δ = g1 (5.11)

v = 20 · g2 (5.12)

The Genetic Algorithm

The genetic algorithm was designed using the concepts, introduced in Sec. 2.4. The
algorithm is based on epochs (or generations), each of which contains a population of
individuals. The number of individuals can be configured and is constant throughout
the experiment. Each individual has a genome, which is represented as a float[]

array, the length of which is constant for all the individuals and has to be explicitly set
for each experiment. Each array entry is in the range [0; 1] and the array needs to have
exactly the length expected by the controller. The genetic algorithm writes the genome
for each individual into a separate file using Google Protocol Buffers (see Sec. 4.2.6).

The first generation is created using random genomes for the individuals. After
each epoch, all the robot controllers write statistics information into a statistics file
(again using Google Protocol Buffers). The GA then reads all the files and ranks the
individuals according to their fitness. The C fittest individuals are then cloned for
the next generation (cloning range) and the c unfittest individuals are culled (culling
range). Pairs of individuals are selected from the remaining list using a triangular
random distribution. This distribution is constructed in a way that the chance of an
individual for being selected for reproduction is higher if it is fitter. As the process is
random, an individual might be selected multiple times or not at all. For each pair,
the genome is recombined into a new genome. Three different recombination operators
are supported:

SINGLE POINT A position within the genome is randomly determined. Every gene up
to the position is copied from the first individual and the rest from the second
individual.

UNIFORM For each genome index it is randomly determined whether it is copied from
the first or the second individual. Chances are equal for both individuals.

UNIFORM 8 The same as UNIFORM, except that chances that the superior individual
is selected are 80% and therefore chances that the inferior individual is selected
are 20%.

68 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

After producing the offspring genome, the mutation operator is applied. The
chances for a genome element of getting mutated can be defined in the experiment
configuration and are usually in the range of [0.0001; 0.1]. What values make sense
depends on the genome length. If the genome has 100 elements, a mutation probability
of 0.01 means that on average, one of the elements of each individual is mutated. How-
ever, if the genome only has a length of 10 the same probability means that, on average,
only one out of ten individuals is subject to mutation. If an element of a genome gets
selected by this algorithm, it is set to a random value in the range [0; 1].

During preliminary experiment runs it was determined that the UNIFORM recombi-
nation type yields the best results. Therefore, this parameter is used for all of the GA
experiments in this section.

Experiment Results

The results of the experiment can be seen in Fig. 5.4. A steep rise of the average
fitness and base energy is clearly visible in the first few epochs, which are enlarged
in Fig. 5.5. However, the survival time remains relatively constant over time. The
fluctuations visible in the charts can be explained by mutations, which in most cases
have a negative effect for the fitness of an individual. Tab. 5.5 shows the aggregated
results for the last 50 epochs of the simulation, where F ist the achieved fitness, B is
the collected base energy and ts is the relative survival time. The top performing indi-
vidual itop appeared in epoch 73, collected B(itop)(tmax) = 508.75J of energy, survived

for t
itop
s = 1.00 and achieved a fitness of F (itop) = 508.75. The genome of this individual

was [0.893395602703094, 0.0354135632514954, 0.32399970293045], which, according to
Eq. 5.10, 5.11 and 5.12, translates to the following configuration (rounded to 5 signif-
icant digits): α = 160.81◦, δ = 0.035414 and v = 6.4800. These values dramatically
deviate from the configuration used in experiment 1 (Sec. 5.2.1). Especially the high
α value seems surprising compared to the α = 7.5◦ used in the manual configuration
of experiment 1. The δ value also deviates with a factor of more than 10. The veloc-
ity v, on the other hand is only slightly higher than in experiment 1. Tab. 5.6 shows
an overview of the manually selected values of experiment 1 and the algorithmically
selected parameters for the winning robot of this experiment.

Parameter Average Minimum Maximum

F 101.16 19.70 206.89
B 182.32 65.17 280.24
ts 0.51 0.22 0.81

Table 5.5 – Aggregated results for the last 50 epochs of the random walk foraging exper-
iment.

Parameter Experiment 1 Experiment 2

α/1◦ 7.5 160.81
δ 0.5 0.035414
v 5.0 6.4800

Table 5.6 – Comparison of the manually selected parameters of experiment 1 and the
algorithmically selected parameters of experiment 2.

5.2. THE EXPERIMENTS 69

F
ig

u
re

5
.4

–
T

h
e

re
su

lt
s

fo
r

a
ll

ep
o
ch

s
o
f

ex
p

er
im

en
t

2
.

70 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

 0

 5
0

 1
0

0

 1
5

0

 2
0

0

 2
5

0

 3
0

0

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0 0 0

.5

 1 1
.5

 2 2
.5

 3

Fitness / Base Energy

Survival Time

E
p

o
c
h

A
v
g

. F
itn

e
s
s

A
v
g

. S
u

rv
iv

a
l T

im
e

A
v
g

. B
a

s
e

 E
n

e
rg

y

F
ig

u
re

5
.5

–
T

h
e

resu
lts

fo
r

th
e

fi
rst

5
0

ep
o
ch

s
o
f

ex
p

erim
en

t
2.

5.2. THE EXPERIMENTS 71

Figure 5.6 – The FannBot architecture.

5.2.3 Experiment 3 - Neuroevolution

In this experiment the controller is based on a three layer feedforward neural network,
the weights of which are evolved using a genetic algorithm. This algorithm is referred
to as neuroevolution, as introduced in Sec. 2.4.2. The controller is called FannBot to
emphasize the fact that it is based on the fann (fast artificial neural network) library2.

Controller Architecture

The neural network has 8 or 10 inputs (depending on the selected sensors) and two
outputs, which directly control the speed of the robot’s left and right treel. Between
input and output layer is one hidden layer, the size of which can be selected in the
ARGoS configuration file. Fig. 5.6 shows an overview of the neural network controller.

One of the most challenging tasks, when designing a neural network based controller,
is the selection of required sensors and input preprocessing algorithms. Often, the
number of available sensor readings is simply too large to be fed directly to the network.
According to Eq. 2.22 it is required to limit the size of the input layer to keep the search
space of the genetic algorithm small. The following paragraphs describe, which inputs
have been selected and how their readings are fed to the network.

As the robot has to avoid collisions with obstacles, the controller needs access
to the proximity sensors. The marXbot has 24 of these sensors which are arranged
around the robot’s chassis (see Sec. 3.1). As 24 input values is way too much for
a simple neural network, the six sensors facing front-left and the six sensors facing
front-right have been selected, thus reducing the number of inputs to 12. These two
groups of inputs are then aggregated into two values (one for the front-left and one
for the front-right sensor group). The values are −1 if no obstacles are within the
sensing distance and progressively increase when an obstacle comes closer until they
reach the maximum possible value of 1. The following listing shows how the calculation
is performed. The tProxReads variable contains all of the 24 proximity sensor readings
and the arrfAnnInput variable holds all of the neural network inputs.

2http://leenissen.dk/fann/wp/, accessed 18. Dec. 2011

72 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

1 Real arrfProximityInput [4] = { 0, 0, 0, 0 };

2 for (int i = 0; i < 24; i++) {

3 arrfProximityInput[i / 6] += tProxReads[i]. Value;

4 }

5 arrfAnnInput [0] = 2.0 * arrfProximityInput [0] / 6.0 - 1.0;

6 arrfAnnInput [1] = 2.0 * arrfProximityInput [3] / 6.0 - 1.0;

To allow the robot to perceive the value of a resource, it has to access the ground
sensors. The marXbot has four of these sensors, which measure the brightness of the
surface underneath the robot. As the sensors are arranged closely together, the readings
only differ on the edges of resources. Therefore, it is appropriate to aggregate all four
of the sensor readings into one, by calculating the average value and normalizing it to
[−1; 1]. This is accomplished using Eq. 5.13 where s0, . . . , s3 are the sensor readings
and x is the value, which is fed to the ANN. The four sensor readings are summed up
and then divided by 4 to get the average value. The result is multiplied by 2 and 1 is
subtracted to match the required input range of [−1; 1].

x =
2

4

3∑
i=0

si − 1 (5.13)

One of the most important values for the survival of the robot is its current energy
level as the robot dies if this value reaches zero. Feeding this indication to the neural
network is simple as it is a single scalar value. The energy level only has to be normalized
to fit into the allowed input range of [−1; 1]. This is accomplished using Eq. 5.14.

x = 2
E(i)(t)

Emax
− 1 (5.14)

The most challenging sensor is the omnidirectional camera. Many different possi-
bilities exist to feed camera images into a neural network. One possibility is to directly
connect one of the ANN inputs to each of the camera pixels. As this requires a network
of massive proportions, the resolution of the image is often reduced, before feeding it
to the neural network. Using this technique Dom A. Pomerleau successfully trained a
set of neural networks to drive a car, using a supervised learning approach [Pom89].
However, this approach has the disadvantage of requiring a huge amount of input neu-
rons, which in turn dramatically increases the search space of the genetic algorithm.
As the interface for the omnidirectional camera implemented in the ARGoS simulator
only supports high level access to the camera readings, this approach can be ruled out.
The camera interface already performs a lot of preprocessing, returning only recognized
color blobs along with their distance and their angle. This means that the distance
and angle of a resource or the base LED are directly returned. As each resource is
marked with red and the base is marked with a green LED, these objects are easy to
distinguish.

However, several possibilities remain to feed the obtained locations into the neural
network. One possibility is to connect one input neuron to the angular and one to the
distance value for each of the recognized objects. As the number of visible objects might
change due to obstruction, there has to be a distinctive input value configuration, which
allows the ANN to determine this condition. Therefore, an additional input neuron is
required per object, which is −1 if no valid readings are available and +1 if the readings
can be used (or the other way around). This increases the number of required inputs to
three per visible object. As all of the experiments are configured using four resources

5.2. THE EXPERIMENTS 73

Figure 5.7 – The omnidirectional camera color blob readings are divided into four different
sectors.

and one base marker LED the total number of required input neurons for visual data
processing would be 15.

As this number is high, compared to other neural networks, a different approach
was selected. In the neuroevolution foraging experiment of [WFK11] a very simplistic
approach is chosen to allow the robots to perceive their environment using infrared
distance sensors and a camera. The robots are equipped with four distance sensors,
one of which is placed higher than the remaining three sensors. As robots are taller than
the food items in the arena, the third sensor allows the ANN to distinguish between
these object classes. The pixels of the camera are divided into a left and a right
group leading to only two additional neural network inputs. These inputs allow the
robots to recognize the base area, which is marked by a white wall. Inspired by these
techniques, the color blob readings of marXbot’s omnidirectional camera are divided
into four sectors, as visualized in Fig. 5.7. The algorithm counts the number of color
blobs for each object class (base or resource) and for each sector. The final counts
are then divided by the total number of blobs encountered for each class, as defined
in Eq. 5.15. The total number of visible blobs for an object class is denoted by n, the
number of visible blobs for sector i are denoted as ni and the resulting value for sector
i is assigned to si.

si =
ni
n

(5.15)

The results for sectors 0 and 3 are then fed to the neural network, resulting in a
total of two inputs for the resources and two for the base. The results for sectors 1
and 2 are ignored, because they relate to objects behind the robot. The limitation to
objects in front of the robot takes into account that most biological individuals can
only observe the environment in front of them.

The controller has two optional input values, which are neither based on internal
state, nor on sensor readings. These values are obtained by accessing internal ARGoS
and EnvironmentGenerator state. The values are optional because they can only be
used within the simulator, but not in real robots. The first of these values is a simulated
base sensor. If the robot is within the base area, this sensor emits 1, otherwise it

74 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

y

x

Figure 5.8 – Visualization of the activation function used in the neuroevolution experi-
ment.

emits −1. The second sensor determines, whether the robot is currently on a resource.
The sensor also emits 1 if the condition is fulfilled and −1 otherwise. Whether or not
these two sensors are used can be selected using a switch in the ARGoS configuration
file. The experiments have been conducted for both cases to be able to analyze the
performance impact.

As mentioned above, the neural network of the controller is implemented using the
fann library, which offers a wide variety of settings. The FANN SIGMOID SYMMETRIC

activation function, which is defined as Eq. 5.16 is used for the experiments. The
steepness is selected to be s = 0.5, which is the default value of fann. Fig. 5.8 shows a
visualization of the activation function used in the experiments.

y = tanh(s · x) =
2

1 + exp(−2 · s · x)
− 1 (5.16)

The robots genome is mapped to the connection weights of the ANN in a layer-
by-layer and neuron-by-neuron approach. The first element of the genome is mapped
to the connection of the first input neuron (the bias neuron) to the first neuron of the
second layer (N0). The second element is mapped to the connection between the bias
neuron and N1. This scheme continues until all of the connections of the bias neuron
are covered. Next, the connections of x0, x1, . . . , x9 are mapped, until the first layer
of connections is complete. The second layer is mapped in a similar fashion. As an
input of +1 to a neuron should lead to an output close to +1, the weights need to be
in the range [−4; 4]. It is clearly visible in Fig. 5.8, that −4 results in an output close
to −1 and +4 results in an output close to +1. As all elements of the genome are in
the range [0; 1], it has to be expanded, to fit the range [−4; 4], which is accomplished
using Eq. 5.17.

wi = 8 · gi − 4 (5.17)

The total number of connections N can be calculated using Eq. 5.18, where i is the
number of inputs, h is the number of hidden and o is the number of output neurons.
Due to bias neurons in each of the layers except the output layer, +1 has to be added
to those layers.

N = (i+ 1) · h+ (h+ 1) · o (5.18)

5.2. THE EXPERIMENTS 75

Experiment Results

The experiment was executed for 300 epochs, once with artificial base and resource
sensors and once without, as well as for different number of hidden neurons (h). The
entire batch of experiments took about 8000 processor hours and about 100 wall clock
hours to complete on the SuperMUC. Fig. 5.9 and 5.10 show the average fitness results
for each epoch and for each configuration of the experiments. To give a better overview
about the overall performance of each configuration, Tab. 5.7 contains the aggregated
values for the last 50 generations of each configuration. The first column specifies,
whether the artificial base and resource sensors are in use. The second column contains
the number of hidden neurons h. The third column contains the average achieved
fitness F̄ . The fourth column contains the average collected base energy B̄ and the last
column contains the average relative survival time t̄s.

The top performing robot, without artificial base and resource sensors, appeared in
epoch 253, used h = 7 hidden neurons, achieved a fitness of 485.37, collected 537.00J
of energy and survived for 90% of the simulation time (ts = 0.90). The top performing
robot with artificial base and resource sensors appeared in epoch 250, used h = 10
hidden neurons, achieved a fitness of 236.27, collected 266.75J of energy and survived
for 89% of the simulation time (ts = 0.89). The genomes of these top performing
individuals can be found in App. D.

76 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

F
ig

u
re

5
.9

–
A

v
era

g
e

fi
tn

ess
resu

lts
fo

r
a
ll

ep
o
ch

s
o
f

ex
p

erim
en

t
3

w
ith

o
u

t
artifi

cial
resou

rce
an

d
b

ase
sen

sor.

5.2. THE EXPERIMENTS 77

F
ig

u
re

5
.1

0
–

A
v
er

ag
e

fi
tn

es
s

re
su

lt
s

fo
r

a
ll

ep
o
ch

s
o
f

ex
p

er
im

en
t

3
w

it
h

a
rt

ifi
ci

a
l

re
so

u
rc

e
a
n

d
b

a
se

se
n

so
r.

78 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

Additional sensors h F̄ B̄ t̄s
no 2 46.15 88.78J 0.55
no 3 40.24 53.77J 0.69
no 4 38.67 131.08J 0.29
no 5 30.94 89.20J 0.34
no 6 29.94 133.67J 0.22
no 7 193.40 322.15J 0.59
no 8 26.23 74.68J 0.36
no 9 133.82 216.77J 0.60
no 10 23.41 96.57J 0.25
no 11 132.69 245.45J 0.53
no 12 109.64 198.87J 0.54
no 13 30.17 99.43J 0.31
no 14 44.99 105.75J 0.41
no 15 15.76 70.12J 0.21

yes 2 29.97 113.97J 0.27
yes 3 26.72 79.14J 0.35
yes 4 22.29 120.94J 0.19
yes 5 75.43 150.19J 0.51
yes 6 38.25 111.20J 0.35
yes 7 25.64 109.26J 0.24
yes 8 42.95 131.88J 0.32
yes 9 54.43 178.46J 0.29
yes 10 81.09 158.32J 0.50
yes 11 28.48 114.23J 0.25
yes 12 33.42 112.25J 0.31
yes 13 25.66 59.23J 0.44
yes 14 46.50 109.89J 0.43
yes 15 20.07 108.59J 0.19

Table 5.7 – The aggregated results for the last 50 epochs of experiment 3.

5.2.4 Experiment 4 - The UberController

The Uber Controller experiment is designed to show an upper bound for the achievable
performance in the foraging experiment. It uses a special purpose controller based on
a state machine, which is designed specifically for the experiment environment and
the foraging task. The controller is named Uber Controller, because it is supposed to
outperform all of the other controllers.

Controller Architecture

The controller uses a simple algorithm to collect as much energy as possible and to
survive until the end of the simulation. After the simulation is initialized, the robot
starts exploring its environment (ExploringPhase). First, all of the resources are
detected. By using the omnidirectional camera and the robot’s current location, it
calculates the locations of all the resources and stores them in a special data structure.
Next, the robot starts driving to the closest resource (DrivingToResource). Once
the resource is reached, it measures its value, using its ground sensors. This process

5.2. THE EXPERIMENTS 79

is repeated, until all of the resources have been visited. All of the results are stored
into the data structure mentioned earlier. Once the exploring phase is complete, the
robot switches to the ForagingPhase. First it determines, which of the resources is
the most economical one. This is accomplished by estimating the energy, required for
driving from the resource to the base and back and by taking into account the current
harvesting rate of that resource. Once the resource has been selected, the robot starts
harvesting. As soon as a different resource becomes more economical, the robot switches
to that resource and starts harvesting it. Every time the robot drives over a resource,
it updates its data structure, to have the most up-to-date values available for future
decisions. When the robot reaches the base, it stops and waits until a certain amount
of energy has been dropped of. The controller state model is presented in Fig. 5.11.

Figure 5.11 – The state machine of the UberController.

It would be possible for the robot to determine its current location by using the
input from the omnidirectional camera. However, as this process is highly complex and
beyond the scope of this thesis, the robot determines its current location directly from
the internal ARGoS state.

To determine the adjusted relative value R(j) of a resource j, the controller takes
into account the distance b(j) between resource and base, the arena length la, the driving
velocity v, the journey time tj required for driving from one end of the arena to the
other and the distance cost factor c. The entire calculation used for this estimation is
presented in Eq. 5.19.

R(j) =
V (j)(t)

V
(j)
0

− c · b
(j)

la
· v · tj (5.19)

As the robot needs to avoid collisions, it has a built in collision avoidance algorithm,
based on the algorithm, used in the random walk controller. This algorithm has a higher
priority than the state machine and takes over control whenever it determines that a
collision is imminent. As soon as the collision has been successfully prevented, the
algorithm turns back control to the state machine.

The controller has several parameters, which have to be adjusted carefully to achieve
optimal performance. Tab. 5.9 gives an overview about all of the parameters and their
selected values. The default values have been determined using knowledge about the
experiment environment.

Experiment Results

The experiment was conducted four times, using different random seeds and using the
default values of Tab. 5.9. The results are presented in Tab. 5.10. The first line contains

80 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

Parameter Default Description

Emin 0.75 Emax The controller stops unloading energy in the base when
this minimum energy level is reached.

c 0.1 The distance cost factor.

la 4m The arena length.

Vmin 0.1 The minimum relative resource value. The robot stops
using a resource if its relative value V (j) falls below Vmin.

α 7.5◦ The go straight angle used for collision avoidance.

δ 0.1 The maximum collision vector length.

v 10 The relative wheel velocity.

Table 5.9 – The uber controller parameters and their default values.

the average, minimum and maximum fitness (F). The second line contains the average,
minimum and maximum collected energy (B in joules) and the last line contains the
average, minimum and maximum relative survival time (ts).

Parameter Average Minimum Maximum

F 531.28 190.19 826.75
B/J 656.65 55.74 826.75
ts 0.78 0.44 1.00

Table 5.10 – The results of the uber controller experiment.

5.2.5 Experiment 5 - Genetically Optimizing the Uber Controller

As mentioned in the previous section, the UberController has several parameters,
which determine its performance. Although the values have been selected carefully, it
is interesting to see whether a genetic algorithm would end up with different values.

Experiment Details

Just like in Sec. 5.2.2, the parameters of the UberController are now specified using
a genome. The genetic algorithm used to optimize the parameters is equal to the
algorithm used in previous experiments. As the al parameter is fixed, the genome has
a total length of 6. The mutation probability is selected to be 0.05, which leads to an
average of 10 · 6 · 0.05 = 3 mutations per epoch, which is equal to the probability, used
in experiments 2 and 3.

Experiment Results

The results of this experiment are presented in Fig. 5.12. A steep rise of the average, as
well as the maximum of the fitness (F) and the collected energy (B) can be identified
for the first few epochs. The relative survival time (ts) does not show this behavior, it
even drops within the first few epochs and only slowly increases later on. The maximum
survival time converges towards 100%, with several deviations in between. These de-
viations, as well as the deviations for fitness and base energy, are caused by mutations

5.2. THE EXPERIMENTS 81

Parameter Experiment 4 Experiment 5

Emin 0.75 · Emax 0.420 · Emax

c 0.1 0.00194
Vmin 0.1 0.00229
α 7.5◦ 2.78◦

δ 0.1 0.0270
v 10 15.8

Table 5.11 – The parameters of the top performing controller of experiment 5 compared
to the manually selected parameters of experiment 4.

which, in most cases, have a negative effect on performance. On average, the robots
achieved a fitness (F) of 719.05, a base energy (B) of 830.46J and a relative survival
time (ts) of 84% within the last 50 epochs of the experiment. The top performing
genome achieved a fitness of 1577.25, a base energy of 1577.25J and a relative survival
time of 100%. This genome appeared in epoch 114. This top performin genome is
presented in the following listing:

1 [0.419540345668793 , 0.387048065662384 , 0.00229340791702271 ,

0.884248495101929 , 0.0269693732261658 , 0.79144412279129 ,

0.330124855041504]

These values translate to the controller parameters presented in Tab. 5.11, along with
the values of experiment 4.

82 CHAPTER 5. USING BRAIN FOR FORAGING EXPERIMENTS

F
ig

u
re

5
.1

2
–

T
h

e
resu

lts
o
f

th
e

g
en

etic
u

b
er

co
n
tro

ller
ex

p
erim

en
t.

Chapter 6

Interpretation of Results and
Conclusion

The objectives of this chapter are to compare the results of the previous chapter with
each other and to discuss the results. After that, a conclusion is drawn and recom-
mendations are presented. The last part of this chapter gives an outlook for potential
future work.

6.1 Algorithm Performance Comparison

The results of the individual experiments of the previous chapter are now compared
with each other. As the fitness F characterizes the overall performance of a controller,
only this value is taken into account. Comparing the collected energy B and the relative
survival time ts would be interesting, but would not add any value to the results. To
create a meaningful comparison, the average (F̄) as well as the maximum (F (itop)) fitness
are taken into account. For non-genetic-algorithm experiments, these values are simply
the average and the maximum of all measured fitness values. Genetic algorithms lead
to better performance over time. Therefore, the last 50 epochs of experiments, using
this technology, are taken into account. To derive meaningful results, the GAs should
have reached a performance plateau before epoch 250, which can be confirmed using
Fig. 5.4, 5.9, 5.10 and 5.12. The average values of experiments using GAs contain all
the performance values of all individuals of the epochs 250 through 299. The maximum
fitness of these experiments is obtained using the top performing individual within all
of the epochs. As experiment 3 encompasses many different configurations, the results
are divided into configurations with and without artificial base and resource sensor.
The top performing configurations (i.e. number of hidden neurons h) are explicitly
mentioned. The results are presented in Tab. 6.1.

As mentioned in Sec. 5.2, the intention behind experiments 1 and 2 is to get a
lower bound for the achievable fitness. The intention of experiments 4 and 5, on the
other hand, is to get an upper bound for the achievable fitness. The values presented
in Tab. 6.1 show, that these goals are fulfilled. On average, the UberController per-
formed 455% better than the controller of experiment 1. The result is similar for the ge-
netically enhanced version of these controllers, where, on average, the UberController

performed 711% better. If comparing the maximum fitness, which was achieved by one
of the individuals, during the evolution, the UberController performed 562% better
than the RandomWalk controller.

83

84 CHAPTER 6. INTERPRETATION OF RESULTS AND CONCLUSION

Ex. Algorithm F̄ F(itop)

1 Random Walk 116.71 206.65
2 Random Walk GA 101.16 280.77

3 Neuroevolution w/o add. sensors 64.00 485.37
3 h = 7 193.40 485.37
3 Neuroevolution w/ add. sensors 39.35 236.27
3 h = 10 81.09 236.27

4 UberController 531.28 826.75
5 UberController GA 719.05 1577.25

Table 6.1 – Comparison of the algorithm performance of all experiments.

Experiments 2 and 5 successfully proof that the genetic algorithm works. The max-
imum performance of the genetically optimized version of the RandomWalk controller
is 136% of the maximum performance of its original version. However, the average
performance is only 87% of its unoptimized pendant. This unexpected result shows
one of the drawbacks of genetic algorithms. The results cannot always be predicted
and are sometimes surprising. In this special case, the high mutation probabilities of
0.1 (experiment 2) and 0.05 (experiment 5), which lead to 3 mutations per epoch, is
most likely responsible for the low average results. As mutations have, almost always,
negative performance impact on the robots, they lower the average performance. The
genetically improved UberController, on average, achieved 135% of the performance
of its unoptimized pendant. The maximum performance is even 191% of the maximum
performance of the unoptimized version.

The FannBot, which is evaluated in experiment 3, on average, achieved a rather
poor performance. The average performance of the FannBot is even lower than the
average performance of the RandomWalk controller. The version without artificial base
and resource sensors, on average, achieved only 55% of the performance of the controller
in experiment 1. The FannBot with artificial base and resource sensors achieved even
lower performance, reaching only 34% of the reference performance of experiment 1.
However, experiment 3 evaluated many different configurations of the same controller.
As presented in Sec. 5.2.3, the top performing configuration used no artificial base
and resource sensors and used h = 7 hidden neurons. This configuration on average
achieved a fitness of 193.40, which is 166% of the reference performance. The top
performing genome with this configuration achieved a fitness of 485.37 which is 235% of
the reference performance. Therefore, the neuroevolution controller can do significantly
better as the RandomWalk controller, if the conditions are optimal. Surprisingly, the
controllers with artificial base and resource sensors performed significantly worse, than
the controller without these sensors.

6.2 Conclusion

It takes a lot of computing time to get acceptable results from genetic algorithms.
As mentioned in Sec. 5.2.3, experiment 3 took about 8000 processor hours and about
100 wall clock hours to complete. As this kind of computational power often is not
available, this is definitely something to keep in mind when choosing an algorithm.
Overall it is hard and costly to use artificial neural networks, as many configurations
need to be evaluated until an acceptable solution is found. Above all, it is hard to
understand why certain configurations perform better than others. As feed-forward

6.3. BRAIN REVIEW 85

artificial neural networks do not have any internal state there computational capabilities
are very limited, which might render them inferior to competing approaches.

However, neuroevolution is a completely generic approach, that can be applied with-
out any detailed knowledge about the environment. Additionally, this class of algorithm
can adapt to any (unforeseen) changes in the environment. When designing special
purpose controllers, detailed information about the problem and the environment is
required to achieve acceptable results. Furthermore, it is hard or even impossible to
design these controllers in a way that makes them adaptable to any unforeseen changes
within the environment.

Thus, neuroevolution is the algorithm of choice if knowledge about a problem is
very limited or if the problem might change in an unpredictable way in the future. If,
however, the environment and the problem are well understood, writing an algorithm
from scratch is the best choice. As experiment 5 proves it is always worth a try to opti-
mize the parameters of a special purpose controller using a genetic algorithm. Tab. 6.3
shows an overview of advantages and disadvantages of the two approaches.

Approach Advantages Disadvantages

Neuroevolution

• No detailed knowledge
about the problem neces-
sary.

• Agents adapt to environ-
mental changes.

• Unpredictable and abstruse
results.

• Computation intensive sim-
ulations.

Special purpose
• Usually higher performance.

• Results are predictable and
comprehensible.

• Detailed problem knowledge
required.

• Usually unable to adapt to
changes in the environment.

Table 6.3 – Advantages and disadvantages of neuroevolution and special purpose con-
trollers.

6.3 BRAIn Review

Thousands of experiment epochs have been executed in the course of this thesis. The
BRAIn framework allowed to accomplish this in a fully automatic manner for local
test runs, as well as for large scale simulations on the SuperMUC petascale system.
By utilizing BRAIn’s modular architecture, it was possible to implement all of the
experiments in a simple and reusable way. The flexible configuration system allowed to
specify many different experiments within the same batch configuration and to execute
all of them in parallel, utilizing all of the available cores on SuperMUC. The data
collection and reporting features built into BRAIn helped to analyze and document
tens of thousands of collected measurements. A task, that would have been tedious
without a proper framework.

86 CHAPTER 6. INTERPRETATION OF RESULTS AND CONCLUSION

6.4 Outlook

The algorithms presented in this thesis are only a small subset of the available algo-
rithms. One particularly interesting algorithm, which is not covered in this thesis is
NeuroEvolution of Augmenting Topologies (NEAT), which was developed by Stanley
et al. at the University of Texas [SM02]. Unlike most neuroevolution algorithms, in-
cluding the one used in this thesis, NEAT optimizes both the connection weights and
the structure of an artificial neural network. The algorithm starts with only one layer
of neurons, that are connected to all inputs, and then gradually adds new neurons and
connections. This approach has the advantage, that no topology has to be designed
in advance. Additionally, NEAT allows recurrent connections, eliminating one of the
biggest restrictions of the algorithm used in this thesis. Therefore, analyzing NEAT,
and other neuroevolution algorithms, using the methodology of this thesis is a potential
topic of future research in this area.

The previous sections show that it is still very challenging to use artificial neural
networks in a satisfying way. To avoid these drawbacks, future research should system-
atically analyze the characteristics of the neural networks used in this thesis. The goal
is to provide easy guidelines for designing neural networks or to conceive an algorithm,
which selects the best topology in a more efficient way.

Last but not least, future research in this area could encompass extending the
BRAIn framework by the functionality presented in Sec. 4.4 or by other features, re-
quired to support further experiments or simulators.

Appendix A

ARGoS Configuration Reference

This chapter is intended to give a brief and by no means complete overview of ARGoS
configuration files. The knowledge was obtained by experimentation and by reading
the ARGoS source code, as no complete manual is available yet. The following listing
shows a typical configuration file.

1 <?xml version="1.0" ?>

2 <argos -configuration >

3 <framework >

4 <system threads="2" />

5 <experiment length="100000" ticks_per_second="10" random_seed="42"

/>

6 <profiling file="some/path" format="human_readable" truncate_file="

true" />

7 </framework >

8

9 <controllers >

10 <my_controller id="foac" library="path/to/my-controller.so">

11 <actuators >

12 <footbot_wheels implementation="default" />

13 <footbot_leds implementation="default" />

14 <footbot_beacon implementation="default" />

15 </actuators >

16 <sensors >

17 <footbot_proximity implementation="rot_z_only" show_rays="true"

calibrate="true" />

18 <footbot_motor_ground implementation="rot_z_only" calibrate="

true" />

19 <footbot_omnidirectional_camera implementation="rot_z_only"

aperture="89" show_rays="true" />

20 </sensors >

21 <parameters param1="23" param2="42"/>

22 </my_controller >

23 </controllers >

24

25 <loop_functions library="path/to/my-loop -function.so" label="my-loop -

function" param1="foo" param2="bar" />

26

27 <arena size="4, 4, 1">

28 <floor id="floor" source="loop_functions" pixels_per_meter="100" />

29

30 <light id="light0" position="0,0,0" orientation="0,0,0" color="

yellow" intensity="1.0" />

31

32 <box id="wall_north" position="0,2,0.25" orientation="0,0,0" size="

87

88 APPENDIX A. ARGOS CONFIGURATION REFERENCE

4,0.1,0.5" movable="false" />

33 <box id="wall_south" position="0,-2,0.25" orientation="0,0,0" size="

4,0.1,0.5" movable="false" />

34 <box id="wall_east" position="2,0,0.25" orientation="0,0,0" size="

0.1 ,4,0.5" movable="false" />

35 <box id="wall_west" position=" -2,0,0.25" orientation="0,0,0" size="

0.1 ,4,0.5" movable="false" />

36

37 <distribute >

38 <position method="uniform" min=" -4,-4,0" max="4,4,0" />

39 <orientation method="gaussian" mean="0,0,0" std_dev="360,0,0" />

40 <entity quantity="10" max_trials="100">

41 <foot -bot id="fb" controller="foac" />

42 </entity >

43 </distribute >

44 </arena >

45

46 <physics_engines >

47 <dynamics2d id="dyn2d" />

48 </physics_engines >

49

50 <arena_physics >

51 <engine id="dyn2d">

52 <entity id="fb_ [[: digit :]]*" />

53 <entity id="wall_north" />

54 <entity id="wall_south" />

55 <entity id="wall_east" />

56 <entity id="wall_west" />

57 </engine >

58 </arena_physics >

59

60 <visualization >

61 <qtopengl_render splash="false">

62 <camera >

63 <placement idx="0" position="0,0,5" look_at="0,0,0"

lens_focal_length="20" />

64 <placement idx="1" position=" -3,0,2" look_at="0,0,0"

lens_focal_length="20" />

65 </camera >

66 <user_functions library="path/to/my-qt-user -function.so" />

67 </qtopengl_render >

68 </visualization >

69 </argos -configuration >

The entire file is XML based, but no schema is defined. This provides the possibility
to add tags and parameters at any location as long as the XML syntax is not violated.
This concept increases flexibility, as custom configuration nodes can be added for user
defined modules, without having to worry about schema definitions.

The entire file is enclosed by <argos-configuration> tags, which contain all of the
system and module specific configuration tags. The following table describes most of
the possible configuration options in a systematic manner. However, some tags are too
complex to describe in this tabular format and therefore are described later on in more
detail. The first column of the table contains the name of the configuration elements,
which can be tags and parameters. The element hierarchy is reflected by indentation.
The type of an element is specified in the second column. The type tag means, that
the element specified in this line is an XML tag. All the other types mean that the
element is a parameter in side of a tag. The remaining types should be familiar from
C++.

89

Parameter Type Required Default Description

framework tag yes - Contains global configuration
options.

system tag no - Only used for multithreading
configuration.

threads int no 0 The number of slave threads.

experiment tag yes - Various experiment parame-
ters.

length int no 0 The experiment length in sec-
onds. If 0, the experiment
runs forever.

ticks per second int yes - Number of simulation steps
per simulated second.

random seed int yes - Used to initialize ARGoS’
pseudo random number gener-
ator. If unspecified, the seed
is deduced from the current
time.

profiling tag no - Can be used to collect runtime
performance statistics.

file string yes - The file to write the perfor-
mance data to.

format enum yes - table or human readable.
truncate file bool no true True means that the specified

file is cleared, before writing
any new data to it.

controllers tag yes - Contains the robot controller
configurations.

loop functions tag yes - Specifies the loop functions to
use during the simulation.

library string yes - The shared object file, con-
taining the loop functions.

label string yes - The name of the loop func-
tion, as defined in the shared
object file.

arena tag yes - Defines the arena for the sim-
ulation.

size int[3] yes - The width, length and height
of the arena.

hashing enum no tr1 Configures space hashing.
Possible values are off, tr1

and native.
distribute tag no - Can be used to place objects

ramdomly in the arena.
position tag yes - Specifies where and how to

distribute entities.
orientation tag yes - Specifies how distributed ob-

jects are oriented.
entity tag yes - Specifies the entities to place.

90 APPENDIX A. ARGOS CONFIGURATION REFERENCE

quantity int yes - Number of entities to created.
max trials int yes - Number of attempts to place

the items.
base num int no 0 The id of the first entity.

physics engines tag no - Contains a list of physics en-
gines.

arena physics tag yes - Specifies which entity belongs
to which physics engine.

visualization tag yes - Contains a list of visiualiza-
tions.

Specifying Controllers

The <controllers> tag can contain multiple child tags, each specifying a controller.
Beware that the name of the child tag has to match the controller name, specified
in the controller sourcecode. A controller tag contains exactly three sub tags. The
<actuators> tag has to list all actuators, which are used by the controller. The
<sensors> tag contains all the sensors, required for the controller to work. Last but
not least, the <parameters> tag can contain arbitrary configuration options, required
by the controller. It is possible to specify properties as well as child tags.

For a list of supported sensors and actuators refer to the simulator/sensors and
simulator/actuators folders within the ARGoS source code. The *.cpp files of the
sensor and actuator implementations, each contain a brief documentation explaining
usage and configuration options at their bottoms.

Adding Entities

Arbitrary static and dynamic entities can be added in the <arena> tag. To add an
entity, simply specify its specific tag, along with its required and optional parameters,
where applicable. In the example configuration file of the appendix, for instance, a
floor, a light and multiple box entities are added to the arena. Each entity needs to
have a unique ID, which is an arbitrary string.

For a list of supported entities and their parameters, refer to the simulator/-

space/entities sub-folder of the ARGoS source archive. Each entity *.cpp file con-
tains a brief documentation about its usage, along with its unique name, just like it is
the case for sensors and actuators.

Distributing Entities

You can either specify the position and orientation of entities manually, as it is the case
for the light and box entities in the example, or you can ask ARGoS to distribute them
automatically. In the example configuration, the robots are placed using a distribution.
The <position> and <orientation> specify how to determine these properties. The
following distribution types are available.

uniform Uses a uniform distribution and expects a min and a max parameter specifying
the boundaries of a cuboid, which is filled uniformly with the specified entities.

91

gaussian Uses a gaussian distribution with the parameters mean and std dev (stan-
dard deviation).

grid Distributes the entities on a 3D grid and expects a center (a position in space), a
distances (the x, y and z distances of the grid) and a layout (specifies the number
of layers in x, y and z direction) parameter.

The <entity> tag specifies the entities to place. Its quantity parameter tells
ARGoS how many entities of the specified type to add to the arena. ARGoS tries
placing the entities randomly, but aborts as soon as two or more entities collide. To
avoid infinite loops, the max trials parameter specifies when to abort the distribution
process.

The tags inside <entity> each specify a type of entity, which has to be known to
ARGoS. As mentioned earlier, all of the entities can be found in simulator/space/-

entities. Refer to the entity documentation within its source file for a description of
optional and required parameters.

Using Visualizations

ARGoS supports multiple visualization engines, which are defined in the simulator/-

visualizations source folder. Just like for any other type of modular component, a
brief documentation, as well as the unique name, can be found within the module’s
source file. To enable a specific visualization one has to add a child tag with the
visualization’s unique name to the <visualization> tag.

Probably the most prominent visualization for day to day usage is the qtopengl -

render. It is possible to specify up to ten cameras, which can be selected conveniently
from within the Qt4 user interface.

Cameras can be added by specifying <placement> tags within the <camera> child
tag. Each <placement> tag expects an idx parameter, which assigns the camera to
a button in the user interface. The position and look at parameters specify the
location and orientation of the camera. User function (see Sec. 3.2.2) can be specified
by adding a <user functions> tag, which expects a library parameter, that points to
the shared object file, containing the user function and a label parameter, identifying
the user function within the library.

To run batch experiments, visualizations can be disabled entirely by removing the
content of the <visualiation> tag. Beware that the <visualization> tag has to be
present, though.

92 APPENDIX A. ARGOS CONFIGURATION REFERENCE

Appendix B

Working with the Source Code

This chapter explains how to use the source code, which was developed for this thesis.
The first part deals with the directory layout, while the second part deals with the
steps, which are necessary to get started.

B.1 Directory Layout

To get started quickly, it is important to understand the directory layout of the source
code. The following is a shallow overview of the src folder contents.

• argos-modules

• brain

• distribution

• distribution.tar.gz

• experiments

• make-distribution.sh

• stuff

The two most important source directories are argos-modules and brain. The for-
mer directory contains all of the ARGoS extensions, like the environment generator

and all of the robot controllers. The latter directory obviously contains the BRAIn
framework. The sub folders of which are reflecting its architecture, detailed in Sec. 4.
The experiments folder contains all the BRAIn experiment configuration files, along
with their ARGoS configuration templates. Last but not least, the stuff directory
contains external projects like the ARGoS simulator and example code.

To build the entire project, one can use the make-distribution.sh script, which
creates a folder, called distribution. The script also bundles this directory into the
distribution.tar.gz file. The folder and the archive contain everything necessary to
run experiments.

93

94 APPENDIX B. WORKING WITH THE SOURCE CODE

B.2 Preparing the System

All of the code (including ARGoS) has been developed and tested under Ubuntu 10.10
and 11.04 but it should work equally well with other POSIX based operating systems,
provided that all the required libraries are available.

On Ubuntu, the following command has to be executed, to install all of the require-
ments. This has been tested with Ubuntu 11.04:

1 $ sudo apt -get install subversion build -essential maven2 \

2 sun -java6 -jdk libgoogle -perftools -dev protobuf -compiler \

3 cmake pkg -config libgsl0 -dev freeglut3 libaudio2 \

4 libflac8 libgl1 -mesa -glx libglu1 -mesa libogg0 libpulse0 \

5 libqt4 -dbus libqt4 -opengl libqt4 -xml libqtcore4 \

6 libqtgui4 libsdl1 .2debian -pulseaudio libsndfile1 \

7 libvorbis0a libvorbisenc2 libx11 -xcb1 libxcb -atom1 \

8 libxdamage1 libxfixes3 libxmu6 libxxf86vm1 libjpeg62 \

9 libmng1 libtiff4 fontconfig liblcms1 libprotobuf -dev \

10 libfann -dev libcppunit -dev

To use Google Protocol Buffers with Maven, the appropriate Maven plugin has to
be installed. Unfortunately, the plugin does not seem to be actively maintained and
does not even work without patching it1. To install it, the source code has to be checked
out from the repository:

1 $ svn checkout http :// protobuf.googlecode.com/svn/branches/maven -plugin

Now open the file AbstractProtocMojo.java, and look for the following line, which
should be around line 213:

1 $ protoDirectories.add(uncompressedCopy);

Once located, change this line to:

1 $ protoDirectories.add(uncompressedCopy.getParentFile ());

Now the plugin can be installed using the following command:

1 $ cd maven -plugin/tools/maven -plugin

2 $ mvn install

The system is now ready to build the project source code. Now, ARGoS can be
built and installed:

1 $ cd da/src/stuff/argos2

2 $./ build.sh

3 $./ make_distribution.sh debian

4 $ sudo apt -get install argos2 -xxx.deb

Last but not least, the project source code can be built by going back to the src

directory and executing:

1 $./make -distribution.sh

This script not only takes care of building the BRAIn and ARGoS modules, but
also creates a distributable archive, ready to be deployed on a remote machine to run
experiments.

1http://code.google.com/p/protobuf/issues/detail?id=138

B.2. PREPARING THE SYSTEM 95

Using Eclipse

Maven comes with excellent Eclipse support. To import all of BRAIn’s projects into
Eclipse, one first has to create the project files, required by the IDE. This can be
accomplished by switching to the BRAIn root source folder and executing the following
command:

1 $ mvn eclipse:eclipse

After the command returns, it will have created .project and .classpath files for
each of the sub-projects. Now go to Eclipse and select File → Import from the menu.
Select Existing projects into Workspace from the General section and click Next

in the appearing dialog. In the next page, click on the Browse button next to the
Select root directory field and select the root source folder. All of the projects
should now appear in the Projects section of the dialog. If everything looks right,
click on Finish to import the projects into Eclipse.

Every time one of the pom.xml files is modified, the mvn eclipse:eclipse com-
mand has to be invoked again to update the project files and all of the projects have
to be refreshed in Eclipse.

The Eclipse project files can be removed by invoking the following command:

1 $ mvn eclipse:clean

96 APPENDIX B. WORKING WITH THE SOURCE CODE

Appendix C

Perceptron Learning Script

1 #!/usr/bin/ruby

2

3 def phi(v)

4 i f (v >= 0)

5 return 1

6 else
7 return 0

8 end
9 end

10

11 $w = [0, 0, 0]

12

13 def perceptron(x1, x2)

14 phi($w[0] + $w[1] * x1 + $w[2] * x2)

15 end
16

17 $output = ""

18 $latex_output = ""

19

20 def learn(training_data , title , iterations , alpha)

21 $output += "\n=== " + title + " ===\n\n"

22 $latex_output += "\n=== " + title + " ===\n\n"

23

24 iterations.times do |n|

25 data = training_data[n % training_data.length]

26

27 x1 = data [0]

28 x2 = data [1]

29 d = data [2]

30

31 y = perceptron(x1 , x2)

32 e = d - y

33

34 $output += sprintf("n=%2d, w=[%5.2f, %5.2f, %5.2f]" +

35 ", d=%5.2f, y=%5.2f, e=%5.2f\n", n, $w[0],

36 $w[1], $w[2], d, y, e)

37

38 $latex_output += sprintf("%2d & %5.2f & %5.2f & " +

39 "%5.2f & %5.2f & %5.2f & %5.2f \\\\\n", n,

40 $w[0], $w[1], $w[2], d, y, e)

41

42 $w[0] += alpha * e

43 $w[1] += alpha * e * x1

44 $w[2] += alpha * e * x2

97

98 APPENDIX C. PERCEPTRON LEARNING SCRIPT

45 end
46 end
47

48 learn ([[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 1]], "AND", 30, 0.1)

49 learn ([[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 1]], "AND", 30, 5)

50 learn ([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]], "OR ", 30, 0.1)

51 learn ([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]], "OR ", 30, 5)

52

53 print $output

54 print $latex_output

Appendix D

Top Performing Genomes of
Experiment 3

The top performing genome of experiment 3 without artificial base and resource sensors.
This data can be found on the attached DVD in the file experiment-10/epoch-253/-

controller-config 8.

1 [0.189427077770233 , 0.00303781032562256 , 0.17195051908493 ,

0.124108552932739 , 0.902129530906677 , 0.575103044509888 ,

0.959746181964874 , 0.371288180351257 , 0.925398886203766 ,

0.874302327632904 , 0.918968260288239 , 0.469708621501923 ,

0.910488247871399 , 0.997938692569733 , 0.570859909057617 ,

0.523582935333252 , 0.778995335102081 , 0.861459016799927 ,

0.404265224933624 , 0.970952332019806 , 0.407971262931824 ,

0.905794262886047 , 0.715595841407776 , 0.230603158473969 ,

0.149160921573639 , 0.435250818729401 , 0.110326707363129 ,

0.254726767539978 , 0.731291055679321 , 0.460285186767578 ,

0.638931572437286 , 0.892984807491302 , 0.178224623203278 ,

0.189116060733795 , 0.399775922298431 , 0.365486621856689 ,

0.103869140148163 , 0.629932284355164 , 0.0492684841156006 ,

0.714975595474243 , 0.904214859008789 , 0.0658162832260132 ,

0.237806379795074 , 0.480188846588135 , 0.869837284088135 ,

0.429013729095459 , 0.967480659484863 , 0.446723639965057 ,

0.457476556301117 , 0.228854417800903 , 0.0640694499015808 ,

0.766560316085815 , 0.813131093978882 , 0.676378130912781 ,

0.347673237323761 , 0.232722043991089 , 0.00941330194473267 ,

0.965183258056641 , 0.307389736175537 , 0.158332049846649 ,

0.0936659574508667 , 0.303705155849457 , 0.396176755428314 ,

0.375425815582275 , 0.38825798034668 , 0.522453248500824 ,

0.73470801115036 , 0.115208268165588 , 0.439407587051392 ,

0.0629608035087585 , 0.34333735704422 , 0.775610387325287 ,

0.0498694181442261 , 0.996167242527008 , 0.99142187833786 ,

0.080797553062439 , 0.436462938785553 , 0.0720661282539368 ,

0.787326633930206]

The top performing genome of experiment 3 with artificial base and resource sensors.
This data can be found on the attached DVD in the file experiment-17/epoch-250/-

controller-config 2.

1 [0.101841270923615 , 0.542972326278687 , 0.953332781791687 ,

0.768657684326172 , 0.386671602725983 , 0.423865079879761 ,

0.701108753681183 , 0.347370147705078 , 0.00282984972000122 ,

0.963719666004181 , 0.376665771007538 , 0.979808509349823 ,

0.322535574436188 , 0.671220064163208 , 0.0763792991638184 ,

0.407272517681122 , 0.814533948898315 , 0.620485842227936 ,

99

100 APPENDIX D. TOP PERFORMING GENOMES OF EXPERIMENT 3

0.325440406799316 , 0.455562174320221 , 0.520989537239075 ,

0.49634861946106 , 0.518668055534363 , 0.404020965099335 ,

0.564167618751526 , 0.783891439437866 , 0.236178815364838 ,

0.0904685258865356 , 0.509209156036377 , 0.623986005783081 ,

0.980750977993011 , 0.647472441196442 , 0.024944007396698 ,

0.420155882835388 , 0.715914189815521 , 0.609794080257416 ,

0.545187413692474 , 0.227712571620941 , 0.261496543884277 ,

0.412327587604523 , 0.384870767593384 , 0.627764701843262 ,

0.506571650505066 , 0.703603386878967 , 0.829880952835083 ,

0.20378977060318 , 0.106975078582764 , 0.558040380477905 ,

0.0035395622253418 , 0.608073711395264 , 0.265367805957794 ,

0.233837068080902 , 0.405840754508972 , 0.252925038337708 ,

0.232855200767517 , 0.359926342964172 , 0.698240101337433 ,

0.0953984260559082 , 0.968190670013428 , 0.376338422298431 ,

0.162436187267303 , 0.62673819065094 , 0.807673990726471 ,

0.0350344181060791 , 0.187889099121094 , 0.798649251461029 ,

0.75320440530777 , 0.133968472480774 , 0.013517439365387 ,

0.993913650512695 , 0.231245577335358 , 0.14457768201828 ,

0.200252115726471 , 0.766600430011749 , 0.192850410938263 ,

0.499713182449341 , 0.701053500175476 , 0.289142489433289 ,

0.172838151454926 , 0.090063750743866 , 0.686260104179382 ,

0.436583995819092 , 0.166717767715454 , 0.95188307762146 ,

0.0888900756835938 , 0.709761261940002 , 0.926010966300964 ,

0.755458235740662 , 0.776119112968445 , 0.0595329999923706 ,

0.142618715763092 , 0.490822672843933 , 0.528886675834656 ,

0.322580635547638 , 0.869046747684479 , 0.344156265258789 ,

0.281339466571808 , 0.200292110443115 , 0.577095806598663 ,

0.286913812160492 , 0.20842570066452 , 0.210157811641693 ,

0.510974049568176 , 0.748934984207153 , 0.249893188476562 ,

0.511870682239532 , 0.594643473625183 , 0.547506749629974 ,

0.928706228733063 , 0.691949188709259 , 0.201952993869781 ,

0.397345244884491 , 0.335498631000519 , 0.842258453369141 ,

0.596347868442535 , 0.541809439659119 , 0.508456468582153 ,

0.663657784461975 , 0.445010781288147 , 0.487370729446411 ,

0.613987147808075 , 0.751830160617828 , 0.88357138633728 ,

0.278889894485474 , 0.0838443636894226 , 0.060584545135498 ,

0.224907279014587 , 0.479591846466064 , 0.765725433826447 ,

0.94118469953537 , 0.61225038766861 , 0.856002509593964]

List of Figures

2.1 Schematics of an intelligent agent (adopted from [RN03], p. 33). 5

2.2 Schematics of a biological neuron (c©Quasar Jarosz, License: CC-BY-
SA-3.0). 9

2.3 A simple model of a neuron consisting of various inputs, weighted connec-
tions, an adder, an activation function, a bias and one output (adopted
from [Hay08], p. 41). 10

2.4 Two very common activation functions: The threshold function (a) and
the sigmoid function (b). 12

2.5 A single layer (a), a multi layer (b) and a recurrent (c) neural network
(adopted from [Hay08], p. 51ff). 13

2.6 Classification of two dimensional input data. 14

2.7 The perceptron convergence algorithm. 15

2.8 Graphical representation of the XOR function. 17

2.9 Neural network emulating the XOR function (adopted from [Hay08],
p. 173) . 17

2.10 The results of the XOR ANN’s hidden layer. 18

2.11 Mapping the connection weights of a neural network to the genome. . . 25

2.12 A binary matrix is used to encode the connections of a neural network to
be used in genetic algorithms. The genome is obtained by serializing the
matrix: [0001100‖0001000‖0000100‖0000001‖0000011‖0000000‖0000000]. 26

2.13 Controlling robots with neuroevolution. 27

3.1 The marXbot rendered using the ARGoS simulator and POV-Ray. . . . 30

3.2 The ARGoS Qt4/OpenGL user interface. 31

4.1 Core and experiment modules of the BRAIn framework. 40

4.2 BRAIn’s execution model. 42

4.3 The central architecture of BRAIn. 43

4.4 BRAIn to ARGoS / ARGoS to BRAIn communication. 45

4.5 The file system structure created during a typical BRAIn run. 47

5.1 The foraging environment with bots, resources and a base area. 60

5.2 Harvesting simulation for a resource with V
(j)
0 = 5000, a global harvest-

ing rate of h = 10 and simulation interval of ∆t = 0.1. 62

5.3 Three environments generated with the EnvironmentGenerator. 63

5.4 The results for all epochs of experiment 2. 69

5.5 The results for the first 50 epochs of experiment 2. 70

5.6 The FannBot architecture. 71

101

102 LIST OF FIGURES

5.7 The omnidirectional camera color blob readings are divided into four
different sectors. 73

5.8 Visualization of the activation function used in the neuroevolution ex-
periment. 74

5.9 Average fitness results for all epochs of experiment 3 without artificial
resource and base sensor. 76

5.10 Average fitness results for all epochs of experiment 3 with artificial re-
source and base sensor. 77

5.11 The state machine of the UberController. 79
5.12 The results of the genetic uber controller experiment. 82

List of Tables

2.1 Tabular representation of the AND function. 15
2.2 The progress of the perceptron learning algorithm for the AND example. 16
2.3 Tabular representation of the XOR function. 16
2.4 The results of the XOR ANN’s hidden layer. 18
2.5 Possible crossover results for integer and binary symbols. 24

4.1 BRAIn command line options. 49
4.3 BRAIn batch configuration referencce. 54

5.1 Properties of the foraging task environment. 62
5.2 The EnvironmentGenerator parameters. 64
5.3 The foraging task parameters and their selected default values. 64
5.4 The results of the random walk foraging experiment. 66
5.5 Aggregated results for the last 50 epochs of the random walk foraging

experiment. 68
5.6 Comparison of the manually selected parameters of experiment 1 and

the algorithmically selected parameters of experiment 2. 68
5.7 The aggregated results for the last 50 epochs of experiment 3. 78
5.9 The uber controller parameters and their default values. 80
5.10 The results of the uber controller experiment. 80
5.11 The parameters of the top performing controller of experiment 5 com-

pared to the manually selected parameters of experiment 4. 81

6.1 Comparison of the algorithm performance of all experiments. 84
6.3 Advantages and disadvantages of neuroevolution and special purpose

controllers. 85

103

104 LIST OF TABLES

Contents of the attached DVD

The attached DVD contains the following:

• This diploma thesis as PDF,

• The BRAIn sourcecode,

• The sourcecode of all the experiments,

• The sourcecode of various tools used for this thesis,

• The complete simulation results.

105

106 CONTENTS OF THE ATTACHED DVD

Bibliography

[AJA+11] Pejman Aminian, Mohamad Javid, Abazar Asghari, Amir Gandomi, and
Milad Esmaeili. A robust predictive model for base shear of steel frame
structures using a hybrid genetic programming and simulated anneal-
ing method. Neural Computing & Applications, 20:1321–1332, 2011.
10.1007/s00521-011-0689-0.

[Alp04] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

[BBG95] Eric B. Baum, Dan Boneh, and Charles Garrett. On genetic algorithms.
In COLT, pages 230–239, 1995.

[Blo08] Joshua Bloch. Effective Java. Addison-Wesley, 2008.

[BSMM01] Bronstein, Semendjajew, Musiol, and Mühlig. Taschenbuch der Mathe-
matik. Verlag Harri Deutsch, 2001.

[can] Seer stat fact sheets: Breast. http://seer.cancer.gov/statfacts/

html/breast.html, accessed 28. Nov. 2011.

[CLD03] An-Sing Chen, Mark T. Leung, and Hazem Daouk. Application of neural
networks to an emerging financial market: forecasting and trading the
taiwan stock index. Computers and Operations Research, 30:901–923, May
2003.

[Coy06] Jerry A. Coyne. Selling darwin. Nature, 442:983–984, 2006.

[Cur84] Charles W. Curtis. Linear Algebra - An Introductory Approach. Springer,
1984.

[CWY99] John J. Cheh, Randy S. Weinberg, and Ken C. Yook. An Application
Of An Artificial Neural Network Investment System To Predict Takeover
Targets. Journal Of Applied Business Research, 15, 1999.

[Dar] Charles Darwin. On the origin of species by means of natural selection, or
the preservation of favoured races in the struggle for life., volume 1859.

[DT03] George B. Dantzig and Mukund N. Thapa. Linear Programming: Theory
and extensions. Springer, 2003.

[Fit07] Michael Fitzgerald. Learning Ruby. O’REILLY, 2007.

[for] Definition of foraging by the free online dictionary. http://www.

thefreedictionary.com/foraging, accessed 08 Dec. 2011.

107

http://seer.cancer.gov/statfacts/html/breast.html
http://seer.cancer.gov/statfacts/html/breast.html
http://www.thefreedictionary.com/foraging
http://www.thefreedictionary.com/foraging

108 BIBLIOGRAPHY

[Fow] Martin Fowler. DomainSpecificLanguage. http://martinfowler.com/

bliki/DomainSpecificLanguage.html, accessed 08. Dec. 2011.

[Gom03] Faustino J. Gomez. Phd thesis: Robust non-linear control through neu-
roevolution. Technical Report AI-TR-03-303, Department of Computer
Sciences, University of Texas at Austin, August 2003.

[GPB+09] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,
and Doug Lea. Java Concurrency In Practice. Add, 2009.

[GPMR11] Antoniya Georgieva, Stephen J. Payne, Mary Moulden, and Christopher
W. G. Redman. Artificial neural networks applied to fetal monitoring in
labour. Neural Computing & Applications, 2011.

[Gre09] T. Gregory. Understanding natural selection: Essential concepts and com-
mon misconceptions. Evolution: Education and Outreach, 2:156–175, 2009.
10.1007/s12052-009-0128-1.

[Gru09] Stefan Grundhoff. Verkehrszeichenerkennung - Das magische Auge. http:
//www.focus.de/auto/ratgeber/sicherheit/assistenzsysteme/

verkehrszeichenerkennung-das-magische-auge_aid_346187.html,
accessed 17. Dec. 2011, January 2009.

[gui] google-guice. http://code.google.com/p/google-guice/, accessed 08.
Dec. 2011.

[Hay08] Simon Haykin. Neural Networks and Learning Machines. 2008.

[HCP11] Chien-Jen Huang, Peng-Wen Chen, and Wen-Tsao Pan. Using multi-stage
data mining technique to build forecast model for taiwan stocks. Neural
Computing & Applications, 2011.

[HL11] Ting Huang and Derong Liu. A self-learning scheme for residential energy
system control and management. Neural Computing & Applications, 2011.

[Hsu11] Chih-Ming Hsu. A hybrid procedure with feature selection for resolving
stock/futures price forecasting problems. Neural Computing & Applica-
tions, 2011.

[JMW+05] Ahmedin Jemal, Taylor Murray, Elizabeth Ward, Alicia Samuels, Ram C.
Tiwari, Asma Ghafoor, Eric J. Feuer, and Michael J. Thun. Cancer statis-
tics, 2005. CA: A Cancer Journal for Clinicians, 55(1):10–30, 2005.

[jrua] Documentation - JRuby.org. http://jruby.org/documentation, ac-
cessed 04. Dec 2011.

[jrub] JRuby.org. http://jruby.org/, accessed 08. Dec. 2011.

[jun] Junit.org. http://www.junit.org/, accessed 08. Dec. 2011.

[KE06] A. Kemper and A. Eickler. Datenbanksysteme. Oldenbourg, 2006.

[Kit90] Hiroaki Kitano. Designing Neural Networks Using Genetic Algorithms
with Graph Generation System. Complex Systems Journal, 4:461–476,
1990.

http://martinfowler.com/bliki/DomainSpecificLanguage.html
http://martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.focus.de/auto/ratgeber/sicherheit/assistenzsysteme/verkehrszeichenerkennung-das-magische-auge_aid_346187.html
http://www.focus.de/auto/ratgeber/sicherheit/assistenzsysteme/verkehrszeichenerkennung-das-magische-auge_aid_346187.html
http://www.focus.de/auto/ratgeber/sicherheit/assistenzsysteme/verkehrszeichenerkennung-das-magische-auge_aid_346187.html
http://code.google.com/p/google-guice/
http://jruby.org/documentation
http://jruby.org/
http://www.junit.org/

BIBLIOGRAPHY 109

[LJYB03] Marner L., Nyengaard JR., Tang Y., and Pakkenberg B. Marked loss of
myelinated nerve fibers in the human brain with age. J Comp Neurol,
2003.

[LlZsM+11] Bing Li, Pei lin Zhang, Shuang shan Mi, Peng yuan Liu, and Dong sheng
Liu. Applying the fuzzy lattice neurocomputing (fln) classifier model to
gear fault diagnosis. Neural Computing & Applications, 2011.

[log] Apache Logging Services Project - Apache log4j. http://logging.

apache.org/log4j/, accessed 08. Dec. 2011.

[Maa97] Wolfgang Maass. Networks of Spiking Neurons: The Third Generation of
Neural Network Models. Neural Networks, 10:1659–1671, 1997.

[mav] Apache maven. http://maven.apache.org/, accessed 08. Dec. 2011.

[MD89] David J Montana and Lawrence Davis. Training feedforward neural net-
works using genetic algorithms. Proceedings of the eleMachine Learn-
ingventh international joint conference on artificial Intelligence, pages
762–767, 1989.

[Mit95] Melanie Mitchell. Genetic algorithms : An overview. Complexity, 1:31–39,
1995.

[Mit96] Melanie Mitchell. An Introduction To Genetic Algorithms. MIT Press,
1996.

[MMMR96] Anil Menon, Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka.
Characterization of a class of sigmoid functions with applications to neural
networks. Neural Networks, 6, 1996.

[moc] mockito - simpler & better mocking. http://code.google.com/p/

mockito/, accessed 08. Dec. 2011.

[Mor98] Hans Moravec. When will computer hardware match the human brain?
Journal of Evolution and Technology, 1, 1998.

[NK05] Patrick Niemeyer and Jonathan Knudsen. Learning Java. O’REILLY, 3rd
edition, 2005.

[PdY] Hossein Pazhoumand-dar and Mahdi Yaghoobi. A new approach in road
sign recognition based on fast fractal coding. Neural Computing & Appli-
cations, pages 1–11. 10.1007/s00521-011-0718-z.

[Pom89] Dean A. Pomerleau. ALVINN: an autonomous land vehicle in a neural
network. In Advances in neural information processing systems 1, pages
305–313. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1989.

[Pra09] Dhanji R. Prasanna. Dependency Injection. Manning, 2009.

[pro] http://code.google.com/p/protobuf/, accessed 08. Dec. 2011.

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/
http://maven.apache.org/
http://code.google.com/p/mockito/
http://code.google.com/p/mockito/
http://code.google.com/p/protobuf/

110 BIBLIOGRAPHY

[PTO+11] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di
Caro, Frederick Ducatelle, Timothy Stirling, Álvaro Gutiérrez, Luca Maria
Gambardella, and Marco Dorigo. ARGoS: a modular, multi-engine simu-
lator for heterogeneous swarm robotics. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2011),
pages 5027–5034. IEEE Computer Society Press, Los Alamitos, CA,
September 2011.

[RMV11] Philippe Rétornaz, Stéphane Magnenat, and Florian Vaussard. MarXbot
User Manual, Version 1.1. http://mobots.epfl.ch/data/robots/

marxbot-user-manual.pdf, accessed 28. Nov. 2011, April 2011.

[RN03] S J Russell and P Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2nd edition, 2003.

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65, 1958.

[Row99] Henry A. Rowley. Neural Network-Based Face Detection. PhD thesis,
School of Computer Science, Computer Science Department, CarnegieMel-
lon University, 1999.

[rub] Ruby-doc.org: Documenting the ruby language. http://www.ruby-doc.

org/, accessed 04. Dec. 2011.

[SBM05] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Real-
time Neuroevolution in the NERO Video Game. IEEE Transactions on
Evolutionary Computation, pages 653–668, 2005.

[SGP11] R. A. Saeed, A. N. Galybin, and V. Popov. Crack identification in curvi-
linear beams by using ann and anfis based on natural frequencies and
frequency response functions. Neural Computing & Applications, 2011.

[SK90] G.M. Shepherd and Koch. Introduction to synaptic circuits. The Synaptic
Organization of the Brain, pages 3–31, 1990.

[SK08] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics.
Springer, 2008.

[slf] Simple Logging Facade for Java (SLF4J). http://www.slf4j.org/, ac-
cessed 08. Dec. 2011.

[SM02] Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution
through evolutionary complexification. Journal of Artificial Intelligence
Research, 21:63–100, 2002.

[SMDD11] M. R. Senapati, A. K. Mohanty, S. Dash, and P. K. Dash. Local linear
wavelet neural network for breast cancer recognition. Neural Computing
& Applications, 2011.

[SMR11] Babak Sohrabi, Payam Mahmoudian, and Iman Raeesi. A framework for
improving e-commerce websites usability using a hybrid genetic algorithm
and neural network system. Neural Computing & Applications, 2011.

http://mobots.epfl.ch/data/robots/marxbot-user-manual.pdf
http://mobots.epfl.ch/data/robots/marxbot-user-manual.pdf
http://www.ruby-doc.org/
http://www.ruby-doc.org/
http://www.slf4j.org/

BIBLIOGRAPHY 111

[SRA11] Mansour Sheikhan, Mohsen Rohani, and Saeed Ahmadluei. A neural-based
concurrency control algorithm for database systems. Neural Computing &
Applications, 2011.

[WFK11] Markus Waibel, Dario Floreano, and Laurent Keller. A Quantitative
Test of Hamilton’s Rule for the Evolution of Altruism. PLoS Biol,
9(5):e1000615, 05 2011.

[WKF09] Markus Waibel, Laurent Keller, and Dario Floreano. Genetic Team Com-
position and Level of Selection in the Evolution of Cooperation. IEEE
Transactions on Evolutionary Computation, 13(3):648–660, 2009.

[WZ89] Ronald J. Williams and David Zipser. A Learning Algorithm for Con-
tinually Running Fully Recurrent Neural Networks. Neural Computation,
1:270–280, 1989.

[XWX11] Jie Xiu, Shiyu Wang, and Yan Xiu. Fuzzy adaptive single neuron nn
control of brushless dc motor. Neural Computing & Applications, 2011.

[YKID11] Hasbi Yaprak, Abdülkadir Karacı, and İlhami Demir. Prediction of the
effect of varying cure conditions and w/c ratio on the compressive strength
of concrete using artificial neural networks. Neural Computing & Applica-
tions, 2011.

	Introduction
	Motivation
	Objectives
	Outline

	Foundations and Related Work
	Agents and their Environments
	Intelligent Agents
	Environments

	Learning Approaches
	Learning with a Teacher
	Learning without a Teacher

	Artificial Neural Networks
	The Human Brain
	Modeling a Neuron
	Neural Network Architectures
	Computational and Learning Capabilities of Neural Networks
	Real World Applications: What are ANNs typically used for?

	Genetic Algorithms
	Biological Evolution
	Simulating Evolution through Genetic Algorithms

	Controlling Robots with Neuroevolution

	Robotic Platform and Simulator
	The marXbot Robotic Platform
	Sensors
	Actuators
	Controller
	Programming Model

	The ARGoS Simulator
	Configuration
	Programming Model

	BRAIn - BRAIn Robot Algorithm Insight
	Requirements
	General Software Requirements
	Domain Specific Requirements

	BRAIn's Architecture
	Module Overview
	Execution Model
	Core Classes
	ARGoS Specific Features
	The Directory Structure
	Implementation

	Using BRAIn to Run Experiments
	Invoking BRAIn From the Command Line
	Using Predefined Functionality
	Extending BRAIn

	Further Improvements
	User Configuration File
	Remote Simulator Invocation
	Multiple Simulator Instances Within a Variation
	Reduced Number of Runtime Files

	Using BRAIn for Foraging Experiments
	The Environment
	The Foraging Task
	The Fitness Function
	The EnvironmentGenerator
	Experiment Configuration

	The Experiments
	Experiment 1 - Random Walk
	Experiment 2 - Genetic Random Walk
	Experiment 3 - Neuroevolution
	Experiment 4 - The UberController
	Experiment 5 - Genetically Optimizing the Uber Controller

	Interpretation of Results and Conclusion
	Algorithm Performance Comparison
	Conclusion
	BRAIn Review
	Outlook

	Appendix ARGoS Configuration Reference
	Appendix Working with the Source Code
	Directory Layout
	Preparing the System

	Appendix Perceptron Learning Script
	Appendix Top Performing Genomes of Experiment 3
	List of Figures
	List of Tables
	Contents of the attached DVD
	References

