
MDA Transformations Applied to Web Application
Development1

Santiago Meliá1, Andreas Kraus2, and Nora Koch2, 3

1Universidad de Alicante, Spain
2Ludwig-Maximilians-Universität München, Germany

3F.A.S.T GmbH, Germany
santi@dlsi.ua.es,{kochn,krausa}@pst.ifi.lmu.de

Abstract. Current Web generation techniques are mainly hard-coded for
predefined architectures of Web applications. Consequently, there is a gap
between Web design models and the final implementation. We solve this
problem, following with our approach the Model-Driven Architecture (MDA)
principles of automatic generation of software systems based on model
transformations. In this context, we present a transformation process and propose
a visual and textual specification for the transformations using the forthcoming
OMG standard Query /Views/ Transformations (QVT). Our proposal is
illustrated by transformations involving elements of the UML-based Web
Engineering (UWE) metamodel and the WebSA metamodel, showing this way
how both approaches are integrated.

1 Introduction

Models, modelling approaches and model transformations that follow the key
principles defined by the Model-Driven Architecture (MDA) are gaining consensus
within many organizations involved in the development of complex software. They are
attracted by the final MDA goal that is the automatic generation of a complete software
system from a model with as less human interaction in the generation process as
possible. Such vision has enormous consequences for the development and
maintenance of the increasing amount of Web software that is being produced.
However, the current Web generation techniques are totally or partially hard-coded for
predefined architectures of Web applications. We propose a generation process using
an MDA approach in which the model transformations are driven by different
architecture models.

In order to define the transformations between different models, there are several
initiatives related to the MDA approach, among others the Request for Proposals for a
Query/Views/Transformations (QVT) [11] language. From the received proposals,
QVT-P [12] is, in our opinion, the most interesting one as it is a well defined language
and it comprises a graphical as well as a textual notation.

In this article we present the WebSA approach [7] based on architectural-centric
transformations from design to implementation models. This approach proposes (1) a
development process based on MDA, (2) a set of architectural models and (3) a set of
transformations that permit the automatic integration of these architectural models with
the functional models of a Web application using the QVT-P notation. The functional
models, like navigation are those proposed by any Web design method such as
WebML [2], OO-H [3] or UWE [5].

1 This research has been partially sponsored by the EC 5th FP AGILE (IST-2001-32747) the

German BMBF project GLOWA-Danube, and the Spanish METASING (TIN2004-00779).

Sections 2 and 3 give an overview of the WebSA development process and the
UWE design method, respectively. Section 4 presents the specification of the
transformations and finally in section 5 some future steps of the use of WebSA for the
development of Web applications are outlined.

2 The WebSA Approach: An Overview

WebSA is a proposal whose main objective is to cover all phases of Web application
development focusing on software architecture. It contributes to fill the gap currently
existing between traditional Web design models and the final implementation. In order
to achieve this, WebSA defines a set of architectural models to specify the architectural
viewpoint which complements current Web engineering methodologies [3, 5].
Furthermore, WebSA also establishes an instance of the MDA development process
[4], which allows for the integration of the different viewpoints of a Web application
by means of transformations between models.

Fig. 1. WebSA Development Process

The WebSA development process is based on the MDA development process in
which the artifacts that result from each phase must be models, which represent the
different abstraction levels in the system specification. In the analysis phase the Web
application specification is vertically divided into two viewpoints, as shown in the
diagram flow of Fig. 1. On the one side, the functional-perspective is given by the Web
functional models provided by Web methods (see [2, 3, 5]). On the other side, the
Subsystem Model (SM) and the Configuration Model (CM) define the software
architecture of the Web Application. The SM and CM architectural models use two
different architectural styles to specify a Web application: a subsystem (or layer style)
and a component style.

The PIM-to-PIM transformation (T1 in Fig. 1) which goes from analysis models to
platform independent design models. It integrates the information about functionality
and architecture (see sect. 4.1) in a single Integration Model (IM). This transformation
type will be called T1. Also, the Integration Model, is the basis on which several PIM-
to-PSM transformations, one for each target platform (see e.g. T2, T2’ and T2’’ in Fig.
1), can be defined. The output of these transformations is the specification of the Web
application for a given platform (see sect. 4.2). This transformation type will be named
T2 in the rest of the article.

Function al
Models

(OO-H,UWE)

T1

J2EE models .NET models Other models

T2'

Web Functional Viewpoint Web Architectural Viewpoint

Subsystem Configuration
Model Model

Analysis
Merge Models to Model

Transformation

Platform
Independent Design Integration Model

Implementation
T2'’T2

3 A Web Functional Design Method: The UWE Approach

The distinguishing feature of the UML-based Web Engineering (UWE) approach in
relation to other Web design methods is its UML compliance. The metamodel of UWE
[6] is defined as a conservative extension of the UML metamodel which has a mapping
to a UML profile [5]. Similarly to other Web design methods, UWE separates the
concerns of a Web application supporting the modelling of different points of view:
content, navigation structure, business processes and presentation.

The content of a Web application is modelled in UWE by a conceptual model that is
represented as a UML class diagram. The navigation model is based on all conceptual
classes that are relevant for the navigation structure and represents the navigation paths
of the Web application. The model elements used to build nodes and links are primarily
«navigation class» and «navigation link». In addition, access primitives (a special kind
of nodes), such as «index» or «guided tour» are used to reach multiple instances of
Web nodes.

Navigation models are enriched by «process class»es and «process link»s showing
how the workflows are integrated in the navigation structure. These process classes and
process links are part of the process model, which deals with the business logic of a
Web application. The behavioural aspects of the business logic are modelled by a
process flow model represented as a UML activity diagram. In UWE, the presentation
model is used to sketch the layout of the Web pages associated to the navigation nodes.

In contrast to many other methods, UWE defines a systematic method, which
supports semi-automatic generation of the models described above. Although, until
now, UWE has not referred to these automatic generation steps explicitly as a
transformation-based “model-driven development” feature, those steps correspond to a
model driven development approach. UWE allows e.g. for the generation of the
navigation model based on the set of conceptual classes marked as relevant for
navigation. Further, indexes and menus are included automatically in the navigation
model with additional model transformations that apply on the navigation model. A
basic presentation model can be defined by transformations based on the navigation
model.

In our case, the WebSA and UWE metamodels play an important role in the WebSA
development process, because they contain the information necessary to specify the
model transformations T1 and T2.

4 The WebSA Transformation Process

The WebSA transformation policy is defined by a set of transformations in which the
first class citizens are the classes of the architectural view. The WebSA development
process consists of two types of transformations: T1 and T2 (Fig. 1). T1 merges the
elements of the architectural models of WebSA with those of the functional models,
and translates them into the Integration Model. T2 maps the platform specific
implementation models (e.g. J2EE or .NET) from the Integration Model. Both
transformations are complex, i.e. they are built of a set of smaller transformations,
which are executed in a deterministic way.

In MDA [9] there are different alternatives to get the information to transform one
model into another (e.g. using a profile, using metamodels, patterns and markings, etc).
For WebSA we have selected a metamodel mapping approach to specify the
transformations. In order to obtain the integration we extend the MDA model
transformation pattern of Bézivin [1] for UWE and WebSA models. The metamodels
based on the MOF language are the source of the transformation rules that establish the

transformation into target metamodel elements. For more details about the metamodels
refer to [6] and [8].

The transformation rules are defined in the QVT language [11] which is an MDA
standard also based on MOF 2.0. We selected the QVT-P [12] proposal, which
comprises a rich graphical and textual notation. Both notations can be used to
declaratively define transformations without specifying how a transformation is
actually executed. Simple queries can be expressed by a (graphical or textual) pattern
matching language that allows matching instances, sets of instances and associations
with specific properties. For more complex queries the (additional) use of OCL 2.0
expressions is recommended. QVT-P transformations can be composed and extended
by inheritance or overriding which is needed for scalability and reusability. In contrast
with other transformation proposals (like graphs, XSLT, etc.), QVT-P has a smaller
learning curve because the transformations themselves are models based on standards
as MOF and OCL.

Next, we present an example of a T1 transformation using the graphical notation of
QVT-P and also an example of a T2 transformation in the textual notation of QVT-P.

4.1 Transformation T1: Merging Web Functionality and Architectural Models

Due to the complexity of the T1 transformation, it is helpful to build a map of
transformations that indicates the flow of execution and avoids redundancies in the
specification. In the transformation map each transformation is related to the rest by
means of three different relationships: (1) Composition – A transformation can be
composed by one or more transformations (2) Dependency – A transformation must be
executed before another transformation (3) Inheritance – A transformation extends or
overrides another transformation. We defined a simple UML profile to represent the
transformation map where a transformation is defined as a class stereotype and it is
represented by a circle (Fig. 2). The first transformation shown in the T1 map of Fig. 2
(SM2IM) goes from Subsystem Model to Integration Model.

Fig. 2. Transformation MAP of T1

The second transformation (CM2IM) maps from Configuration Model to Integration
Model. It is composed by a set of two types of transformations. The first one places
components into the modules (PlaceComp2Modules), and the second one transforms
each configuration component into one or more integration components
(CompCM2Comp IM). The last transformation Functional&CM2IM merges the

CM2IM

Subsystem2Module

UI2Module

Persistence2Module

Server2ModuleSM2IM

PlaceCompCM2Module PlacePersistentComp2Module

CompCM2CompIM CacheWebCM2CacheWebIM

UWE&CM2IM NavigationalUWE&CM2IM

ConceptualUWE&CM2IM

Functional&CM2IM

ProcessUWE&CM2IM

functional UWE models with the Configuration Model and introduces the functional
aspects into the components of the Integration Model.

Index_ServerPage2Integration

(sp1:ServerPage,n1:NavigationalNode,sp2:ServerPage,sp3:ServerPage)

sp1:ServerPage

sp2:ServerPage

name=ni

im:IntegrationModel

cm:ConfigurationModel

sp3:ServerPage

nm:NavigationModel name=nc

s1:WebService
name=”getBy”+na

pr:WebParame er t
name=” ” + na p
type=ta

a:Navigati nAttribute o
name= na
type=ta

l:NavigationLink

i:In ex p1:WebPort p2:WebPortd
name=ni

c:Navigat nNodeio
name=nc

ce1:WebConnectorEnd ce2:WebConnectorEnd
source target

co:WebConnector

Fig. 3. Example of T1: NavigationalUWE&CM2IM

An example using the QVT-P graphical notation for the transformation IndexServer
Page2Integration, which merges the navigation and configuration models, is shown in
Fig. 3. This transformation specifies how links between index nodes and other
navigation nodes in the UWE navigation model are merged into the WebSA
configuration model and it results in a corresponding part of the integration model.

A more general transformation which is not depicted here states that every
navigation node is merged into a ServerPage element. The more specialized
transformation of the example additionally generates for every NavigationAttribute of
an index element a WebService element with a WebParameter element corresponding
to the Navigation Attribute. The ServerPage elements corresponding to the Index and
the NavigationNode element are linked by a WebConnector element via Web-
ConnectorEnd and WebPort elements, respectively.

4.2 Transformation T2: Transforming from a PIM to a PSM

Once the transformation T1 is completely executed, the functionality is interwoven into
the architectural aspects in the Integration Model. Now, we can tackle the final step of
the WebSA development process, defining a set of PIM-to-PSM transformations for
each target platform such as J2EE, .NET or CORBA from the Integration Model. As is
specified in [9], in order to make a transformation from PIM-to-PSM, design decisions
must be made. These decisions are specified in the transformation T2 and taken in the
context of a specific implementation design. Therefore, T2 is made up by a set of
simple transformations in which one Integration Model component is transformed into
a platform specific component. To specify T2, it is necessary to have the metamodels
of the target platforms (e.g. the J2EE metamodel [10]).

Fig. 4 shows a QVT-P example of transformation T2 for J2EE using the textual
notation. It transforms each ServerPage component of the Integration Model specified
in the first domain into a JavaServerPage specified in the second domain. Furthermore,
this ServerPage has a set of WebServices, each one of them translatable into a Java
method, a Javascript method or an HTML form. In this example, we have chosen a
translation into an HTML form by the WebService2Form transformation defined in the
forall OCL sentence of the {when} part. In the same way, each View element related to

the ServerPage is translated into a JavaBean through the View2Bean transformation.
The PSMs obtained from the WebSA process are considered an implementation,
because they provide all the information needed to construct an executable system.

Fig. 4. Example of T2: ServerPage2J2EE

5 Conclusions and Future Work

Using an MDA approach with a transformation component in WebSA we achieve a
more automated process for the development of Web applications with a strong focus
on architecture modelling. WebSA complements the existing methodologies for the
design of Web applications. In this paper we present the development process of
WebSA and describe how models are integrated and generated based on model
transformations. For the specification of the transformations we choose QVT-P that
allows for visual and textual description of the mapping rules. Currently, we are
analyzing the possibilities to extend the Web development environments
VisualWADE2 and ArgoUWE3 to support architectural modelling and model
transformations. Further, we plan to test transformation specification and model
generation for complex Web applications addressing the scalability of the approach.

References

1. J. Bézivin. In Search of a Basic Principle for Model Driven Engineering, Novática nº1, June
2004, 21-24

2. S. Ceri, P. Fraternali, M. Matera: Conceptual Modeling of Data-Intensive Web
Applications, IEEE Internet Computing 6 (4), July/Aug. 2002, 20–30

3. J. Gomez, C. Cachero, O. Pastor: Extending a Conceptual Modelling Approach to Web
Application Design. In Proc. 12th CAiSE '00, LNCS 1789, Springer, 2000

4. A. Kleppe, J. Warmer, W. Bast: MDA Explained: The Model Driven Architecture, Practice
and Promise, Addison-Wesley, 2003

5. N. Koch, A. Kraus. The expressive Power of UML-based Web Engineering. In 2nd
IWWOST02, CYTED, June 2002, 105-119

6. N. Koch, A. Kraus: Towards a Common Metamodel for the Development of Web
Applications. In Proc. 3rd ICWE 2003, LNCS 2722, Springer Verlag, July 2003, 497-506

7. S. Meliá, C. Cachero. An MDA Approach for the Development of Web Applications, In
Proc. of 4th ICWE’04, LNCS 3140, July 2004, 300-305

8. S. Melía.. The WebSA Composition Model Profile. Technical Report TR-WebSA2,
http://www.dlsi.ua.es/~santi/pPublicaciones.htm, Nov. 2004

9. OMG. MDA Guide, OMG doc. ab/2003-05-01
10. OMG. UML Profile for Enterprise Distributed Object Computing Specification. OMG doc.

ad/2001-06-09
11. OMG. Request for Proposal. MOF 2.0 Query/Views/Transformations, OMG ad/2002-04-10
12. QVT Partners. Initial Submission for MOF 2.0 Query/View/Transformations RFP, QVT-

Partners, http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf, Aug. 2003

2 VisualWADE: http://www.visualwade.com
3 ArgoUWE: http://www.pst.informatik.uni-muenchen.de/projekte/uwe/argouwe.shtml

relation ServerPage2J2EE {
 domain { (IM.IntegrationModel) [(ServerPage) [name=nc,
 services = {(WebService) [name=on, type=ot]}, views = {(View) [name = vn]}]] }
 domain { (JM.J2EEModel) [(JavaServerPage) [name=nc,
 forms = {(Form) [name=on, type=ot]}, beans = {(JavaClass) [name = vn]}]] }
 when { services -> forAll (s | WebService2Form (s, F1set.toChoice()))

 views-> forAll (v | View2Bean (v, J1set.toChoice()))) }}

http://www.dlsi.ua.es/~santi/pPublicaciones.htm
http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf
http://www.visualwade.com/
http://www.pst.informatik.uni-muenchen.de/projekte/uwe/argouweshtml

