
Aspect-Oriented Modeling of
Access Control in Web Applications

Gefei Zhang Hubert Baumeister Nora Koch Alexander Knapp
Institut für Informatik, Ludwig-Maximilians-Universität München

{zhangg, baumeist, kochn, knapp}@pst.ifi.lmu.de

ABSTRACT
Access control is only inadequately supported by the common de-
sign methods for Web applications. We propose an aspect-oriented
technique for solving this problem. Our approach is an extension
of UML-based Web Engineering. UML state machines are used
to specify the access control rules of navigation nodes. Aspect-
oriented modeling helps modularize the design.

Keywords
Aspect-oriented modeling, Web engineering, access control, UML

1. INTRODUCTION
Both classic Web applications — information systems with Web
interface — and Web applications of the new generation, which
include implementations of complex business processes, face the
problem of access control, i.e., which user may access which page.
While nowadays there are mature techniques of implementing ac-
cess control in Web applications, modeling access control, how-
ever, is only inadequately supported by the common Web engineer-
ing methods [7, 8, 12]. Access control is commonly modeled as
part of the navigation structure of an application and thus the same
navigation structure, e.g., the authentication process, is repeated
for every element that needs access control. This introduces redun-
dancy into the models.

Access control is — in the same way as most of the other user mod-
eling features are — a cross cutting feature in Web applications.
They are not only orthogonal to the functionality of a Web appli-
cation, but also often apply to several classes of Web pages [5]. A
modular modeling would therefore be an important improvement
to the reusability of the design and the flexibility of the system.

We propose an aspect-oriented technique for modeling access con-
trol in Web applications. Our approach uses UML state machines to
specify access control rules for navigation nodes and benefits from
the modularity of aspect-oriented modeling. It is UML 1.x [19]
compliant since the model elements are defined by an extension of
the UML metamodel. The approach is explained in the context of

the UML-based Web Engineering method (UWE [14, 15]), but can
be easily embedded in other Web engineering methods.

The remainder of this paper is organized as follows: after a brief
introduction to UML-based Web Engineering in the following
Sect. 2, Sect. 3 describes our approach of modeling access control
in Web applications by means of an example. Section 4 discusses
some related work, before Sect. 5 outlines some future possibilities
of aspect-oriented modeling of Web applications.

2. UML-BASED WEB ENGINEERING
Similar to other Web engineering methods, UML-based Web En-
gineering (UWE) separates the concerns of a Web application in
different points of view: the content, the navigation structure, the
business processes, and the presentation. The distinguishing fea-
ture of UWE is its UML compliance since UWE is defined in the
form of a UML profile and an extension of the UML metamodel
(for more details see [15]).

In UWE, the content of Web applications is modeled in a con-
ceptual model where the classes of the objects that will be
used in the Web application are represented by instances of
�conceptual class� which is a subclass of the UMLClass. Rela-
tionships between contents are modeled by UML associations be-
tween conceptual classes.

The navigation model is based on the conceptual model and repre-
sents the navigation paths of the Web application being modeled.
A �navigation class� represents a navigable node in the Web ap-
plication and is associated to a conceptual class containing the in-
formation of the node. Navigation paths are represented by associ-
ations: An association between two navigation nodes represents a
direct link between them. Additional navigation nodes are access
primitives used to reach multiple navigation nodes (�index� and
�guided tour�) or a selection of items (�query�). Alternative
navigation paths are modeled by�menu�s.

A navigation model can be enriched by the results of the process
modeling which deals with the business process logic of a Web
application and takes place in the process model. The presentation
model is used to sketch the layout of the Web pages associated to
the navigation nodes. The interested reader is referred to [14] for
more details on the UWE notation and method.

As the navigation structure laid down in the UWE navigation model
specifies the access paths to the content of the Web application, the
navigation model is the appropriate starting point to investigate how
to integrate access control in UWE.

As an example, Fig. 1 shows the navigation model of an online
library which contains three kinds of publications: journals, books,
and conference proceedings. For each kind of publication there is
an index from which the publications of this kind can be reached.
A main menu from which the three indexes can be reached is also
provided; this is the home page of the Web application.

Figure 1: Navigation diagram of the online library.

3. THE APPROACH
Based on the navigation model of UWE and sticking to its princi-
ples of UML compliance, our approach uses UML state machines
to model access control in Web applications. In the following, we
illustrate our approach by the online library example.

Suppose the business policy of the online library is that the ac-
cess to the publications themselves should be reserved to registered
users only, while their indexes and the main menu should be ac-
cessible by everyone. Therefore, access to the publication must be
protected by a designatedLogOn process.

Note that an access control strategy built on such a business policy
requires the existence of a user model. Depending on the business
policy and the access control strategy, different types of user mod-
els can be built, e.g., role models, cognitive models, task models,
etc. Overlay models offer a simple and powerful structure to model
user characteristics [5], associating them directly to the domain in-
formation. For more details see the reference model for adaptive
hypermedia systems [16].

3.1 Using State Machines for Access Control
Simply adding theLogOn process to all navigation paths leading to
the publication nodes may not be sufficient. A characteristic of Web
applications is the possibility of navigation nodes being directly ac-
cessed via external links, thus undermining link-based access con-
trol. Therefore access control should be part of the behavior of the
protected nodes.

We extend UWE by associating to each navigation node a state ma-
chine which specifies the detailed behavior of the navigation node.

The idea is that when a navigation node is to be shown, its corre-
sponding state machine is executed. Only when the state machine
reaches stateShowing, the navigation node is shown to the user.
Each navigation node in the navigation model has a default state
machine which is shown in Fig. 2.

Figure 2: Default state machine of every navigation node.

In the UML 1.5 metamodel [19] each model element can be associ-
ated with some state machine. The model element is called context
of its state machines and the state machines are the behaviors of
their context (see Fig. 3). We introduce a constraint that in the
navigation model each navigation node must have exactly one state
machine:

context NavigationModel
inv: self. ownedElement->

select(e | e.oclIsKindOf(NavigationNode))->
forAll(a | a. behavior->size() = 1)

Figure 3: Excerpt of the UML metamodel: ModelElement and
StateMachine .

For navigation nodes that are to be protected, we can now refine
the default state machine by a state machine modeling the access
protection. The classesJournal, Book, and Paper, for example,
are subject to the same access control rules specified by the state
machine in Fig. 4 which describes the following behavior:

1. in the stateVerifyLogOn, the application checks if the user
has already logged on;

2. if so, the state changes toShowing, the required page is
shown;

3. if not, the state changes toLogOn, which means, as indicated
by the stereotype�node�, that the user is led to another nav-
igation node where he can input his user name and password;

4. afterLogOn, the state changes toVerifyPassword and the sys-
tem checks if the user name and the password are valid;

5. if they are valid, the state changes toShowing and the pro-
tected navigation node is shown;

6. otherwise the user is led to another nodeError which informs
him that the password is wrong and where he has the choice
between trying to log on again or canceling the action.

This way, we obtain a UML compliant specification of the access
control rules. Note that this specification is on a highly abstract
level. On this level, we do not really want to design implemen-
tation details, e.g., how to determine if a user is already logged

Figure 4: Refined state machine, specifying the access control
rule for a single navigation node.

in. The characteristic of this (naı̈ve) approach is that those navi-
gation nodes that are not subject to access control have a default
state machine that contains only one non-trivial state while the pro-
tected navigation nodes have more complex state machines which
are very similar to each other.

3.2 Making State Machines Aspect-Oriented
The näıve method works well as long as only one single navigation
node is subject to access control. However, in a real application
usually much more than one single page needs to be protected. In
the example of the online library, access to all three classesJournal,
Book, andPaper is reserved for registered users only. Moreover, all
of them have the same access rule given by the state machine shown
in Fig. 4.

However, since a state machine can have at most one context (cf.
Fig. 3), we have to replicate the state machine in Fig. 4 for each
classJournal, Book, andPaper.

To avoid this redundancy, we need to organize model elements in
a new dimension where reusability is not only achieved my means
of “vertical” generalization but also some “horizontal” relations.
Aspect-Oriented Modeling (AOM) provides such a horizontal rela-
tion: aspects. All elements of an aspect have common features.

Extension of the UWE Metamodel
We introduce the concept of aspects into UWE by extending the
UWE metamodel (see Fig. 5). Since an aspect is supposed to con-
tain navigation nodes, we define anAspect to be a subclass of
Package. The notation for an aspect is a package with the stereo-
type�aspect�. BetweenAspect andNavigationNode a new asso-
ciationcontains is introduced. Note thatcontains is anm : n rela-
tionship: An aspect contains (references to) one or more navigation
nodes, and a (reference to a) navigation node can be contained in
several aspects. The aspects of a navigation node are ordered. In
addition, also (references to) aspects may be contained in aspects.
The notation used for navigation nodes and aspects contained in
aspects is the same as the notation for UML classes and packages

imported by a package, i.e., navigation nodes and aspects can be
drawn inside an aspect (e.g., Fig. 8(a)).

Figure 5: Extension of the UWE metamodel byAspect .

Aspect State Machines
When several navigation nodes are subject to the same access
rules, an instance ofAspect that contains all of them is created.
Fig. 6(a) shows how aspectAccessControl contains the classes
Journal, Book, and Paper. In order to specify the common ac-
cess rules, we employ the association shown in Fig. 3 again: Since
Aspect is a subclass ofPackage, an aspect is also a model element
and can therefore have a state machine as itsbehavior, which we
use to define the common access control rules of all of the naviga-
tion rules contained in the aspect. Note how the access rules are
specified by the aspect resp. its state machine, the state machines
of the contained navigation nodes are trivial again.

In our running example, aspectAccessControl has a very similar
state machine, which is shown in Fig. 6(b), to the one that each of
the access controlled navigation nodes had in the naı̈ve approach
(see Fig. 4). The only difference is that instead ofShowing, which
meant that thecontext of the state machine should be shown to the
user, the state machine of an aspect has the stateOK.

The (informal) semantics is as follows: if a navigation node is con-
tained in an aspect, then before the stateShowing in its state ma-
chine can be reached and the node can be shown to the user the
state machine of the aspect is run. When the stateOK is reached,
the (trivial) state machine of the navigation node itself is run. In
other words, the navigation node specific state machine can be seen
as a substate ofOK and when the stateShowing is reached, the nav-
igation to this node is possible. This semantics is depicted in Fig. 7.

Compared to the naı̈ve method, the characteristic of the aspect-
oriented approach is therefore that the access control rule is no
longer defined in single nodes, but in the aspect containing them
and that all navigation nodes contained in the same aspect have the
same access control rules. This way the modeling of access con-
trol in Web applications is modularized. The rules thus need to be
specified onlyonceand redundant specification can be avoided.

The state machine of a navigation node does not need to be triv-
ial. Since a node specific state machine is understood as a substate
machine of the stateOK in the state machine of its aspect, complex
access control rules can as well be specified in it, as long as the rule
is also navigation node specific.

Suppose, e.g., that the policy of the online library is that while pa-
pers and journals can be downloaded as much as a registered user
likes, book downloads should be limited to, e.g., to a couple of

(a) AspectAccessControl contains the concerned nodes.

(b) State machine of the aspect.

Figure 6: Aspect AccessControl , specifying the rules of ac-
cess control for all three navigation classes:Journal , Book and
Paper .

books per month. Then the state machine of the classBook may be
extended to specify counting of downloaded books and checking if
the quota has been already exhausted.

Aspects of Aspects
Aspects can themselves be contained in other aspects (cf. Fig. 5).
For example, suppose that the online library limits the download
of both books and journals. Since this aspect refers to two classes,
we introduce a new aspectLimit that contains them and is itself
contained in aspectAccessControl. We define a state machine for
Limit to specify the limiting behavior. Figure 8(a) shows this aspect
and Fig. 8(b) shows its state machine. It is assumed that books and
journals are equally expensive, otherwise the state machine of the
aspectLimit can be extended so that different values are subtracted
from the user’s account.

The (informal) semantics of aspects of aspects is similar to that
of aspects of navigation nodes: when a navigation node contained
in an aspect is requested by the user, the system first looks recur-
sively for its aspect and its aspect’s aspect. The state machine of
the uppermost aspect is run first, until itsOK state invokes the state
machine of its sub-level aspects to run, and so on, until in the last
step the state machine of the navigation node itself is run, where in
the stateShowing the Web page is really shown to the user. In our

Figure 7: Weaving of aspectAccessControl with the default
state machine in Fig. 2.

(a) AspectLimit, contained inAccessControl.

(b) State machine of aspectLimit

Figure 8: Aspect Limit , specifying limiting of downloads of
books and journals.

example, first the state machine ofAccessControl is run, making
sure that the current user is logged in, and, in theOK state, the state
machine ofLimit is run, checking that the user still has sufficient

credit to download the publications, and, only in theOK state of
Limit, the state machine ofBook resp.Journal can be run, where in
the stateShowing the publication is shown to the user. Note that
if a user cancels the logon process the state machine stops without
having visited the stateOK. This means that the state machine of
the contained aspect, in this case aspectLimit, will not be run.

Multiple Aspects
The behavior of a navigation node or an aspect can be modified by
multiple aspects (see Fig. 5). The order in which the aspects are
applied is given by the order of the aspects in thecontains associa-
tion.

If, for example,Journal andBook are to be affected by the aspect
Limit while Book and Paper are to be affected by another aspect
Favorite (see Fig. 9), it is necessary to fix the ordering in which
these two aspects are applied toBook, e.g. first the aspectLimit and
secondFavorite. The state machine associated to the aspectFavorite
would annotate the book or paper with a favorite icon if the topic
of the book or the paper matches with any of the favorite topics of
the user.

Figure 9: AspectsAccessControl , Limit , and Favorite .

4. RELATED WORK
In the following we compare our proposal to other Web engineering
approaches as well as different work in the aspect-oriented field
that uses packages, collaborations, activities, and state machines to
model aspects.

The OO-H [10] approach proposes the use of personalization rules
to model access control aspects. These rules are associated to the
filters included in the navigation model. Filters are applied to nav-
igation links. Thus each link requiring access control needs the
definition of the corresponding filter. This means that if a protected
navigation node is reachable by several links, each link needs to
define a filter for access control. This introduces additional redun-
dancy, which opens the door for bugs, like forgetting a required
filter on a link accessing the protected node. Conversely, our ap-
proach avoids this redundancy because the access control is associ-
ated with the navigation node and not with navigation links.

Other approaches with similar redundancy problems are
OOHDM [6] and WebML [8]. OOHDM separates access
control from navigation by adding a wrapper class for each
navigation node which requires access control, but does not treat
access control as a cross-cutting feature. WebML provides a
predefined login operation, which implements the verification of
the identity of a user accessing the site. More complex rules for
access control, however, require definition of externally defined
operations.

In WSDM [7] an adaptation specification language is defined that
allows designers to specify at the level of the navigation model
which adaptations of the navigation structure can be performed at
runtime. Although a visual representation of the rules is missing,
rules are defined orthogonally to the navigation functionality as de-
signers are allowed to define rules on one single element (node,
link) and on group of elements, but these rules only pertain to the
navigation structure and not to the general behavior of the naviga-
tion node. In particular, the rules do not seem to be able to express
the triggering of some action when a node is accessed.

The use of aspect-oriented techniques for modeling access control
concerns has been suggested by Ray, Georg, and France [11]: The
approach is based on UML templates and UML collaborations.
Weaving of aspects with the base model is primarily obtained by
merging model elements with the same name, but can also be influ-
enced by composition directives [20]. In fact, our use of composite
states for weaving an aspect state machine with a base state ma-
chine can be seen as a comparable merging technique.

Mahoney et al. [18] introduce a technique for weaving aspect
state machines in the “Aspect-Oriented State Machine Framework”
(AOSF [9]): Two state machines are combined into orthogonal re-
gions of a concurrent composite state. Triggering events in the two
state machines can be related by textual annotations such that re-
lated transitions can be taken jointly or in a specified order. In
contrast to this method, we use non-concurrent composite states to
wrap additional behavior around base behavior, which leads to a
simpler composition mechanism for non-intrusive aspects. Declar-
ing all events of the wrapping state machine to be executed before
triggering transitions in the base state machine would lead to quite
complicated annotations.

Similar to our approach of weaving aspect state machines by run-
ning them as submachines, Barros and Gomes compose activity di-
agrams by defining an addition operation on activity diagrams [2].
Since no metamodel, and, in particular, no order of aspect weaving,
is provided, it seems problematic to define multiple aspects.

The organization of aspects as packages is reminiscent of the struc-
turing of composition filters [4] where sequences of input and out-
put filters can be combined.

SecureUML [17, 3] is a UML profile extending UML with a declar-
ative description of the role-based access policies of protected ob-
jects. In SecureUML the access control policy of protected objects
is described by authorization constraints. An authorization con-
straint contains a precondition that must hold before a protected
object can be accessed. In contrast to SecureUML, our approach
uses UML state machines to visualize the steps to be done to satisfy
the authorization constraints, e.g., by modeling the login process.
Thus, our approach is complementary to SecureUML.

Jürjens [13] defines a UML profile, UMLsec, for model based secu-
rity engineering. While UMLsec is focused on data confidentiality
and integrity, our approach concentrates on modeling access con-
trol in Web applications.

5. CONCLUSIONS AND FUTURE WORK
We have used aspect-oriented techniques to model access control
in Web applications. Access control is associated with navigation
nodes where each navigation node has a state machine describing
how to gain access to that node, e.g., by first authenticating to the

Web application. Access control is a cross-cutting feature of Web
applications. Navigation nodes using the same rules for authentica-
tion are grouped under the same aspect. This facilitates modifica-
tion of access rules for navigation nodes without having to interfere
with the functional model of the Web application.

There are other cross-cutting concerns in Web-applications be-
sides access-control. We plan to apply the techniques developed
in this paper to requirement elicitation, process modeling, and per-
sonalization. Currently we are working on an implementation of
the aspect-oriented extensions of UWE in ArgoUWE, a UML 1.x
based CASE tool that we have developed to support modeling Web
applications with UWE [14].

Furthermore, we plan to integrate the presented approach with the
authorization constraints of SecureUML [17, 3] and to develop a
formal semantics of the aspect-oriented extension of UWE. This
will allow us to use model-checking techniques to verify that the
access rules satisfies the corresponding authorization constraints.

Acknowledgments.
This work has been partially supported by the EU project AG-
ILE (IST-2001-32747). We would also like to thank Axel Rausch-
mayer for fruitful discussions related to this paper, and the anony-
mous referees for helpful hints.

6. REFERENCES
[1] T. Baar, A. Strohmeier, A. Moreira, and S. J. Mellor, editors.

Proc. 7th Int. Conf. Unified Modeling Language (UML’04),
volume 3273 ofLect. Notes Comp. Sci.Springer, 2004.

[2] J. P. Barros and L. Gomes. Towards the Support for
Crosscutting Concerns in Activity Diagrams: a Graphical
Approach. InProc. 4th Wsh. Aspect-Oriented Modeling with
UML, San Francisco, 2003.

[3] D. Basin, J. Doser, and T. Lodderstedt. Model Driven
Security for Process-Oriented Systems. InProc. 8th ACM
Symp. Access Control Models and Technologies
(SACMAT’03), pages 100–109. ACM, 2003.

[4] L. Bergmans and M. Aksit. Composing Crosscutting
Concerns Using Composition Filters.Commun. ACM,
44(10):51–57, 2001.

[5] P. Brusilovsky. Methods and Techniques of Adaptive
Hypermedia.User Model. User-Adapt. Interact.,
6(2–3):87–129, 1996.

[6] J. Cappi, G. Rossi, A. Fortier, and D. Schwabe. Seamless
Personalization of E-Commerce Applications. In H. Arisawa,
Y. Kambayashi, V. Kumar, H. C. Mayr, and I. Hunt, editors,
Proc. ER 2001 Workshops, HUMACS, DASWIS, ECOMO,
and DAMA. Revised Papers, volume 2465 ofLect. Notes
Comp. Sci., pages 457–470. Springer, 2001.

[7] S. Casteleyn, O. De Troyer, and S. Brockmans. Design Time
Support for Adaptive Behavior in Web Sites. InProc. 18th

ACM Symp. Applied Computing (SAC’03), pages
1222–1228. ACM, 2003.

[8] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
and M. Matera.Designing Data-Intensive Web Applications.
Morgan Kaufmann, 2003.

[9] T. Elrad, O. Aldawud, and A. Bader. Aspect-Oriented
Modeling — Bridging the Gap Between Design and
Implementation. InProc. 1st ACM SIGPLAN/SIGSOFT Int.
Conf. Generative Programming and Component Engineering
(GPCE’02), pages 189–202. ACM, 2002.

[10] I. Garrigós, J. Ǵomez, and C. Cachero. Modelling Dynamic
Personalization in Web Applications. In J. M. C. Lovelle,
B. M. G. Rodŕıguez, L. J. Aguilar, J. E. L. Gayo, and M. del
Puerto Paule Ruı́z, editors,Proc. 3rd Int. Conf. Web
Engineering, volume 2722 ofLect. Notes Comp. Sci., pages
472–475. Springer, 2003.

[11] G. Georg, R. B. France, and I. Ray. An Aspect-Based
Approach to Modeling Security Concerns. In J. Jürjens,
M. V. Cengarle, E. B. Fernandez, B. Rumpe, and R. Sandner,
editors,Proc. Wsh. Critical Systems Development with UML,
pages 107–120. Institut für Informatik, Technische
Universiẗat München, 2002.

[12] J. Gómez, C. Cachero, and O. Pastor. Extending a
Conceptual Modelling Approach to Web Application Design.
In B. Wangler and L. Bergman, editors,Proc. 12th Int. Conf.
Advanced Information Systems Engineering (CAiSE’00),
volume 1789 ofLect. Notes Comp. Sci., pages 79–93.
Springer, 2000.

[13] J. J̈urjens.Secure Systems Development with UML. Springer,
2004.

[14] A. Knapp, N. Koch, G. Zhang, and H.-M. Hassler. Modeling
Business Processes in Web Applications with ArgoUWE. In
Baar et al. [1], pages 69–83.

[15] N. Koch and A. Kraus. Towards a Common Metamodel for
the Development of Web Applications. In J. M. C. Lovelle,
B. M. G. Rodŕıguez, L. J. Aguilar, J. E. L. Gayo, and M. del
Puerto Paule Ruı́z, editors,Proc. 3rd Int. Conf. Web
Engineering (ICWE’03), volume 2722 ofLect. Notes Comp.
Sci., pages 497–506. Springer, 2003.

[16] N. Koch and M. Wirsing. The Munich Reference Model for
Adaptive Hypermedia Applications. In P. De Bra,
P. Brusilovsky, and R. Conejo, editors,Proc. Adaptive
Hypermedia and Adaptive Web-Based Systems (AH’02),
volume 2347 ofLect. Notes Comp. Sci., pages 213–222.
Springer, 2002.

[17] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security.
In J.-M. J́eźequel, H. Hußmann, and S. Cook, editors,Proc.
5th Int. Conf. Unified Modeling Languageng Language
(UML’02), volume 2460 ofLect. Notes Comp. Sci., pages
426–441. Springer, 2002.

[18] M. Mahoney, A. Bader, T. Elrad, and O. Aldawud. Using
Aspects to Abstract and Modularize Statecharts. InProc. 5th

Wsh. Aspect-Oriented Modeling, Lisboa, 2004.

[19] Object Management Group. Unified Modeling Language
Specification, Version 1.5. Specification, OMG, 2003.
http://www.omg.org/cgi-bin/doc?formal/
03-03-01 .

[20] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. M.
Bieman. Model Composition Directives. In Baar et al. [1],
pages 84–97.

