
MDD4SOA: Model-Driven Service Orchestration

Philip Mayer1, Andreas Schroeder1, Nora Koch1,2

1 Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

2 Cirquent GmbH, Arabellastr. 17, 81925 München, Germany

[mayer, schroeda, kochn]@pst.ifi.lmu.de

Abstract
Service-Oriented Architectures (SOAs) have become

an important cornerstone of the development of
enterprise-scale software applications. Although a
range of domain-specific languages and standards are
available for dealing with such architectures, model-
driven approaches starting from models written in an
established modelling language like UML and including
the ability for model transformation (in particular, for
code generation) are still in their infancy. In this paper,
we show (1) how our UML-based domain-specific
language for working with SOA artefacts, UML4SOA,
can be used for modelling service orchestrations, and
(2) how to exploit so-designed models in the MDD4SOA
approach to generate code in multiple languages,
among them BPEL and WSDL, Java, and the formal
language Jolie. We use a case study for illustrating this
approach. Our main contributions are an easy-to-use,
conservative extension to the UML2 for modelling
service orchestrations on a high level of abstraction,
and a fully automated, model-driven approach for
transforming these orchestrations down to code.

1. Introduction

Service-Oriented Computing, and in particular Web
services have spawned a considerable number of
languages and standards for dealing with the various
artefacts of SOA systems such as service descriptions,
orchestrations, policies, and non-functional properties.
Although, as a whole, SOA-based systems promise high
flexibility, improved maintainability, and simple re-use
of functionality, achieving these properties requires an
understanding not only of the individual artefacts of the
system, but in particular, of their integration – in other
words, the complete picture of the system.

Thanks to their graphical nature and high level of
abstraction, model-driven approaches are ideal for
visualizing the integration of software systems while
still maintaining the semantic link between the
individual artefacts. Due to these properties, model-
driven approaches are already in use in various

programming paradigms; they are especially prominent
in object-oriented and database modelling, where round-
trip engineering is available. However, service-oriented
design still falls short of effective and comprehensive
domain-specific modelling languages, and code
generation tools which exploit the (graphical) models.

In an attempt to close this gap, we have introduced
MDD4SOA (Model-Driven Development for Service
Oriented Architectures; for a first excerpt, see [1]), an
integrated UML2-based SOA modelling approach which
includes an UML profile (UML4SOA) and model
transformation tools for generating code in various
target languages. MDD4SOA has been developed as
part of the EU project Sensoria [2] and deals with the
modelling of structural aspects of services, service
orchestrations, policies, and other non-functional
properties [3].

In this paper, we introduce the full metamodel and
profile of the behavioural aspects of UML4SOA; in
particular, of the composition of individual services.
This composition has come to be known as service
orchestration, and resides at the very heart of service-
oriented computing.

In order to support software engineers with intuitive
and easy to adopt design and implementation techniques
for service orchestrations, we (1) extend the reach of
UML2 to the modelling of service composition, and (2)
exploit so-designed models for creating executable
systems, in particular through code generation.

UML is a well-known and mature language for
modelling software systems, however it is strenuous
right now to model SOA artefacts with UML2, as native
support for service and service orchestration concepts is
missing. We therefore describe a UML extension for
SOA – called the UML4SOA profile – which is a high-
level domain specific language for modelling service
orchestrations. One of the main goals of UML4SOA is
minimalism and conciseness: service engineers should
have to provide only as much information as necessary
for the generation of code, and at the same time as little
as possible in order to keep diagrams readable.

Regarding the second point, we show the
transformation mechanisms of MDD4SOA which
convert from UML4SOA models to various executable
languages based on MDA principles: Starting from the
UML platform independent model (PIM), we transform
the model to an intermediate PIM, which, in turn, is
converted to the platform-specific models (PSMs) of our
target languages. In particular, we target the current
Web services standards WS-BPEL (Web Service
Business Process Execution Language) [4] and WSDL
(Web Service Description Language) [5], the Java
language from the object-oriented paradigm [6], and
also formal languages which may serve as input to
model checkers; in this case, Jolie, which is based on the
SOCK process calculus [7]. The main aim is the
generation of comprehensible and maintainable code.
Our UML profile and our transformations have been
implemented as plug-ins for several UML modellers and
the Eclipse platform [8].

This paper is structured as follows: We discuss
current problems with modelling service orchestration
using the UML in section 2, and present our UML2
profile to deal with these problems in section 3. Section
4 then discusses a fully automatic transformation for
creating code out of UML2 orchestrations modelled as
presented in section 3. We put our work into perspective
in section 5, and conclude our findings in section 6.

2. Modelling Orchestration in Plain UML

UML2 is accepted as the de facto standard for the
modelling of software systems. We select UML for
modelling service-oriented software as UML provides
an extension mechanism for defining so-called domain
specific modelling languages; secondly, there is good
tool support for the UML itself and additions defined
through the extension mechanism. For modelling the
structure of SOAs, UML2 component diagrams and
deployment diagrams can be used. UML4SOA includes
model elements for these static aspects, namely services,
service descriptions and service interfaces. For further
details the reader is referred to [3].

More challenging is the task of modelling the
behaviour of service-oriented systems, in particular the
orchestration of services. Service orchestrations
introduce a set of key distinguishing concepts: partner
services, message passing among requester and provider
of services, long-running transactions, compensation,
and events.

We select UML2 activity diagrams for the modelling
of service orchestrations as we assume that business
modellers are most familiar with this kind of dynamic
behaviour diagrams. Other workflow languages use
similar graphical representations and petri-net like
semantics [9].

Figure 1: Thesis management modeled with plain UML

As a running example to illustrate our approach, we
have chosen an orchestration scenario from the
eUniversity domain: we model the management process
of a student thesis from the announcement of a thesis
topic by a tutor to the final assessment and student
notification. This example has been taken from one of
the case studies of the Sensoria project [2].

In this orchestration scenario, a tutor provides a
thesis topic that is announced to a blackboard regularly
read by students. Once a student decides to pick up the
topic, it is removed from the blackboard, and the student
is registered at the examination office as working on this
thesis topic.

The student now provides regular updates to the
thesis, while the tutor is able to read the status. At the
same time, the exercise office may request the
cancellation of the thesis if e.g. the deadline for thesis
submission elapsed. Upon cancellation of the thesis
processing, the thesis topic is freed and re-posted to the
blackboard, and the student is informed of the abnormal
cancellation.

Once the thesis is completed, an assessment of the
thesis is requested from the examination office. This
request is dispatched by the office to the authorized
supervisor of the thesis. Finally, the student is notified
once the assessment of the thesis is received.

Modelling service orchestrations in plain UML
(Figure 1) reveals several important shortcomings,
leading to the introduction of (unreadable) technical
constructs. In particular, the key distinguishing concepts
of service compositions discussed above are missing.
For example:
• It is not possible to restrict the set of valid callers –

as needed e.g. to ensure that only the examination
office is able to cancel the thesis – on an UML
AcceptCallAction. All restrictions must be imple-
mented manually (area 1).

• Temporally enabled event handlers must be disabled
using technical constructs. Russel et al. [10] suggest
using InterruptibleActivityRegions containing the
tasks to disable, and interrupting edges for normal
task completion. Although this may be the best
achievable solution with plain UML activity
diagrams, using these technical constructs makes
diagrams harder to understand (areas 2a and 2b).

• Similarly, the compensation for an activity is not
associated directly with it, but programmed within
explicit compensation logic. In addition,
programming the compensation logic for more than
one compensable activity is a tedious and error
prone task [2] (areas 3a and 3b).

Due to these shortcomings, modelling service
orchestrations with plain UML is a cumbersome task. At
the same time, the resulting UML models are difficult to
transform to orchestration skeletons for established

service platforms, as the patterns used to handle the
issues named above need to be recognized appropriately.

3. Modelling with UML4SOA

To overcome the difficulties of modelling services
with plain UML, we extend the UML2 with service-
specific model elements. Our UML extension is built on
top of the Meta Object Facility (MOF) metamodel [11]
and defined as a conservative extension of the UML
metamodel. For the new elements of this metamodel, a
UML profile is created using the extension mechanisms
provided by UML2. The principle followed is that of
minimal extension, i.e. to use UML constructs wherever
possible and only define new model elements for
specific service-oriented features and patterns making
diagrams simple, consistent and easy to understand.

The resulting UML profile for service-oriented
architectures provides model elements for structural and
behavioural aspects, business goals, policies and non-
functional properties of SOAs.

In this paper we present the metamodel (section 3.1)
and the elements of the service orchestration part of the
profile (section 3.2); for a complete overview of the
extension the reader is referred to [3]. The orchestration
scenario from the eUniversity domain is used to
illustrate our approach and compare it to the model built
with plain UML.

3.1. UML4SOA Metamodel
For modelling orchestrations in UML, we add

specific service-aware elements for activity diagrams.
The metamodel depicted in Figure 2 shows these model
elements, their relationships with UML elements and the
following relationships among each other:
• Orchestrations contain a root scope, which in turn

contains all necessary elements for modelling the
workflow of the orchestration.

• Four specialized actions have been defined for
sending and receiving data.

• Service interactions may have interaction pins for
sending or receiving data.

• Compensation edges link orchestration activities to
actions or scopes that model the compensation.

• Specific compensation actions are used to trigger
compensation of scopes or other actions.

• Event and exception handlers are used to handle
emerging events and abnormal conditions,
respectively.

Hence, the focus of the UML4SOA metamodel is on
service interactions, long running transactions,
compensation, event-, and exception handling.

This metamodel and the corresponding UML2
profile constitute the basis for model transformations

and code generation defining a model-driven
development process.

3.2. UML Profile for SOA
In order to be able to use the elements of the

UML4SOA metamodel in UML2 tools, a UML profile
must be specified by means of stereotypes and their
relationships to the classes of the UML2 metamodel.
The objective is to have a distinct graphical
representation and clear semantics for service-oriented
concepts. The orchestration part of UML4SOA
presented in this paper features constructs for modelling
behaviour of SOAs, i.e. stereotypes for service
interaction based on the exchange of messages as well
as compensation of services. A brief description of the
most distinguishing stereotypes is given below.
• orchestration: A UML Activity for modelling

service orchestrations.
• scope: A UML StructuredActivityNode that may

have associated event, exception and compensation
handlers.

• send: A UML CallBehaviourAction that sends a
message. Does not block.

• receive: A UML AcceptCallAction, receiving a
message. Blocks until a message is received.

• receive&send: A UML AcceptCallAction/
CallBehaviourAction, denoting a sequential order of
receive and send actions.

• send&receive: A UML CallBehaviourAction/

AcceptCallAction, denoting a sequential order of
send and receive actions.

• lnk: A UML Pin that holds a reference to the service
involved in the interaction.

• snd: A UML Pin that holds a container with data to
be sent.

• rcv: A UML Pin that holds a container for data to be
received.

• exception: A UML ActivityEdge to associate
exception handlers to actions and scopes.

• raise: A UML Action that causes normal execution
flow to stop and invokes associated exception
handlers.

• compensation: A UML ActivityEdge to add
compensation handlers to actions and scopes.

• compensate: A UML Action that triggers the
execution of the compensation defined for a scope
or activity.

• compensateAll: A UML Action that triggers
compensation of the actually compensated scope
(i.e. calling compensation on all subscopes in the
reverse order of their completion). Can be inserted
only in scopes defined for compensation.

• event: A UML ActivityEdge to associate event
handlers to actions and scopes.

Note that we do not directly use the UML
metamodel elements for calls and events as well as their
defined pins, but instead define our own stereotypes.
This is due to the fact that a) the UML elements do not
have the required data flow semantics we need, i.e.

Figure 2: UML4SOA Metamodel (UML metaclasses in grey)

visualized data flow direction is inverse to a service call,
b) they have a limited number of input/output pins, and
c) they are not always supported by UML tools.

Figure 3 shows the example orchestration scenario
again, this time modelled with the profile discussed
above. The example shows that the control flow
complexity is reduced considerably. In particular, all
loops introduced for technical reasons become
superfluous. Similarly, as UML4SOA offers specialized
event edges, the use of exception edges to model
completion of activity regions with event handlers
become unnecessary.

It is important to note that the metamodel introduced
above only defines the new elements required for
service orchestration and leaves everything else to the
UML: the diagram shows how elements from the UML
(in this case, actions, structured activity nodes, and
branches) have been combined with new elements for
service orchestrations (in this case, stereotypes for
scopes and service interactions as well as new elements
for exception, event- and compensation handling). Also
note that initial and final nodes may be omitted in
scopes if the control flow is clear.

Using the service concepts defined in the

UML4SOA profile reduces the number of edges from 32
to 23 and the number of decision nodes from nine to
four, hence allowing the service modeller to focus on
implementing service business logic instead of technical
constructs.

Thus, the value of the produced diagrams is
increased for both human reading and automatic
processing: the former profits from the conciseness and
explicit – but minimalistic – labelling of constructs,
while the latter profits from the simpler model structure.

The UML2 profile defined above is available as
plug-ins several UML modelling tools [8].

4. Model Transformations in MDD4SOA

The previous section has shown a profile for
modelling SOA orchestrations using UML2 activity
diagrams. These models already have great value for
communicating the orchestration workflow. However,
our MDD4SOA approach also features a set of model
transformations which are able to transform the
UML4SOA models to platform-specific models (PSMs)
of the target languages, from which, in turn, code can be
generated.

Figure 3: Thesis management modeled with UML4SOA

The first step in our transformation approach is the
conversion of the UML2 PIM models to an intermediate
PIM model, which we call the Intermediate
Orchestration Model (IOM). This step deals with
analyzing the control flow of the UML4SOA models.
From the IOM model, we then transform to PSMs, in
particular, the Web service standards WS-BPEL and
WSDL, the object-oriented language Java, and the
formal language Jolie.

The complete transformation process is shown in
Figure 4.

Figure 4: Transformation Process

The transformers are available as plug-ins for the
Eclipse platform and are likewise available from [8].

4.1. Transforming to the Intermediate
Orchestration Model (IOM)

The main difficulty in converting UML activity
diagrams to PSMs is the structural mismatch between
the source and target models. The executable languages
we are transforming to do not follow the same graph-
based modelling approach as UML; instead, they are
based on structured, hierarchical models.

One exception is BPEL, where we have two
alternatives for creating code: The first alternative
employs a graph-based BPEL process, i.e. creates a
BPEL process with a flow activity as its root and only
structured activity; the control nodes of UML2 –
decisions, forks, and loops – are replaced with edge and
activity guards. This yields another graph similar to the
activity diagram; however, it ignores plenty of BPEL
activities dedicated to structuring the orchestration,
which would render it more readable. Indeed, with
BPEL 2.0 there seems to be a shift towards a more
structured approach to the modelling of processes, as
more structuring activities have been added. Therefore,
we employ the same approach we need for the Java and
Jolie languages – in this case, creating a structured
BPEL process by converting the UML2 activity
constructs to their BPEL equivalents – if/elseif for
decisions, flow for forks, and repeatUntil for loops.

Identifying Partitions. The main focus of our

transformation from the UML2 (PIM) to the IOM (PIM)
thus lies on elements which structure control flow. For
example, branches and loops are modelled in UML2
using the same elements (decisions/merges); their
meaning therefore needs to be inferred from the context,
i.e. the number of edges connected to them and their
position within the control flow. Thus, the MDD4SOA
model transformer employs a rule-based approach to the
conversion, which uses a partitioning algorithm to group
UML activity diagram nodes for implementation by a
certain IOM structured activity. The IOM structured
activities are generalized versions of those found in
structured programming languages, such as a loop
construct, a branching construct, and a construct for
parallel execution.

There are three types of partitions which need to be
identified in the UML source:
• Branches. Branching the control flow is modelled in

UML with decision and merge nodes. This is
converted to an IOM branch construct with multiple
guarded paths.

• Loops. We assume loops in the control flow to be
modelled in UML with merge and decision nodes,
with one control path leading from the decision at
the end to the merge at the beginning. This is
converted to an IOM loop construct with an
appropriate guard.

• Parallel flows. Parallel execution is modelled in
UML by using fork and join nodes. This is
converted to an IOM parallel construct with
multiple paths.

Besides these induced partitions, we also exploit
explicit structuring mechanisms. The UML4SOA profile
already introduces the concept of a scope, which greatly
eases structuring of activity diagrams and can be found
in all of our target languages. The UML profile also
allows handlers – exception, compensation, and event –
to be attached to a scope. In IOM, they are attached to
scopes as well; in this case, the transformation to actual
PSMs is more involved.

Simple activities, such as receive and send or
compensation handling do not pose problems in the
transformations and are simply converted to generic
equivalents in the IOM model.

As an example, the eUniversity scope
thesisInProgress contains a loop which encloses
one action, namely receiving the message
updateStatus from the student. The loop itself has the
exit condition thesis.status.completed. The
complete scope can therefore be converted to an IOM
loop construct with the same guard as the loop
condition.

Partners of the Orchestration. A service

orchestration does not stand alone – it interacts with
other services and is itself invoked by clients as a
service. Thus, we also need to look at generating
descriptions of partner services and the service provided
by the orchestration itself, and where to retrieve this
information from the input model.

Basically, there are two options for describing
services along with their operations: One option is to
specify services and operations explicitly, and
referencing them from within the orchestration. Another
option is to infer the services and the roles they play in
the process from the orchestration specification itself.
This approach is particularly suited for rapid
prototyping.

Our approach uses the second option, i.e. it is not
necessary to specify any services or operations
beforehand; they can simply be used as appropriate in
the initial UML diagram. The UML-2-IOM transformer
then translates this information into a generic interaction
model. How a service is used in the orchestration
defines its type:
• Some services are partners, i.e. the services are

external to the orchestration and are called upon to
perform some action.

• Some services are performed by the orchestration
itself, i.e. the orchestration implements the
functionality and offers it to partners.

The type is inferred from the use of the orchestration
actions send, receive, send&receive and receive&send.
There are three possibilities:
• If the orchestration only uses send (and

send&receive) on a service, the service is clearly
external to the orchestration and the orchestration
itself is a client of the service.

• If the orchestration only uses receive (and
receive&send) on a service, the service is offered by
the orchestration itself and the partner calls upon the
service to perform some action.

• Thirdly, the orchestration may use both receive and
send on a service. In this case, a flow analysis is
employed to find the initial interaction with the
service. If the first interaction starts with a receive,
we assume that the orchestration itself implements
the service and then uses call-backs to send
information back to the client. If the first interaction
starts with a send, we assume that the service is
external to the orchestration and uses call-backs to
send information back to the orchestration.

The IOM metamodel contains appropriate classes for
each case to be converted later to PSMs.

In the eUniversity example, all three types are
present. For example, the bboard partner is only
invoked by the orchestration, but never calls back on its
own; it is therefore an instance of the first type, i.e. it is
used by the orchestration but defined somewhere else.
Another example is the eoffice partner. First, the
orchestration sends the student registration to the
examination office (thus acting as a client); later on,
however, it allows a callback for cancelling the thesis,
thus acting as a server. Due to this chain of events, the
eoffice partner is an instance of the third type.

The MDD4SOA code generator uses a model-2-
model approach, starting off with an EMF [12] model of
the UML2 activity diagram, which can be read from
XMI output which many UML modellers are able to
produce, and converting to an IOM EMF model. Later
on, the IOM EMF model is transformed again to EMF
models of the actual target language, for example BPEL
and WSDL, which can then be serialized to actual code.

4.2. Transforming to BPEL
As an example for a complete transformation chain,

the following subsections details our code generation
approach for converting UML4SOA models to BPEL
and WSDL.

IOM to BPEL. Although most of the hard work of

identifying the UML2 graph structures has already been
handled in the UML-2-IOM transformation discussed
above, transforming our intermediate object model to
BPEL code still requires some work. First of all, the

structured elements identified need to be converted
appropriately:
• Branches: In BPEL, branching is modelled with an

if structured activity which may contain elseif
branches for alternatives.

• Loops: The equivalent BPEL construct for the
original UML2 loops is the RepeatUntil loop, which
runs at least once.

• Parallel flows: In BPEL, parallel flow is handled
through the flow construct, which contains
sequences for modelling sequential behaviour inside
each of the paths of the original UML2 fork/join
group.

The scope concept is readily available within BPEL
and can be employed as such. Handlers attached to an
IOM scope are defined in BPEL within the scopes, thus
the actions defined within the handlers in UML need to
be moved appropriately.

Having handled structural aspects, there are also

numerous smaller conversions to be done. As an
example, we discuss handling of partner interaction
actions. The UML4SOA profile discusses four actions
for interactions with other services:
• Send. The send action is intended for sending a call

to an external partner. It is modelled as a BPEL
invoke with only an input variable.

• Receive. The receive action is intended for receiving
incoming calls from external partners. It is modelled
as a BPEL receive.

• Send&Receive. The send-and-receive action is
intended for invoking an operation on a partner and
receiving a result. It is modelled as a BPEL invoke
with both an input and output variable.

• Receive&Send. The receive-and-send action first
waits for an incoming call and then sends back the
value of a predefined variable. It is modelled as a
sequence of BPEL receive and reply actions.

As pointed out above, conversion of other activities
such as compensation invocations and exception raising
are simply converted to their BPEL equivalents same as
the interactions.

WSDL Generation. As pointed out above, an

orchestration – and therefore also a BPEL process –
does not stand alone. Therefore, we also need to
generate the appropriate WSDL documents from the
IOM model. Regarding the four types of interactions
discussed above, we can transform them to WSDL as
follows:
• The orchestration as a client: A WSDL service

description needs to be generated which is to be
implemented by the external service, and used by
the BPEL process for invocation.

• The orchestration as a server: A WSDL description
needs to be generated which is to be implemented
by the BPEL process itself.

• The orchestration is both server and client: In this
case, we need to generate a service description
which contains two port types – one for the service,
and one for the client containing the call-backs.

Figure 6: WSDL code for service student

<portType name="bboard_service_porttype">

 <operation name="postTopic">
 input me="< na msg_input_topic"/>
 </operation>

 <operation name="removeTopic">
 <input name="msg_input_topic"/>
 </operation>

</portType>

<partnerLinkType
 name="bboard_partnerLinkType">

 <role
 name="bboard_role_service"
 portType="bboard_service_porttype"/>

</partnerLinkType>

Figure 5: BPEL code for scope registration

<scope name="registration">

 <!-- Compensation Handler -->
 <compensationHandler>
 <!-- compensation code -->
 </compensationHandler>

 <!-- Actual scope code -->
 <sequence
 name="sequence inside registration">

 <receive name="acceptTopic"

operation="acceptTopic"
partnerLink="student"
variable="student"/>

 <invoke name="removeTopic"

operation="removeTopic"
outputVariable="topic"
partnerLink="bboard"/>

 <invoke name="registerStudent"

inputVariable="thesis"
operation="registerStudent"
outputVariable="student&topic"
partnerLink="eoffice"/>

 </sequence>

</scope>

Transformation Examples. As an example for the
transformation, Figure 5 shows the BPEL code
generated for the scope registration from the example
introduced in the previous two sections. Namespace
prefixes and some code have been removed for
readability.

To give an overview of the created WSDL code,
Figure 6 shows the relevant code generated for the
partner bboard which has one port type and two
operations, and is to be implemented by an external
service and used by the orchestration.

5. Related Work

Several other attempts exist to define UML
extensions for service-oriented systems. Most, however,
require very detailed UML diagrams from designers, try
to force other languages (like BPEL) on top of UML, or
do not provide extensions to model vital parts of
orchestrations such as compensation handling.

The UML 2.0 profile for software services [13]
provides an extension for the specification of services
addressing structural aspects, but neither behaviour of
services nor orchestration of services is addressed in that
work.

The work of Skogan et al. [14] has a similar focus as
our approach, i.e. a model-driven approach for services
based on UML models and transformations to
executable descriptions of services. The main difficulty
in the use of this approach lies in modelling the
composition of services. Although they identify patterns
to ease the transformations, the approach lacks an
appropriate UML profile preventing building models at
a high level of abstraction; thus producing overloaded
diagrams.

The UML extension for service-oriented
architectures described by Baresi et al. [15] focuses
mainly on modelling such architectures by refining
business-oriented architectures. The refinement is based
on conceptual models of the platforms involved as
architectural styles, formalized by formal graph
transformation systems. The extension includes
stereotypes for the structural specification of services.
However, it does not introduce specific model elements
for the orchestration of services.

In a recently published article, Ermagan and Krüger
[16] extend the UML2 with components for modelling
services defining a UML2 profile for rich services.
Collaboration and interaction diagrams are used for
modelling the behaviour of such components. Neither
compensation nor exception handling is explicitly
treated in this approach.

In 2006, the OMG started an effort to standardize a
UML profile and metamodel for services (UPMS). A
first draft recently published [17] presents a set of

requirements for such a profile and metamodel, a set of
related profiles already defined within the scope of
different projects by industrial and academic forums,
and a first draft to an integrated solution for
heterogeneous architectures. The current version only
supports the concepts of service components, service
specifications, service interfaces and contracts for
services.

Another approach to model services is the Service
Component Architecture (SCA) [18], which is not based
on UML, but is strongly supported by the industry on its
way to become an OASIS standard. It focuses on
policies and implementation aspects of services. By
contrast, Amsden [19] uses plain UML and focuses on
the development process of services.

A first automated mapping of UML models to BPEL
[20] defines a very detailed UML profile that introduces
stereotypes for almost all BPEL 1.0 activities – even for
those already supported in plain UML, which makes the
diagrams drawn with this profile hard to read.

Several other approaches have been implemented for
the automated transformation from UML to BPEL with
the commonality of requiring very detailed UML
diagrams from designers. An example is the UML
profile described in [21], which defines BPEL-like
stereotypes to handle data flow, but does not provide
support for compensation.

Conversely to these approaches, MDD4SOA focuses
on the improvement of the expressive power of UML by
defining a small set of stereotypes for modelling SOA
orchestrations.

6. Conclusion & Outlook

As service-oriented computing continues to gain
support in the area of enterprise software development,
approaches for handling SOA artefacts and their
integration on a high level of abstraction while keeping
a semantic link to their implementation become
imperative. In this paper, we have argued that model-
driven approaches based on the UML language and
employing model transformers to generate code in
executable target languages can help to achieve, and
keep, an understanding of SOA-based systems.

Our main contribution to model-driven software
engineering of service-oriented systems is the
MDD4SOA approach and tool suite, a concise and
intuitive solution to the modelling of services in UML.
Our UML4SOA profile provides a small set of model
elements that allow the service engineer to produce
diagrams which visualize an orchestration of services in
a simple fashion. MDD4SOA also includes tools which
implement code generation in a model-2-model way
and, through several PSMs, address multiple target
languages. In all cases, the main aim is the generation of
comprehensible and maintainable code.

In particular, the transformation to BPEL discussed
in this paper follows the current evolution of BPEL 2.0:
using flows to represent the control flow is avoided in
favour of more readable structured activity nodes such
as conditions and loops.

We believe that being able to model service
orchestrations in UML and generating code is an
important step towards an effective model-driven
development of services. We will continue to work on
modelling and transformation of other service artefacts,
in particular on modelling service interfaces and
protocol specifications. Other service-oriented issues
will be addressed as well, e.g. the dynamic
reconfiguration of SOAs. We also plan to evaluate the
advantages of using the UML for visualizing our model
transformations.

The MDD4SOA tools discussed in this paper are
available for download [8].

Acknowledgements

Thanks go to Alexander Knapp for fruitful
discussions on the UML4SOA profile.

This research has been partially supported by the EC
project SENSORIA “Software Engineering for Service-
Oriented Overlay Computers” (6th Framework IST
016004).

References

[1] P. Mayer, A. Schroeder, and N. Koch, "A Model-
Driven Approach to Service Orchestration". Intl.
Conference on Services Computing (SCC),
Honolulu, USA, 2008.

[2] M. Wirsing, A. Clark, S. Gilmore et al., "Semantic-
Based Development of Service-Oriented Systems".
FORTE06, Paris, France, pp. 24–45, 2006.

[3] N. Koch, P. Mayer, R. Heckel et al., "UML for
Service-Oriented Systems (SENSORIA D1.4a)",
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/
D1.4.a.pdf, [2007]. Last visited: 27.04.2008.

[4] OASIS, "Web Services Business Process Execution
Language, Version 2.0 (WS-BPEL 2.0)",
http://docs.oasis-open.org/wsbpel/2.0/, [2008]. Last
visited: 21.01.2008.

[5] W3C, "Web Services Description Language,
Version 1.1", http://www.w3.org/TR/wsdl, [2007].
Last visited: 21.01.2008.

[6] Sun Microsystems, "The Java Programming
Language", http://java.sun.com/, [2008]. Last
visited: 27.04.2008.

[7] F. Montesi, C. Guidi, and G. Zavattaro, "Composing
Services with Jolie". ECOWS’07, Halle, Germany,
2007.

[8] "MDD4SOA", http://www.mdd4soa.eu/, [2008].
Last visited: 23.06.2008.

[9] W. M. P. v. d. Aalst, "Chapter 10: Three Good
reasons for Using a Petri-net-based Workflow
Management System", Information and Process
Integration in Enterprises: Rethinking Documents,
Intl. Series in Engineering and Computer Science,
pp. 161–182: Kluwer, 1998.

[10] N. Russel, A. H. M. t. Hofstede, W. M. P. v. d. Aalst
et al., "Workflow Control Patterns. A Revised View.
BPM Center Report BPM-06-22", [2006]. Last
visited: 27.04.2008.

[11] OMG, "Meta-Object Facility Specification",
http://www.omg.org/cgi-bin/doc?formal/2002-04-03,
[2002]. Last visited: 27.04.2008.

[12] Eclipse Foundation, "EMF: The Eclipse Modeling
Framework", http://www.eclipse.org/emf, [2008].
Last visited: 28.04.2008.

[13] S. Johnson, "UML 2.0 Profile for Software
Services", http://www.ibm.com/developerworks/
rational/library/05/419_soa, [2005]. Last visited:
13.04.2008.

[14] D. Skogan, R. Grønmo, and I. Solheim, "Web
Service Composition in UML". Eighth IEEE
International Enterprise Distributed Object
Computing Conference (EDOC'04), pp. 47-57, 2004.

[15] L. Baresi, R. Heckel, S. Thöne et al., “Style-Based
Modeling and Refinement of Service-Oriented
Architectures”, Journal of Software and Systems
Modeling (SOSYM), vol. 5, no. 2, pp. 187-2007,
2005.

[16] V. Ermagan, and I. Krüger, "A UML2 Profile for
Service Modeling". Int. Conf. on Unified Modeling
Language, pp. 360-374, 2007.

[17] OMG, "UML Profile and Metamodel for Services",
http://www.omg.org/docs/ad/07-06-02.pdf, [2007].
Last visited: 10.01.2008.

[18] SCA Consortium, "Service Component Architecture
(SCA) Policy Framework, Version 1.0",
http://www.ibm.com/developerworks/library/specifi
cation/ws-sca/. [2007]. Last visited: 27.04.2008.

[19] J. Amsden, "Modeling SOA", http://www.ibm.com/
developerworks/rational/library/07/1002_amsden,
[2007]. Last visited: 27.04.2008.

[20] J. Amsden, T.Gardner, C.Griffin et al., "Draft UML
1.4 Profile for Automated Business Processes with a
Mapping to BPEL 1.0", http://www.ibm.com/
developerworks/rational/library/content/04April/310
3/3103_UMLProfileForBusinessProcesses1.1.pdf,
[2003]. Last visited: 27.12.2005.

[21] K. Mantell, "From UML to BPEL",
http://www.ibm.com/developerworks/webservices/li
brary/ws-uml2bpel/, [2005]. Last visited:
27.04.2008.

