
A Model-Driven Approach to Service Orchestration

Philip Mayer, Andreas Schroeder, Nora Koch

Research Unit Programming and Software Engineering
Institute for Informatics, Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538 München, Germany

{mayer, schroeda, kochn}@pst.ifi.lmu.de

Abstract

Software systems based on Service-Oriented

Architectures (SOAs) promise high flexibility, improved
maintainability, and simple re-use of functionality. A
variety of languages and standards have emerged for
working with SOA artifacts; however, service computing
still lacks an effective and intuitive model-driven
approach starting from models written in an established
modeling language like UML and, in the end,
generating comprehensive executable code. In this
paper, we present a conservative extension to the UML2
for modeling service orchestrations at a high level of
abstraction, and a fully automatic approach for
transforming these orchestrations down to the well-
known Web Service standards BPEL and WSDL.

1. Introduction

With the introduction of the Service-Oriented
Architecture (SOA), formerly proprietary software
systems are being opened up and made available as
services. On top of these services, business processes
and technical workflows are being (re-)implemented as
compositions of services, which has come to be known
as service orchestration. Service computing has quickly
been embraced by both academy and industry, as it
promises highly flexible software systems, simple re-use
of functionality, and improved maintainability.

While model-driven approaches are already in use
for object-oriented languages – for example, by
employing engineering tools which offer code
generation for Java from models written in the Unified
Modeling Language (UML) – service-oriented design
still falls short of effective and comprehensive domain-
specific modeling and code generation tools. In order to
support software engineers with intuitive and easy to
adopt design and implementation techniques for service-
oriented software, we propose (1) to extend the reach of
UML2 to the modeling of SOA systems, and (2) to
exploit so-designed models for creating running
systems, in particular through code generation.

In this paper, we discuss both points – modeling of
service orchestrations in UML2, and how to utilize these
models for code generation with the target of the Web
services standards WS-BPEL (Web Service Business
Process Execution Language) [9] and WSDL (Web
Service Description Language) [14].

UML2 is a well-known and mature language for
modeling software systems, however it is strenuous
right now to model SOA artifacts with UML2, as native
support for service and service orchestration concepts is
missing. We therefore introduce a UML extension for
SOA – called the UML4SOA profile – which is a high-
level domain specific language for modeling service
orchestrations. One of the main goals of UML4SOA is
minimalism and conciseness: service engineers should
have to provide only as much information as necessary
for the generation of code, and at the same time as little
as possible in order to keep diagrams readable.

Based on this profile, we introduce a transformation
mechanism from UML4SOA models to BPEL and
WSDL, whose main aim is the generation of
comprehensible and maintainable code. To achieve this
goal, our approach follows the current evolution of
BPEL 2.0: instead of using flows to represent the
control flow, we employ structured BPEL constructs
such as conditions and loops.

This paper is structured as follows: We will discuss
current problems with modeling service orchestration
using the UML in section 2, and present our UML2
profile to deal with these problems in section 3.

Section 4 then discusses a fully automatic
transformation for creating BPEL and WSDL code out
of UML2 orchestrations modeled as presented in
section 3. We put our work into perspective in section 5,
and conclude our findings in section 6.

2. Modeling Orchestration in Plain UML

UML2 is accepted as the de facto standard for the
modeling of software systems. With its support for
profiles, it comes with a very flexible extension
mechanism that facilitates the definition of domain

specific languages (DSLs), rendering UML an excellent
solution for modeling service-oriented architectures. For
modeling the structure of SOAs, UML2 component
diagrams and deployment diagrams can be used and
extended in a straightforward way; more challenging is
the task of modeling the behavior of service-oriented
systems, in particular the orchestration of services.

Service orchestration is the process of combining
existing services together to form a new service to be
used like any other service. Service orchestrations
introduce a set of key distinguishing concepts: partner
services, message passing among requester and provider
of services, long-running transactions, compensation,
and events.

We select UML2 activity diagrams for the modeling
of service orchestrations as we assume that business
modelers are most familiar with this kind of dynamic
behavior diagrams. Other workflow languages use
similar graphical representations and petri-net like
semantics [1].

As a running example to illustrate our approach, we
have chosen an orchestration scenario from the
eUniversity domain: we model the management process
of a student thesis from the announcement of a thesis
topic by a tutor to the final assessment and student
notification.

In this orchestration scenario, a tutor provides a
thesis topic that is announced to a black board regularly
read by students. Once a student decides to pick up the
topic, it is removed from the black board, and the
student is registered at the examination office as
working on this thesis topic.

The student now provides regular updates to the
thesis, while the tutor is able to read the status. At the
same time, the exercise office may request the
cancellation of the thesis if e.g. the deadline for thesis
submission elapsed. Upon cancellation of the thesis
processing, the thesis topic is freed and re-posted to the
black board, and the student is informed of the abnormal
cancellation.

Once the thesis is completed, an assessment of the
thesis is requested from the examination office. This
request is dispatched by the office to the authorized
supervisor of the thesis. Finally, the student is notified
once the assessment of the thesis is received.

Modeling this orchestration example in plain UML2
() reveals the following shortcomings: Figure 1
• It is not possible to restrict the set of valid callers –

as needed e.g. to ensure that only the tutor is able to
cancel the thesis – on an UML AcceptCallAction.
All restrictions must be implemented
manually (area 1).

Figure 1: Thesis management modeled with plain UML

• Temporally enabled event handlers must be
disabled using technical constructs. Russel et al.
[11] suggest using InterruptibleActivityRegions
containing the tasks to disable, and interrupting
edges for normal task completion. Although this
may be the best achievable solution with plain
UML2 activity diagrams, using these technical
constructs makes diagrams harder to understand

edious and error

 above need to be recognized
appropriately.

 Orchestration with
UML4SOA

ing
dia

goals,
pol

ach and compare it to the model built
with plain UML2.

3.1

ents and the
following relationships among each other:

(areas 2a and 2b).
• Similarly, the compensation for an activity is not

associated directly with it, but programmed within
explicit compensation logic. In addition,
programming the compensation logic for more than
one compensable activity is a t
prone task [15] (areas 3a and 3b).

Due to these shortcomings, modeling service
orchestrations with plain UML is a cumbersome task. At
the same time, the resulting UML models are difficult to
transform to orchestration skeletons for established
service platforms, as the patterns used to handle the
issues named

3. Modeling

To overcome the difficulties of modeling services
with plain UML2, we extend the UML with service-

specific model elements. Our UML extension is built on
top of the Meta Object Facility (MOF) metamodel [9]
and defined as a conservative extension of the UML
metamodel. For the new elements of this metamodel, a
UML profile is created using the extension mechanisms
provided by UML2. The principle followed is that of
minimal extension, i.e. to use UML constructs wherever
possible and only define new model elements for
specific service-oriented features and patterns mak

grams simple, consistent and easy to understand.
The resulting UML profile for service-oriented

architectures (UML4SOA) provides model elements for
structural and behavioral aspects, business

icies and non-functional properties of SOAs.
In this paper we present the metamodel (section 3.1)

and the elements of the service orchestration part of the
profile (section 3.2); for a complete overview of the
extension the reader is referred to [7]. The orchestration
scenario from the eUniversity domain is used to
illustrate our appro

. UML4SOA Metamodel
For modeling orchestrations in UML2, we add

specific service-aware elem r activity diagrams.
The metamodel depicted in Figure 2 shows these model
elements, their relationships with UML elem

ents fo

Figure 2: UML4SOA Metamodel (UML metaclasses in grey)

• The orchestration contains a root scope, which in
turn contains all necessary elements for modeling
the workflow of the orchestration.

• Four specialized actions have been defined for
sending and receiving data.

• Service interactions may have interaction pins for
sending or receiving data.

• Compensation edges link orchestration activities to
actions or scopes that model the compensation.

• The Compensate and CompensateAll actions are
used to trigger compensation of scopes or other
actions.

• Event and exception handlers are used to handle
emerging events and abnormal conditions,
respectively.

Hence, the focus of the UML4SOA metamodel is on
service interactions, long running transactions and their
compensation and exception handling. This metamodel
and the corresponding UML2 profile constitute the basis
for model transformations and code generation defining
a model-driven development process.

3.2. UML Profile for SOA
In order to be able to use the elements of the

UML4SOA metamodel in UML2 tools, a UML profile
must be specified by means of stereotypes and their
relationships to the classes of the UML2 metamodel.
The objective is to have a distinct graphical
representation and clear semantics for service-oriented
concepts.

The orchestration part of UML4SOA presented in
this paper features constructs for modeling behavior of
SOAs, i.e. stereotypes for service interaction based on
the exchange of messages as well as compensation of
services. A brief description of the most distinguishing
stereotypes is given below.
• scope: A UML StructuredActivityNode that may

have associated event, exception and compensation
handlers.

• send: A UML CallBehaviourAction that sends a
message. Does not block.

• receive: A UML AcceptCallAction, receiving a
message. Blocks until a message is received.

Figure 3: Thesis management modeled with UML4SOA

• receive&send: A UML AcceptCallAction/
CallBehaviourAction, denoting a sequential order of
receive and send actions.

• send&receive: A UML CallBehaviourAction/
AcceptCallAction, denoting a sequential order of
send and receive actions.

• link: A UML Pin that holds a reference to the
service involved in the interaction.

• snd: A UML Pin that holds a container with data to
be sent.

• rcv: A UML Pin that holds a container for data to
be received.

• exception: A UML ActivityEdge to associate
exception handlers to actions and scopes.

• raise: A UML Action that causes normal execution
flow to stop and invokes associated exception
handlers.

• compensation: A UML ActivityEdge to add
compensation handlers to actions and scopes.

• compensate: A UML Action that triggers the
execution of the compensation defined for a scope
or activity.

• compensateAll: A UML Action that triggers
compensation of the actually compensated scope
(i.e. calling compensation on all subscopes in the
reverse order of their completion). Can be inserted
only in scopes defined for compensation.

• event: A UML ActivityEdge to associate event
handlers to actions and scopes.

Figure 3 shows the example orchestration scenario
again, this time modeled with the profile discussed
above. The example shows that the control flow
complexity is reduced considerably. In particular, all
loops introduced for technical reasons become
superfluous. Similarly, as UML4SOA offers specialized
«event» edges, the use of exception edges to model
completion of activity regions with event handlers
become unnecessary. Using the service concepts defined
in the UML4SOA profile reduces the number of edges
from 32 to 23 and the number of decision nodes from
nine to four, hence allowing the service modeler to
focus on implementing service business logic instead of
technical constructs. Thus, the value of the produced
diagrams is increased for both human reading and
automatic processing: the former profits from the
conciseness and explicit – but minimalistic – labeling of
constructs, while the latter profits from the simpler
model structure.

4. Code Generation

The previous two sections have introduced a profile
for modeling SOA orchestrations using UML2 activity
diagrams. While these models have great value for

communicating the orchestration workflow, they are not
yet executable. In this section, we present a code
generation approach for converting activity diagrams
based on the UML4SOA profile to BPEL and WSDL.

4.1. Structuring the BPEL Process
There are basically two alternatives for converting

activity diagrams to BPEL. The first alternative employs
a graph-based BPEL process, i.e. creates a BPEL
process with a flow activity as its root and only
structured activity; the control nodes of UML2 –
decisions, forks, and loops – are replaced with edge and
activity guards. This yields another graph similar to the
activity diagram; however, it ignores plenty of BPEL
activities dedicated to structuring the orchestration,
which would render it more readable. Indeed, with
BPEL 2.0 there seems to be a shift towards a more
structured approach to the modeling of processes, as
more structuring activities have been added. Therefore,
we have opted for the second alternative which is
creating a structured BPEL process by converting the
UML2 activity constructs to their BPEL equivalents –
if/elseif for decisions, flow for forks, and repeatUntil for
loops.

4.2. Partners of the BPEL Process
A BPEL process does not stand alone – it interacts

with other services and is itself invoked by clients as a
service. Thus, we also need to look at generating WSDL
for describing partner services and the service provided
by the BPEL process itself, and where to retrieve this
information from the input UML model.

There are essentially two options for describing
services along with their operations in UML: One
option is to specify services and operations explicitly,
for example by using class diagrams and component
diagrams. Services and operations can then be
referenced from within the orchestration. Another
option is to infer the services and the roles they play in
the process from the orchestration specification itself.
This approach is particularly suited for rapid
prototyping.

Our approach uses the second option, i.e. it is not
necessary to specify any services or operations
beforehand; they can simply be used as appropriate in
the activity diagram. How a service is used in the
orchestration defines its type:
• Some services are partners, i.e. the services are

external to the orchestration and are called upon to
perform some action.

• Some services are performed by the orchestration
itself, i.e. the orchestration implements the
functionality and offers it to partners.

The type is inferred from the use of the orchestration
actions send, receive, send&receive and receive&send.
There are three possibilities:
• If the orchestration only uses send (and

send&receive) on a service, the service is clearly
external to the orchestration and the orchestration
itself is a client of the service. Thus, a WSDL
service description needs to be generated which is
to be implemented by the external service, and used
by the BPEL process for invocation.

• If the orchestration only uses receive (and
receive&send) on a service, the service is offered by
the orchestration itself and the partner calls upon the
service to perform some action. Thus, a WSDL
description needs to be generated which is to be
implemented by the BPEL process itself.

• Thirdly, the orchestration may use both receive and
send on a service. In this case, a flow analysis is
employed to find the initial interaction with the
service. If the first interaction starts with a receive,
we assume that the orchestration itself implements
the service and then uses call-backs to send
information back to the client. If the first interaction
starts with a send, we assume that the service is
external to the orchestration and uses call-backs to
send information back to the orchestration. In both
cases, we need to generate a service description
which contains two port types – one for the service,
and one for the client containing the call-backs.

4.3. The Transformation Algorithm
Having these prerequisites identified, we can move

on to the actual transformation. The UML4SOA code
generator uses a model-2-model approach, starting off
with an XMI EMF model of the UML2 activity
diagram, which can be read from XMI output which
many UML modelers are able to produce, and
converting to an EMF model of BPEL and WSDL,
which can then be serialized to actual code. Thus, the
code generator is, in effect, a model-2-model
transformer.

The UML4SOA model transformer employs a depth-
first rule-based approach for converting UML2 activity
diagrams into BPEL and WSDL. In particular, we
developed a partitioning algorithm which groups UML
activity diagram nodes for implementation by a certain
BPEL structured activity. There are three types of
partitions which need to be identified in the UML
source:
• Branches. Branching the control flow is modeled in

UML with decision and merge nodes. In BPEL,
branching is modeled with an if structured activity
which may contain elseif branches for alternatives.

• Loops. We assume loops in the control flow to be
modeled in UML with merge and decision nodes,
with one control path leading from the decision at
the end to the merge at the beginning. The
equivalent BPEL construct for this is the
RepeatUntil loop, which runs at least once.

• Parallel flows. Parallel execution is modeled in
UML by using fork and join nodes. In BPEL,
parallel flow is handled through the flow construct,
which contains sequences for modeling sequential
behavior inside each of the paths of the fork/join
group.

Besides these induced partitions, we also exploit
explicit structuring mechanisms. The UML4SOA profile
already introduces the concept of a scope, which greatly
eases structuring of activity diagrams and can be
directly converted to a BPEL scope. The UML profile
also allows handlers – exception, compensation, and
event – to be attached to a scope. While these handlers
are external to the scope in UML, they are defined
within scopes in BPEL. Thus, the actions defined within
the handlers in UML need to be moved to the
appropriate code block inside the generated BPEL
scopes.
Having handled structural aspects, there are also
numerous smaller conversions to be done. As an
example, we discuss handling of partner interaction
actions. The UML4SOA profile discusses four actions
for interactions with other services:
• Send. The send action is intended for sending a call

to an external partner. It is modeled as a BPEL
invoke with only an input variable.

• Receive. The receive action is intended for receiving
incoming calls from external partners. It is modeled
as a BPEL receive.

• Send&Receive. The send-and-receive action is
intended for invoking an operation on a partner and
receiving a result. It is modeled as a BPEL invoke
with both an input and output variable.

• Receive&Send. The receive-and-send action first
waits for an incoming call and then sends back the
value of a predefined variable. It is modeled as a
sequence of BPEL receive and reply actions.

As pointed out above, conversion of other activities
such as compensation invocations and exception raising
are simply converted to their BPEL equivalents same as
the interaction actions.

4.4. Transformation Examples
As an example for the transformation, shows

the BPEL code generated for the scope registration
from the example introduced in the previous two
sections. Namespace prefixes and some code have been
removed to make the example easier to read.

Figure 4

To give an overview of the created WSDL code,

Figure 5 shows the relevant code generated for the
partner bboard which has one port type and two
operations, and is to be implemented by an external
service and used by the orchestration.

5. Related Work

Several other attempts exist to define UML
extensions for service-oriented systems.

The UML 2.0 profile for software services [6]
provides an extension for the specification of services
addressing structural aspects, but neither behavior of
services nor orchestration of services is addressed in
that work.

The work of Skogan et al. [13] has a similar focus as
our approach, i.e. a model-driven approach for services
based on UML models and transformations to
executable descriptions of services. The main difficulty
in the use of this approach lies in modeling the
composition of services. Although they identify patterns
to ease the transformations, the approach lacks an
appropriate UML profile preventing building models at
a high level of abstraction; thus producing overloaded
diagrams.

The UML extension for service-oriented

architectures described by Baresi et al. [4] focuses
mainly on modeling such architectures by refining
business-oriented architectures. The refinement is based
on conceptual models of the platforms involved as
architectural styles, formalized by formal graph
transformation systems. The extension includes
stereotypes for the structural specification of services.
However, it does not introduce specific model elements
for the orchestration of services.

In a recently published article, Ermagan and Krüger
[5] extend the UML2 with components for modeling
services defining a UML2 profile for rich services.
Collaboration and interaction diagrams are used for
modeling the behavior of such components. Neither
compensation nor exception handling is explicitly
treated in this approach.

In 2006, the OMG started an effort to standardize a
UML profile and metamodel for services (UPMS). A
first draft recently published [10] presents a set of
requirements for such a profile and metamodel, a set of
related profiles already defined within the scope of
different projects by industrial and academic forums,
and a first draft to an integrated solution for
heterogeneous architectures. The current version only
supports the concepts of service components, service
specifications, service interfaces and contracts for
services.

Another approach to model services is the Service
Component Architecture (SCA) [12], which is not based
on UML, but is strongly supported by the industry on its
way to become an OASIS standard. It focuses on
policies and implementation aspects of services. By
contrast, Amsden [3] uses plain UML and focuses on
the development process of services.

Figure 4: BPEL code for scope registration

Figure 5: WSDL code for service student

...
<scope name="registration">

 <!-- Compensation Handler -->
 <compensationHandler>
 <!-- compensation code -->
 </compensationHandler>

 <!-- Actual scope code -->
 <sequence
 name="sequence inside registration">

 <receive name="acceptTopic"

operation="acceptTopic"
partnerLink="student"
variable="student"/>

 <invoke name="removeTopic"

operation="removeTopic"
outputVariable="topic"
partnerLink="bboard"/>

 <invoke name="registerStudent"

inputVariable="thesis"
operation="registerStudent"
outputVariable="student&topic"
partnerLink="eoffice"/>

 </sequence>

</scope>
...

...
<portType name="bboard_service_porttype">

 <operation name="postTopic">
 <input name="msg_input_topic"/>
 </operation>

 <operation name="removeTopic">
 input me="msg_input_topic< na "/>
 </operation>

</portType>

<partnerLinkType
 name="bboard_partnerLinkType">

 <role
 name="bboard_role_service"
 portType="bboard_service_porttype"/>

</partnerLinkType>
...

A first automated mapping of UML models to BPEL
[2] defines a very detailed UML profile that introduces
stereotypes for almost all BPEL 1.0 activities – even for
those already supported in plain UML, which makes the
diagrams drawn with this profile hard to read.

Several other approaches have been implemented for
the automated transformation from UML to BPEL with
the commonality of requiring very detailed UML
diagrams from designers. An example is the UML
profile described in [8], which defines BPEL-like
stereotypes to handle data flow, but does not provide
support for compensation. Conversely to these
approaches, UML4SOA focuses on the improvement of
the expressive power of UML by defining a small set of
stereotypes for modeling SOA orchestrations.

6. Conclusion & Outlook

In this paper, we have presented the UML4SOA
approach for modeling service orchestrations in UML2
and utilizing these models for code generation with the
target of the Web Services standards BPEL [9] and
WSDL [14].

The main advantage of our approach is the provision
of a concise and intuitive solution to the modeling of
services in UML: a UML2 profile with a small set of
model elements that allow the service engineer to
produce diagrams which on the one hand visualize an
orchestration of services in a simple fashion, and on the
other hand contain enough information for the
generation of executable code.

Our translation to BPEL follows the current
evolution of BPEL 2.0: using flows to represent the
control flow is avoided in favor of more readable
structured activity nodes such as conditions and loops.

We believe that being able to model service
orchestrations in UML and generating executable code
is an important step towards an effective model-driven
development of services. We will continue to work on
modeling and transformation of other service artifacts,
in particular on modeling service interfaces and protocol
specifications.

The UML4SOA profile and model transformer
discussed in this paper are available for download on
www.pst.ifi.lmu.de/projekte/uml4soa/.

Acknowledgements

Thanks go to Alexander Knapp for fruitful
discussions on the UML4SOA profile. This research has
been partially supported by the EC project SENSORIA
“Software Engineering for Service-Oriented Overlay
Computers” (6th Framework IST 016004).

References

[1] W.M.P. van der Aalst. “Chapter 10: Three Good reasons
for Using a Petri-net-based Workflow Management
System”, Information and Process Integration in
Enterprises: Rethinking Documents, Intl. Series in
Engineering and Computer Science, Vol 428, Kluwer,
161–182, 1998.

[2] J. Amsden, T. Gardner, C. Griffin, S. Iyengar. “Draft
UML 1.4 Profile for Automated Business Processes with a
Mapping to BPEL 1.0”, IBM, 2003, updated 27.12.05,
ibm.com/developerworks/rational/library/content/04April/
3103/3103_UMLProfileForBusinessProcesses1.1.pdf.

[3] J. Amsden. “Modeling SOA”, IBM, 2007, ibm.com
/developerworks/rational/library/07/1002_amsden.

[4] L. Baresi, R. Heckel, S. Thöne, D. Varró. ”Style-Based
Modeling and Refinement of Service-Oriented
Architectures”, Journal of Software and Systems Modeling
(SOSYM), Vol 5 (2), Springer, 187-207, 2005.

[5] V. Ermagan, I. Krüger. “A UML2 Profile for Service
Modeling”. In Proc. of Int. Conf. on Unified Modeling
Language, LNCS 4735 Springer, 360-374, 2007.

[6] S. Johnson, “UML 2.0 Profile for Software Services”,
IBM, www-128.ibm.com/developerworks/rational/ library/
05/419_soa, 13.4.2005.

[7] N. Koch, P. Mayer, R. Heckel, L. Gönczy, C.
Montangero, “UML for Service-Oriented Systems”,
SENSORIA D1.4a, 2007, www.pst.ifi.lmu.de/projekte/
Sensoria/del_24/D1.4.a.pdf.

[8] K. Mantell. “From UML to BPEL”, IBM,
http://www.ibm.com/developerworks/webservices/library/
ws-uml2bpel/, 2005.

[9] OASIS. “Web Services Business Process Execution
Language”, Version 2.0 (WS-BPEL 2.0). docs.oasis-
open.org/wsbpel/2.0/, visited: 01-21-08.

[10] OMG. “UML Profile and Metamodel for Services”,
www.omg.org/docs/ad/07-06-02.pdf, visited: 10-01-07.

[11] N. Russel, A.H.M. ter Hofstede, W.M.P. van der Aalst,
N. Mulyar. “Workflow Control Patterns. A Revised
View”, BPM Center Report BPM-06-22, 2006.

[12] SCA Consortium. “Service Component Architecture
(SCA) Policy Framework”, Version 1.0. 2007, ibm.com/
developerworks/library/specification/ws-sca/.

[13] D. Skogan, R. Grønmo, I. Solheim. “Web Service
Composition in UML”, Eighth IEEE International
Enterprise Distributed Object Computing Conference
(EDOC'04), 47-57, 2004.

[14] W3C. “Web Services Description Language”, Version
1.1, www.w3.org/TR/wsdl, visited: 01-21-08.

[15] M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp,
N. Koch, A. Schroeder. “Semantic-Based Development of
Service-Oriented Systems”. In Proc. of FORTE06, Paris,
France, LNCS 4229, pp. 24–45. Springer, 2006.

http://www.springerlink.com/content/5147710901635272/
http://www.springerlink.com/content/5147710901635272/
http://www.springerlink.com/content/5147710901635272/

	1. Introduction
	2. Modeling Orchestration in Plain UML
	3. Modeling Orchestration with UML4SOA
	3.1. UML4SOA Metamodel
	3.2. UML Profile for SOA

	4. Code Generation
	4.1. Structuring the BPEL Process
	4.2. Partners of the BPEL Process
	4.3. The Transformation Algorithm
	4.4. Transformation Examples

	5. Related Work
	6. Conclusion & Outlook
	Acknowledgements
	References

