Towards Agile Model-Driven Web Engineering *1

José Matias Rivetd, Julian Grigerh Gustavo Ross?, Esteban Robles Luh3
Nora KocH*®

LLIFIA, Facultad de Informatica, UNLP, La Plata, Argina
{mrivero, julian.grigera, gustavo, esteban.roblegfi@info.unlp.edu.ar
2Also at Conicet
3Also at CIC
4Ludwig-Maximilians-Universitat Minchen,

5Cirguent GmbH, Germany
kochn@pst.ifi.imu.de

Abstract. The increasing growth of the Web field has promatee develop-
ment of a plethora of Model-Driven Web Engineer{iMDWE) approaches.
These methodologies share a top-down approach:staeyby modeling appli-
cation content, then they define a navigationakswh and finally refine the
latter to obtain presentation and rich behaviorcgpations. Such approach
makes it difficult to acquire quick feedback fromstomers. Conversely, agile
methods follow a non-structured, implementationtessd process building
software prototypes to get immediate feedback.hia tvork we propose an
agile approach to MDWE methodologies (called MocKujven Development,
or MockupDD) by inverting the development process:start from user inter-
face mockups that facilitate the generation ofvgafe prototypes and models,
then we enrich them and apply heuristics in ordeshtain software specifica-
tions at different abstraction levels. As a resu#t, get an agile prototype-based
iterative process, with advantages of a MDWE one.

Keywords: Mockups, User Interface, Agile, Web Engineering, MD

1 Introduction

During the last 20 years, many Model-Driven Web iBagring (MDWE) methodol-
ogies have been defined to improve the developmentess of web applications
approaches [1-4]. These methodologies share a contopedown approach [5] and
construct web applications by describing a set ofl@ts at different levels of abstrac-
tion:
e Content (or Domain) Modeldefining domain objects and their relation-
ships.
« Hypertext (or Navigation) Modetefining navigation nodes and links that
publish and manipulate information specified byealt§ in theContent
Model

! This work is an extended version of the paper fimepg Agility in Model-Driven
Web Engineering”, published in CEUR, Vol. 734

« Presentation Modelrefining theHypertext Modelwith concrete user inter-
face presentation features like pages, concretgetsd layout, etc.

This process is generally top-down, delivering raaffiweb application through a
process of (sometimes automatic) model transfoomativhich maps the previously
described models into other models or a specifiorielogy.

Agile methodologies, on the other hand, promotdyeamnd constant interaction
with customers to assert that the software buithgiges with their requirements, by
constantly delivering prototypes developed in speriods of time; application proto-
types are then used as some king@hmon languagbetween developers and final
users to assert captured requirements and to @isamw ones. Agile approaches
argue that software specifications must emergeraiffu enhancing former proto-
types along the development until the final appicais obtained.

To summarize, while MDWE methodologies facilitatdtware specification por-
tability, abstraction and productivity, they faih iproviding agile interaction with
customers because concrete results are obtainddtéo®n the other hand, while this
feature is clearly provided by agile methodologitbgy are heavily based on direct
implementation and thus fail to provide abstractiportability and productivity
through automatic code-generation.

In this paper we propose an hybrid model-basee agdthodology — called Mock-
up-Driven Development (MockupDD) — aiming to extrte best of both worlds, i.e.
a process driven by the active participation ofrsisnd customers, and a classical
approach following the phases of analysis, desigh immplementation assisted with
the use of models in all stages. Our approachsskarthe requirement analysis, i.e.
defining mockups (ideally together with the custoshdo agree upon the applica-
tion’s functionality, similar to Harel's behaviorgrogramming approach [6]. Then,
mockups are translated to an abstract user interfasrel that can be directly derived
to specific MDWE presentation models or technoldgpendent Ul prototypes. By
tagging mockups and presentation models we addyaton features, and based on
the navigation specification, we use heuristicénfer content models. Thus, we are
starting the requirement specifications with olgebiat are perceivable by customers
(Ul structure elements), easing requirements gatp@nd traceability [7].

Therefore, since we start with presentation moaéiained from mockups and
then construct or obtainpper (i.e. abstract) models, we are inverting the tradal
MDWE process, yielding to a mosegile, yet truly model-based approach. While we
exemplify with the UML-based Web Engineering (UWEB], MockupDD can be
applied to any MDWE approach.

2 Related Work

User Interface (Ul) Mockup tools like Balsarhi@encit or Mockingbird suit well
in agile methodologies [8-10], since they providguick and easy way of capturing

2 Balsamiqg - http://balsamiq.com/, last visited/2(1
3 Pencil Project - http://pencil.evolus.vn/en-USthmaspx, last visited 3/9/2011

interaction requirements. Usually, mockups are ndefi in companion with other
specifications like use cases [11, 12], user sdi8] or informal annotations [14].
Also, mockups have been introduced in the contéxtnodel-driven development
(MDD) approaches as can be appreciated in the fusk sketches in the context of
the ConcurTaskTrees [15] to express interactiomireqents and in the definition of
a language that introduces storyboards over userfaices composed through a spe-
cific user interface widget set [16]. Finally, thesult of statistical studies [17] con-
ducted over inexperienced software engineers askémat mockups effectively in-
creases and eases software comprehension.

In most cases, however, mockups themselves areamsidered as models and
they are usually thrown away after requirement rfinde Thus, mockups are not
used as important drivers of the development pmeadthiough they contain precise
information about the users’ needs. In our previwask [18], we introduced the idea
of translating mockups constructed with prototypiogls like Balsamiq to a common
presentation language in order to preserve anck riiesn as truly software specifica-
tions. While this approach facilitates both quitk and dirty” way of user interface
construction with intense customer participation @nfast method to generate high
quality Ul from models (something that is not cathg supported by well known
MDWE approaches), it lacks the capacity of definimum-presentational features. As
a consequence, mockups (and final Uls generated finhem) can be used as a com-
mon language to gather further non-presentatio@quirements but these require-
ments must be coded by hand, missing the agilityiged by automatic code genera-
tion in the context of a model-driven process. Heeego a step further and propose
not only mockup reusing but the specification ofaatted features like navigation
and content through the application of a set dftligeight enrichments directly over
them. This makes our approach easily understandabkdl stakeholders, in particu-
lar customers and end users with the goal to irevtihem in all steps of the develop-
ment process.

3 MockupDD Process

In this section we will introduce the MockupDD Pess technically. First, we will
show how mockups are refined and then translatedpiresentation models.

Then we will describe how similar refinements appled in order to obtain navi-
gation models. Finally, we introduce the heuristpplied to derive content models.
In all the phases of our process we have chosasddhe UWE methodology because
it is representative of an important group of methat is based on UML and it has
tool support. An overview of the whole process barobserved in Figure 1.

4 Websites wireframing: Mockingbird - https://gomaudbird.com, last visited
3/9/2011

Ul in a concrete
technology (e.g.
ExtJS)

UWE Presentation
Model

UWE Navigational
Model

Figure 1. Mockup-Driven Development (MockupDD) pees.

Heuristics/
Patterns

3.1 From M ockupsto Presentation M odels

UWE Content
Model

MockupDD starts the development process by creddingockups with a mockup
tool. As we have shown in a previous work [18], theulting mockup files can be
parsed and translated to an abstract Ul modeldc8lId model(Structural Ul Model)
that can be in turn translated to presentation tsodemodern MDWE methodolo-
gies through a simple mapping. In Figure 2, SUlametdel is introduced and the
mapping of its elements to UWE Presentation mazishown.

Widget
id: String .
4 widgets
SimpleWidget CompositeWidget
/\

[[I ! Repetiti Panel P I
Button Link [Table][List] [Repetition | [Panel | age pages
text: String | [url: String title: String 1.%

MockupDD Structural Ul UWE Presentation

Panel PresentationGroup

Panel 5 Form

Image [®] Image

Button « Button

Link — Anchor

Label X Text

TextBox Textinput

Repetition IteratedPresentationGroup
CheckBox / RadioButton G Selection

Page ™ Page

Figure 2. SUI metamodel and UWE mapping

Since mockup tools represent a user interface fydoas a set of unsorted wid-
gets [18], we apply a sequence of different pramesthat analyzes mockup source
structure and outputs the corresponding SUI mollieickup source processing is
done in a pipeline workflow. First, a set of widgéd obtained and validated from a

mockup source file usingMockup Parseand avalidator respectively. Then, widget
composition and repetition is detected with thephefl Hierarchies and Repetition
Detectorsanalyzing the widget set obtained in the previstep. Finally, optimum
layout forcConposi t eW dget s is inferred using hayout Inferer A graphical represen-
tation of the whole process can be observed inrEigu

Processing
engine

Vs

~N
] Structural
B =
“:‘;:::f '?'J (Mockup Validator) M°“‘;k‘:‘p:)D
[ode
Mockup file for tool (Hierarchies Detector)

constructed with

* —]
tool (Repetition Detector)

(__Layout Inferer)

- J

Figure 3. Mockup processing workflow from origimabckup source file until reaching final
SUIl models.

3.2 Thetagging approach

Structural Ul models obtained from mockup sourceough the aforementioned
processing represent only the structural view afed application. In order to add
different software features over the existing ustarface specification we define the
concept of dag. A tag defines a simple but precise specificatiat is applied over a
concrete SUI element and is formed by a name ara aremore textual parameters.
Every tag can be applied only over a particularckags ofw dget and represents a
hint that can result in the derivation of particlMdDWE model concepts. Moreover,
tags are grouped intag setsthat can be combined to construct more complegispe
fication. With the tagging approach we proposenap®, incremental and agile me-
thod to model features over previously defined ustrface structure (SUI models).

In this paper we introduceavigation tagshat enrich SUI models in order to de-
rive navigation models. The Ul mockup (shown inUfey4.a) depicts the home page
of a music catalogue application (we will calMusic Porta) containing a header, a
list of featured albums, an album search box amdatresponding search result. Fig-
ure 4.b shows the corresponding UWE presentatiateirtbat can be obtained apply-
ing the previously introduced SUI-to-UWE presemmatwidget mapping. ThRepeti-
tion Detectorprocessor discovers similar widgets at equal positand then gene-
rates arepetition containing both album lists in the mockup, whiale durther
translated into UWE'S t er at edPr esent ati onG oupS. By default, generic ids for
controls are generated (likanel 1, Text | nput 1 or | magel), but they can be refined
using theNametag (denoted with:); these ids are important since they are used to
name further MDWE elements. The tagged mockup ardlting UWE presentation
model are shown in Figure 4.

Songs | Albums

Featured Albums lEoIIing Stones

=3

I [—

N:

- N.
albumCover

albumCover

[N: artistName] L’N_[?%',?E’!n
Sticky |i_N: albumName
197

N: year

~

rLIL.;l_u1 v
N: artistName

N: albumName

The Rolling Stones
Tatoo You
1981

$ 33.12 In Stock

<<anchor>> ==

rtistName
<<anchor>> =
: AlbumName

Kasabian The Rolling Stones $ 25.66 Out of stock
Kasabian A Bigger Bang
2005
(a) Home page mockup
<<presentationGroup>>
: Panel1
<<image>> [g] <<anchor>> == | [<<anchor>>=—=
: Image1 : Songs : Albums
<<presentationGroup>>
: Panel1
<<text> Ay ‘ <<textinput>> | <<anchor>> O
: FeaturedAlbums : Textinput1 : Search
<<iteratedPresentationGroup>: <<iteratedPresentationGroup>>
: Panel2 : Panel3
<<image>> [0] <<image>¥o] | | <<anchor>> == <<text>> gy <<text>>
: AlbumCover| : AlbumCovel : ArtistName : Price : InStock

: AlbumName
<<text>> a
: Year

(b) Generated UWE presentation model after applgenging tags

Figure 4. Deriving an UWE presentation model fromackup.

3.3 Deriving Navigational Models

After deriving presentation models, a naive appinotic start generating navigation
models could be defining one UWNavi gat i onNode (the UWE navigation concept
for defining nodes) for each mockup. However, thyEJmetamodel defines several

navigation elements:

* Navi gationC ass, represents a generic navigable element in theerkgxt

structure,

e Menu, that is used to handle alternative navigatiomgpat

* Query, that is used to retrieve content from a datacmuand

* | ndex, that allows selecting one content class instdrara a set of instances
that have been compiled during previous navigation.

Additionally, UWE links between navigation elemeatg expressed through-

vi gat i onLi nk instances.

Since we cannot directly infer which UWE navigatielement must be used in a
mockup as some alternatives are possible (for ebaripe content of a single mock-
up may include an UWRavi gat i ond ass, aMenu and aQuery), we have defined a
second tag set: the UWE navigation tag set. THic@etains a tag for every UWE
navigation element. Figure 5 shows the resultiggéal mockup and the conse-
guences of tag application in derived UWE navigatizodel.

[UWE: Home] [UWE: Node(Album)|

Songs | Albums
Featured Albums IBoIIing Stones | UWE: QuerY(Album)[
The Rolling Stones $| UWE: Index(AIbum)I
Sticky Fingers
1971
Coldplay [UWE: Link(Album)]
Parachutes T=——=—s—=—=—=—3<<12 InStock
Tatoo You
1981
Kasabian The Rolling Stones $ 25.66 Out of stock
Kasabian A Bigger Bang
2005

(a) Resulting tagged mockup

<<navigationClass>>
MusicPortal <<query>>
{isHome} AlbumQuery <<navigationClass>> D
MusicPortal
<<menu>> <<index>>
MusicPortalMenu Albumindex
(c) Navigation model generated with tags (b) Navigation model generated

without tags

Figure 5. Initial mockup with UWE navigation tagspdied and the resulting navigation model.

The UWE navigation tags introduced are the follayvin

» Hone: defines that theavi gati ond ass related to the mockup is the home of
the navigation model.

* Node(<nodel d>) : Assigns an id to thsavi gati onC ass related to the mock-
up in order to be referenced as the destinatioon&f or more navigation
(Li nk) tags.

* Link(<nodel d>) : Specifies a navigation link to anotheivi gati ond ass. A
correspondingiode tag with the samenodel d> must be specified in order to
correctly derive the navigation.

* Query(<el ementld>) and I ndex(<el ementld>) define aQuery involving
elements of typecel ement 1 d> and thel ndex in which the results of the
Query are shown.

* Menu specifies that the panel over which it is applie@ set of links, a so-
called UWEMenu.

UWE: Home| [UWE: Node(Album)]

v<
- Songs | Albums
———

Featured Albums [Rolling Stones UWE: Query(Album)
The Rolling Stones $ UWE: Index(Album)|
Sticky Fingers
1971

Coldplay UWE: Link(Album)

Parachutes —

F9=.12 InStock

Tatoo You
1981

X

<<navigationClass>> [7]

i <<query>>
Kemablon The Rolling Stones $ 25.66 Out of stock MusicPortal Albl?mQr}l/lery
Kasabian A Bigger Bang

2005

<<menu>> <<index>> g
MusicPortalMenu Albumind

albums

| <<index>> B <<navigationClass>> 7]

Album

UWE: Node(Album)

|

Songs | Albums

Return to Forever Price
by Chick Corea $15

Genres: Jazz Fusion In Stock

Buy iTrackl N UWE: Index(Song)
Favourite 1 Return to Fortwer

Crystal Silence

X

»

2
3 What Game Shall We Play Today?
4

Sometime Ago/La Fiesta

(a) Home page and album details mockups, prop¢b) Resulting navigation generated
erty tagged with UWE navigation tags from mockups in (a)

Figure 6. Final version of tagged mockups and gaerdrUWE models.

When clicking on an album’s title in the home page Ul of the album details will
be shown. After being defined, the mockup implermgnthe added functionality can
be joined to the existing model through the afoneto@ed processing and further
tagging, maybe in a new iteration. Thig picture of the application being modeled
can be observed in Figure 6 in which the complegged mockups and UWE model
generated are depicted. The navigation link betwhertwo existing mockups (SUI

models in fact) is expressed through thek(Al bun) andNode(Al bun) tags in home
page and album mockups, respectively.

Some of the transformation rules that we definett (amplicitly applied in the
previous example) are schematized in Figure 7.

3.4 Towards a Content M odel

Once we have obtained the UWE navigation modelyst version of the content
model can be derived by applying some inferencesrgraphically described in Fig-
ure 8. These rules were designed by studying maamples of UWE navigation and
content models and discovering recurrent pattermisam.

UWE navigation element names (previously generatgdg naming and UWE
navigation tags) are used to derive the nameseottimtent elements. The resulting
UWE content model after the application of theadtrced rules over the UWE navi-
gation model of Figure 6.b is shown in Figure 9).

Structural Ul UWE Navigation
Page <<navigationClass>> O
Panel Page
<< i i >>
Linki l nangaitrL(I)(r;Class O
Link2 <<navigationClass>> 8
PageMenu <<navigationClass>> []
Link2

<<navigationClass>> [7]
Page1

UWE: Node(P2)

Page1 Page2
UWE: Link(P2)
(TITN Link1

)

<<navigationClass>> O
Page2

<<navigationClass>> []

Page[UWE: Query(Type) Page
Panel
J <<query>>

UWE: Index(Type) TypeQue

Panel

<<index>> [g]
Typelndex

Figure 7. Transformation rules applied over taggell models to derive UWE features.

The obtained UWE content models must be refinedrigler to specify class
attributes. As UWE navigation models do not alloarenrefinement than the features
already commented, this information should be takem other models. Since in
UWE every navigation concept is refined by a preséon specification (e.g., & e-
sentationG oup), and given that we have already derived theseetsolom SUI
specifications, we can use this link between moitetsrder to obtain attributes from
presentation structure. Rules using this link terinattributes are graphically de-
scribed in Figure 10.

UWE Navigation UWE Content

<<navigationClass>> D
Album

Album

<<navigationClass>> |:|

<<navigationClass>> E Alb"i"

AlbumMenu

|

<<query>> l

SongQuery ’ <<menu>>
Or... Songlndex

lrsongs

<<navigationClass>> D
Song

(none)

E] | -> (optional)

Album

lg

Song

<<navigationClass>> D
Album

l-authcr

<<navigationClass>> |:|
Author

Album

l-au(hor

Author

Figure 8. Some content inference rules to gendsdiE Content models from Navigation

models.

<<navigationClass>> []

<<query>>
AlbumQuery @

MusicPortal
{isHome}

MusicPortal

Album

albums *

<<menu>> <<index>>
MusicPortalMenu Albumindex
albums
<<index>> E <<navigationClass>> O
Songlindex Album

Figure 9. Inferred UWE content model derived thiwtige application of the introduced rules.

l songs

Song

UWE Navigation + Presentation UWE Content

<<presentationGroup>> Album
<<navigationClass>> D - -
: Album Album -title: String
<<text>> =

: title

<<presentationGroup>> Album
<<navigationClass>> |:| - -
: Album . Album -title: String
<<textlnput>>

: title

<<presentationGroup>>

. Album <<navigationClass>>] Album
- Album -inStock: Boolean
<<selection>> Qg
: inStock
<<prese.nfltl|)ol:1n(]5roup>> <<navigationClass>> |:| Album
: Album -cover: Image
<<image>> [o]

. cover

Figure 10. Attribute inference combining existeavigation and presentation specifications.

4 Discussion

In this paper we presented an approach that adlity &g existing MDWE methods
and we show how it can be applied in the conteXtV@fE. The main intent of our
approach is to enable early and constant commumicand interaction with end
users, a key requirement in agile methodologiess irteraction is facilitated in the
early stages of development through the usage ohdtikups as a common language
to start the process and discuss requirements; taigng further steps we provide an
automatic and fast prototype generation throughkmpenrichment and processing
with help of our model-driven tooling. Thus, the kopDD approach changes the
traditional MDWE workflow, using presentation masléinitially Ul mockups) as the
starting artifact in the process, and facilitatthg incremental and iterative introduc-
tion of features through atomic tags over existingdels. Since user interface are
elements perceived by final customers users, theybe involved early and during
every iteration.

Currently, since MockupDD is intended to provide agile process to existing
MDWE methodologies like UWE, WebML or OOHDM, it gnkllows specifying

features which are present in these approachelseritmg” their applicability and
limitations in different contexts. According to tharrent state of our research, many
aspects of these methodologies can be generalizadunified tag set while others
must be refined with concrete tag sets, as explainghe following section. Addi-
tionally, the automatic derivation process commeémtethis paper may naturally lead
to an imprecise content model, and some thougti#feign changes might be required
in order to get to a definitive version. Howeveree when most design adjustments
cannot be fully automated, they can be still prietic For example, observing the
examples in the previous section, an album clasthénpresentation model might
translate into an album class with attributes sagértistName when in fact the con-
tent model should have two separate classes fourAland Artist, related to each
other. We have observed that many of these inardexivations are usually recur-
rent, so the required adjustments can be documdated applied with automatic
assistance when possible) just like code refaaysrjh9].

5 Conclusion and Further Work

We have presented a mockup-based approach (MockupDMuing an inversion of
the traditional MDWE process. We decided to stant process with mockups be-
cause they are becoming a common tool in agile odetlogies to interact and estab-
lish a shared view of requirements between custerand developers. Mockups are
processed to structured Ul models (called SUI) witl the help of the iterative in-
troduction of simple and precise refinements thiotlige so-calledagsthey are easily
derived to MDWE presentation and navigation modAjgplying a set of inference
rules, a first version of MDWE content models cangenerated. We have shown the
approach applied to an example using the UWE metbgg. With our approach, we
intend to provide an agile methodology based omdtkups and lightweight specifi-
cations to obtain MDWE models, which offer advaetatike automatic code genera-
tion (increasing software specification productiyiand a high level of abstraction
(improving application portability) among others.

Extending the proposed approach to other modern MDWethodologies like
WebML represents a fruitful work path. We are iat#ed in defining a general and
methodology-agnostic navigation tag set that witha us to derive navigation mod-
els for a more comprehensive set of MDWE approadh&sare experimenting with
the application of heuristics not only at modeldess is proposed in this paper, but
also directly at the SUIT (SUI plus Tags) levelc@mparison of both strategies is
depicted in Figure 11. In addition, we are curnemtbrking in discovering and cata-
loging more heuristics and researching about howetfine minimum tag sets that
provide the highest expressive power and flexipilihile preserving the simplicity of
the approach.

Since obtained content models likely require todfactorized, we are interested in
developing heuristics to suggest refactoring aitéves to be applied over content
specifications. Currently, experiments are beingdemted to measure the differences
found between MDWE models constructed entirely agchfrom mockups and those
generated automatically with the proposed tool. déka found between those mod-

els will determine the definition of a cataloguesofygested refactorings and the heu-
ristics implied in the detection of potentinhd smellsin automatically generated
models in order to assist the improvement of theality.

Finally, other approaches that propaseiching user interfaces in some way are
Portlets and Mashups. While the former represamygable user interface elements
that can be added topartal page, the second propose to include and combites-ex
nal services injecting one or more (in this caséxamponents into a page. Mock-
upDD propose to discover MDWE elements stereotyjgixigting user interface ele-
ments. However, an interesting branch of our re$esrcludes easinylashupbuild-
ing through specific tag sets oriented to includerunterface components of external
services (e.g., Facebook buttons or comments)., A¥soare considering the modula-
rization and further reuse of common elements betwaockups (something similar
to thePortlet approach).

Ul in a concrete
technology (e.g.
ExtJS)

Heuristics/
Patterns

Ul in a concrete
technology (e.g.
ExtJS)

MDWE Presentation
————————————————————————————————————— Model
MDWE Navigational
Heuristics/ i‘ Model
Patterns

|_[MDWE Content
Model
(b) Workflow of an alternative configuration of the approach in which heuristics and
patterns are applied directly over tagged SUI models

Figure 11. Comparison of the approach presentékdisnpaper (a) and an alternative approach
that is being evaluated (b).

Acknowledgments. This work has been partially sponsored by the Ebjegt
ASCENS FP7 257414, and the DFG project MAEWA I, 8411/7-2.

References

10.

11.

12.

13.

14.

15.

Ceri, S., Fraternali, P., Bongio, A.: Web Modelibgnguage (WebML): A
Modeling Language for Designing Web Sites. Computietworks and
ISDN Systems, 33(1-6), pp. 137-157 (2000)

Gomez, J. and Cachero, C.: OO-H Method: ExtendiMl-Wio Model Web
Interfaces (2003). In: Information Modeling Forantet Applications, pp.
144-173, P. van Bommel, Ed. IGI Publishing, HersH&4 (2003)

Koch, N., Knapp, A.. Zhang G., Baumeister, H.: UMhsed Web Engineer-
ing, An Approach Based On Standards. In: Web Emging, Modelling and
Implementing Web Applications, pp. 157-191. Sprin@908)

Rossi, G., Schwabe, D.: Modeling and ImplementingbWApplications us-
ing OOHDM. In: Web Engineering, Modelling and Implenting Web Ap-
plications, Springer, pp. 109-155 (2008)

Wimmer M., Schauerhuber, A., Schwinger, W., Kakgt, On the Integration
of Web Modeling Languages: Preliminary Results &odure Challenges.
In: Proc. of the 3nd Int. Workshop on Model-Drivé¥eb Engineering
(MDWE'07), CEUR-WS (2007)

Harel, D.: Some Thoughts on Behavioral ProgrammimgApplications and
Theory of Petri Nets. Springer Berlin Heidelber§1Q)

Seyff, N., Graf, F., Maiden, N.: End-user requiretseblogging with iRe-
quire. In: 32nd ACM/IEEE International Conferenae 8oftware Engineer-
ing - ICSE '10. ACM Press, New York, New York, U2010)

Noble J., Biddle, R., & Martin, A.: The XP Custonfeole in Practice: Three
Studies. In: Agile Development Conference, pp. 42{&EE Computer So-
ciety (2004)

Ferreira J., Noble J., & Biddle R.: Agile Developméterations and Ul De-
sign. In: AGILE 2007 Conference, Washington, DCEEEComputer Socie-
ty, pp. 50-58 (2007)

Ton, H.: A Strategy for Balancing Business Value &tory Size. In: Agile
2007 Conference. Washington, DC: IEEE Computer &gcipp. 279-284
(2007)

Kulak, D. & Guiney, E.: Use Cases: Requirementintext. Addison-
Wesley (2004)

Homrighausen, A., Six, H., & Winter, M.: Round-Ttrototyping Based on
Integrated Functional and User Interface Requirésmn@&@pecifications. In:
Requirements Engineering, 7(1), pp. 34-45 (2002)

Cohn, M.: User Stories Applied: for Agile Softwabevelopment. Addison-
Wesley (2004)

Moore, J. M.: Communicating Requirements Using Elsér GUI Construc-
tions with Argumentation. In: 18th IEEE InternatadrConference on Auto-
mated Software Engineering, pp. 360-363, IEEE Cdergbiociety (2003)
Panach, J. I., Espafia, S., Pederiva, |., & Pa8arCapturing Interaction
Requirements in a Model Transformation Technologgd?l on MDA. Jour-
nal of Universal Computer Science, 14(9), pp. 14805 (2008)

16.

17.

18.

19.

Mukasa, K.S., Kaindl, H.: An Integration of Requitents and User Inter-
face Specifications. In: 6th IEEE International Riegments Engineering
Conference, pp. 327-328. IEEE Computer Society0§20

Ricca, F., Scanniello, G., Torchiano, M., Reggio, Sstesiano, E.: On the
effectiveness of screen mockups in requirementsneagng. In: 2010

ACM-IEEE International Symposium on Empirical Sofine Engineering
and Measurement, ACM Press, New York, USA (2010)

Rivero, J. M., Rossi, G., Grigera, J., BurellaRbbples Luna, E., Gordillo, S.
E.: From Mockups to User Interface Models: An Esibte Model Driven

Approach. In: 10th International Conference on VEglgineering, pp. 13-24.
Springer (2010)

Fowler, M., Beck, K., Brant, J., Opdyke, W., RoeiD.: Refactoring: Im-
proving the Design of Existing Code. Addison-Wedhrgfessional (1999)

