
SecEval: An Evaluation Framework for

Engineering Secure Systems∗

Marianne Busch, Nora Koch, Martin Wirsing

Ludwig-Maximilians-Universität München

Oettingenstraße 67, 80538 München, Germany

{busch, kochn, wirsing}@pst.ifi.lmu.de

Abstract: Engineering secure software systems is not an easy task. Many methods,
notations and tools – we call them knowledge objects – exist to support engineers
in the development of such software. A main problem is the selection of appropri-
ate knowledge objects. Therefore, we build the conceptual framework SECEVAL to
support the evaluation and comparison of security features, vulnerabilities, methods,
notations and tools. It provides an evaluation process and a model, which comprises
concepts related to security context, data collection and data analysis. Our approach is
validated by a case study in the area of security testing of web applications.

1 Introduction

Software and security engineers constantly make decisions about which technology should

be used in the different phases of the Software Development Life Cycle (SDLC). There-

fore, a cost-benefit analysis and a subsequent selection of appropriate methods, tools and

notations – so called knowledge objects (KOs) – for a specific task, play an important role

in the engineering process. All too frequent, there is no time to investigate on alternatives

to well-known KOs or those used so far. Most of the questions which arise are not entirely

new, but useful scraps of knowledge are distributed in papers, books or the web, or just

exist in the head of colleagues working at another project. Without having a template for

their domain, engineers often have to start defining the process of evaluating KOs as well

as creating the structure of the results from scratch.

To ease the tasks of recording results and of getting an overview of existing KOs the Com-

mon Body of Knowledge (CBK) [CBK13] was implemented as a semantic Wiki within

the scope of the EU project NESSoS. As members of the NESSoS project, we gained ex-

perience working with this knowledge base and its underlying model, which raised three

questions: (a) How could the CBK’s model be improved, so that security-related features

can also be represented as knowledge objects? (b) How can we use the model not only

for recording and comparing features of methods, notations and tools, but also for docu-

menting the search process. (c) How is the process of data collection and data analysis

specified, to make sure that emerging research results are comprehensible and valid?

∗This work has been supported by the EU-NoE project NESSoS, GA 256980.

337



Evaluation in the area of cybersecurity does mean for us, e.g., to find out which authen-

tication-related threats can or cannot be mitigated by a method, for which tool-support is

implemented. Up to now, these kinds of questions require researchers to document their

approaches and results in a self-made way. Consequently, other researchers, who want to

build on those results, have to understand many different schemas documenting research

processes and their results. This is not only time-consuming, but also error-prone, as

misunderstandings easily occur.

We present an evaluation approach, called SECEVAL, for evaluating security-related KOs.

However, we do not claim to provide a one-fits-all model for IT-security (which would hor-

ribly overload any model), but introduce an extensible basis. SECEVAL defines a graphical

model, which comprises (a) a security context model describing security properties, vul-

nerabilities and threats as well as methods, notations and tools; (b) a data collection model,

which records how data is gathered when researchers or practitioners do research to an-

swer a question; and (c) a data analysis model specifying, how reasoning on previously

collected data, is done.

A simplified example of the process of using SECEVAL for evaluation is depicted in Fig. 1.

Research questions initiate the process of data collection, where sources (as papers, web-

sites, . . . ) are gathered. These sources are then analyzed, which means to extract informa-

tion and record it using SECEVAL’s security context model.

Figure 1: Overview of SECEVAL’s Evaluation Process (full process: [Bus14a])

The remainder of this paper is structured as follows: Sect. 2 presents our evaluation ap-

proach called SECEVAL. In Sect. 3 we validate the approach by a guided review and a

case study in the area of security testing of web applications. We discuss related work in

Sect. 4 and conclude in Sect. 5.

2 Evaluation Framework SecEval

Our aim is to provide an approach for documenting the evaluation of methods, notations

and tools within the scope of secure software systems. The evaluation should also support

security properties, vulnerabilities and threats. For the graphical representation of con-

cepts and relationships we selected the UML notation, as we think it fits our needs best.

338



The full MagicDraw 17.01 model of SECEVAL and all diagrams can be downloaded from

the web [Bus14a]. Deliverable D2.4 [BK13, Bus14b] of the NESSoS project includes a

detailed description of SECEVAL.

We elicited the requirements of such a conceptual framework, i.e. which stakeholders are

involved (security engineers, users, attackers), which use cases they perform, which con-

cepts play a role and how they are related. We grouped the identified use cases according

to evaluation (e.g., collect data) and SDLC-related (e.g., identify vulnerabilities) concepts.

The use cases from our requirements analysis were a starting point to identify relevant

concepts related to security for using and evaluating methods, notations and tools during

the software engineering process. We clustered these concepts in three packages: Security

Context, Data Collection and Data Analysis. Figure 2 shows the model represented as a

UML class diagram.

Figure 2: SECEVAL: Model Overview

2.1 Security Context

The aim of Security Context package (shown in Figure 3) is to provide a structure for

the classification of (security-related) methods, notations and tools together with security

properties, vulnerabilities and threats. We introduce an abstract class Mechanism from

which the classes Method, Notation and Tool inherit common attributes such as

1MagicDraw. http://magicdraw.com

339



goals, costs, basedOnStandards, etc. In this paper we use the upper-case term

“Mechanism” when referring to a method, a notation or a tool. We focus on security

aspects, but the model can also record non-security Mechanisms.

Once Mechanisms are described by the model, it is easy to get an overview of existing

security-related methods, tools and notations for a certain area. Furthermore, the package

should serve as a flexible basis for a knowledge base and as a starting point for an eval-

uation. This means that it can be adopted to fit the needs of the researcher to examine a

concrete research question (which does not have to be scientific).

In Fig. 3, for convenience enumerations’ texts are grey and the background of classes

which can directly be instantiated is colored. All attributes and roles are typed; however the

types are not shown in the figures due to brevity. The main characteristics of Mechanisms

are specified as boolean types (can.., has.., is..). In an implementation of our model, it

should be possible to add further items to enumerations.

Figure 3: SECEVAL: Security Context

As mentioned above, a MECHANISM is an abstract notion for a method, notation or tool.

It can be described by a problem statement, by the goals it strives for, by its costs and by

the consequences it implies. Mechanisms can be based on standards or be standardized

themselves. They can have arbitrary many creators, as companies, inventors or developers.

Before applying a Mechanism, the preconditions that are necessary for using it have to be

fulfilled. Furthermore, an estimation regarding technical maturity and adoption in practice

340



should be given. Several levels of usability can be stated according to the experience a

user needs to employ a Mechanism, e.g., a certain Mechanism should best be applied by

experts.

A METHOD has some general attributes, such as as input, output and if it is model-driven,

which are used to describe the method at a high level of abstraction. For extensive methods,

each step of the method can also be described in detail, if necessary. A method or step can

be supported by notations or tools.

For a NOTATION, we consider characteristics such as whether the notation is graphical,

textual or based on a tabular representation. We also added a level of formality, which

ranges from informal to formal. Notations can be based on other notations, for example

many context-specific extensions for UML exist.

The description of a TOOL covers the information of languages it is written in, of operating

systems it supports, of frameworks it uses and of technical requirements, which have to

be fulfilled in order to use it. The tool (or its parts) are released under certain licenses.

Additionally, the needed time for installation and configuration can be provided. Booleans

describe if the tool can be used interactively or autonomously, if it has start parameters, a

GUI or a text-based user interface. A tool can be based on other tools, which is the case

when libraries are used or when plugins are written.

During our experience with the CBK, we noticed that tools as well as methods would be

better described according to the phases of the SDLC, because attributes which are used

to describe a method or tool are related to the SDLC phases they cover. As far as we

know, no phase-related attributes are needed to describe features of notations. Figure 4

depicts our Method class and the abstract class MAreasOfDev, which is a wildcard for

detailed information about the method. A method can support several development phases.

The phases of the SDLC are the same we have chosen to classify tools and methods in the

NESSoS project [BK11]: requirements, design, implementation, testing, assurance, risk &

cost, service composition and deployment. We added an additional category to distinguish

methods and tools that operate at the runtime of a system.

For example a method, as e.g., Microsoft’s Security Development Lifecycle2, can be used

as a basis for designing secure applications, but also covers other phases. In this case, the

attributes of the classes DesignM and ImplementationM and others would be used

to describe the method. The meaning of attributes should be self-explaining, for further

details and for the according SDLC refinement for tools, the reader is referred to [Bus14a].

We adopted the abstract KNOWLEDGEOBJECT (KO) which is used in the CBK to record

most information of elements which are described. For SECEVAL, we applied separation

of concerns so that only very general descriptions remain as attributes in a KO, which

can be applied to all elements (cf. Fig. 3). Therefore, the class KnowledgeObject has

names, tags and related sources, which could be any kinds of sources, as publications or

URLs. A description and examples enable easy learning of KOs, i.e. security properties,

vulnerabilities and mechanisms.

We represent security issues, such as confidentiality, integrity and privacy by the class

2Microsoft SDL. https://www.microsoft.com/security/sdl

341



Figure 4: SECEVAL’s Security Context: Details of Methods

SECURITY PROPERTY. The attribute SecurityGoal, which is denoted by a string,

describes the goal of the property. For instance “integrity refers to the the trustworthiness

of data or resources” [Bis02, p.5].

A VULNERABILITY is “a weakness that makes it possible for a threat to occur” [Bis02,

p.498]. Thus, it endangers security properties. Examples are XSS, SQL Injection, Buffer

Overflows, etc. Methods can detect such vulnerabilities or shield them from being ex-

ploited by a threat. Every vulnerability is located at least in one location (which is mod-

eled as a UML enumeration). Furthermore, we include the categorization scheme from

OWASP TOP 10 [Fou13b] (which is adapted from the OWASP Risk Rating Methodol-

ogy [Fou13a]) using prevalence, impact level, detectability and exploitability. Regarding

the latter two roles, the Difficulty “theoretical” means that it is practically impossible

to detect or exploit a vulnerability (cf. Figure 3).

A THREAT is “a potential occurrence that can have an undesirable effect on the system

assets or resources” [Bis02, p.498]. We treat a threat as a kind of method which is vicious.

At least one vulnerability has to be affected, otherwise a threat is not malicious (and the

other way around), which is denoted by the multiplicity [1..*]. Additionally, threats can

be mitigated by other methods.

2.2 Data Collection

High-quality data is the basis for an evaluation, as the best analysis strategy cannot make

up for low-quality data. Our aim is to create a schema which describes properties that have

to be defined before starting collecting data. Such an approach is particularly needed, if

342



the data collection has to be systematic. Therefore, we base our approach on Kitchenham’s

systematic literature review [KC07].

In order to collect data, it is common to define a search process (c.f. Fig. 5) which specifies

several steps called process phases. Each phase may follow another approach, e.g., the

search can be automated or not, or it can be a depth-first or a breadth-first search. Depth-

first means, that the aim of a search is to extract a lot of detail information about a relatively

small topic, whereas a breadth-first search is good to get an overview of a broader topic.

Figure 5: SECEVAL: Data Collection

Similar to Kitchenham’s literature review, research questions are used to define the corner

stones and the goals of the search. Please note that for us the term “research” does not

necessarily refer to scientific research. Queries can be derived from the research questions.

They are then used and refined in the phases of the search process. As different search

engines support different types of queries, concrete queries are specific for each resource,

as e.g., Google Scholar. Queries can also refer to questions which are used as a basis for

experiments (cf. Sect. 3).

It is important to choose resources that will serve as data sources for the evaluation. The

use of an association class for ConcreteQuery (depicted by a dashed line) denotes that

for each pair of ProcessPhase and UsedResource, the class ConcreteQuery is

instantiated. The concrete search expression is derived from a general search expression.

For example, the general search expression could be “recent approaches in Security Engi-

neering” and we want to ask Google Scholar and a popular researcher. For Google Scholar

we could use “"Security Engineering" 2012..2013” as a concrete search expression and

the concrete expression for asking a researcher could read: “I’m interested in Security

Engineering. Which recent approaches in Security Engineering do you know?”.

If a concrete query matches sources, as papers, websites or personal answers, we classify

the source at least by author and description (as an abstract) and provide information about

the type of source and at least one reference where to find it. The process of data collection

and data analysis is depicted in Fig. 1.

343



2.3 Data Analysis

Data is collected with the purpose to obtain an answer to research questions based on the

analysis of the data. According to Kitchenham, the procedure how to collect as well as

analyze data belongs to the “review protocol” and has to be specified in the first place.

Figure 6 depicts relevant concepts for analyzing data. First, we have to specify which

type of strategy we want to use. Are we limited to quantitative analysis or do we focus

on qualitative analysis? Accordingly, one can later refer to Kitchenham’s checklists for

quantitative and qualitative studies [KC07, tables 5 and 6] to ensure the quality of the own

answers to the research questions.

Figure 6: SECEVAL: Data Analysis

The analysis strategy requires to select the used categories & criteria, algorithms for anal-

ysis, and filters according to the research question. Criteria can be grouped by categories.

A criterion gives more information about data values as it defines the data type (string,

list of booleans, ..) and the metric (milliseconds, ..). In addition, a priority can be defined

which is useful when Mechanisms should be compared.

Information can be extracted from the sources which were found in the data collection

phase (see ≪use≫ dependency starting from the class ExtractedInfo in Fig. 2), or

they can be processed using an analysis algorithm. This algorithm does not have to be

executable on a computer. The analysis strategy defines which algorithm is employed and

makes sure that the result of the algorithm fits to a criterion regarding meaning and metric.

344



Besides, a filter can be specified to disqualify results according to certain criteria as costs

or quality. This filter is finer grained than the filter that is defined by UsedResource’s

attribute exclusionCriteria used in the data collection, which only can be based

on obvious criteria, as e.g., the language the source is written in. In addition to this, the

filter for data analysis accesses information as well as criteria and thus can exclude, e.g.,

Mechanisms from the evaluation that do not meet a high-priority requirement.

A valid question is how information, criteria and the security context model fit together.

This is shown in Fig. 2: information can be stored in an instance of our security context

model, which provides a sound basis when collecting data about KOs. Consequently, the

attributes name and dataType of a Criterion can be left blank when information

is stored in an instance of our model, as attributes have a name and are typed. However,

these attributes are needed when describing information which is not directly related to an

instance of a knowledge object or not meaningful without their connection to a concrete

analysis process.

In summary, it can be said that, contrary to the context model, neither the collection of

data nor the data analysis are security specific and thus can be applied in the same way to

other domains.

3 Validation of SECEVAL

Coming up with a broad evaluation model for security KOs is challenging, because many

different areas of expertise are needed. For validating and improving SECEVAL we con-

ducted a guided interview with project partners, who encompass the broad area of secure

software development. Besides, we performed a case study on security testing of web

applications using SECEVAL.

3.1 Guided Interview

A Guided Interview is “a one-on-one directed conversation with an individual that uses a

pre-determined, consistent set of questions but allows for follow-up questions and varia-

tion in question wording and order.”3 We hold this kind of interview in a slightly modified

way: first we explained our basic model (especially the basic Security Context Model).

Second, we handed out a description of the draft version of SECEVAL and a questionnaire,

which can be found in [Bus14a]. Finally, 14 international senior researchers, who are

experts in different areas of security engineering, gave us feedback.

The answers and discussions helped us to improve SECEVAL. Among other changes, fur-

ther attributes were added and some classes and enumerations were splitted to emphasize

the idea of separation of concerns. In addition, we extended SECEVAL for risk rating and

experimental approaches [Bus14a].

3Education dictionary. http://www.mondofacto.com/facts/dictionary?guided+interview

345



3.2 Case Study

With 27% of breaches within hacking, web applications of larger companies are a worth-

while target for hackers [Ver13, p.35]. An approach to harden web applications is to

identify security flaws through “penetration testing” or “vulnerability scanning”. These

methods are supported by many commercial and open-source tools. In this section, we use

our SECEVAL approach to evaluate vulnerability scanners for web applications.

Data Collection The first step consists in defining the plan to collect data. This is done

by an instance model as shown in Fig. 7, which depicts instances of the classes we have

already defined in Fig. 5. For example, instances of the class ResearchQuestion

define the two research questions, a high-level and a concrete one. We used identical

background colors for instances of the same classes and omitted all name attributes in

case a name (e.g., p3) is given in the header of an instance.

Figure 7: Case Study: Data Collection

346



Research question q1 (“Which security-related tools and methods are available and how

do they compare?”, cf. Fig. 7) is very general. In the first process phase p1, 13 methods

and 18 tools were selected [Sch13]. More detailed information was gathered in the sec-

ond process phase p2 about: vulnerability scanning, penetration testing, fuzzing and the

classification into black- grey- and white-box testing. Examples for tools are WSFuzzer,

X-Create and WS-Taxi, just to mention a few. As we already added most of the found

methods and tools to the CBK [CBK13], we focus on q2 in this section.

Research question q2 (“Which vulnerability scanners are available for testing security

features of web applications?”) is a typical question which could be asked by security

engineers working in a company. The “sources” (i.e., tools) we selected for analysis

were [Lac13]: a) Acunetix Web Vulnerability Scanner4, b) Mavituna Security - Netsparker5,

c) Burp Scanner6, d) Wapiti7, e) Arachni8, f) Nessus9, g) Nexpose10 and h) Nikto11.

The instance experienceWithTestScenario describes how the data is gathered by

testing the vulnerability scanners.

Data Analysis For analyzing collected data we define an analysis strategy and select a

filter which enforces the requirements (limitations) defined for question q2. Figure 8

depicts instances of the data analysis model we defined in Fig. 6.

Figure 8: Case Study: Data Analysis – Results

Before going into detail about particular results of our experiments, we first take a look

at the overall result regarding our research question q2. Figure 8 thus depicts an instance

of the class ProcessedInfo, which is called weightedResultValues. Only four

tools passed our filter: Arachni and Nikto, which provide command-line interfaces and

Nessus and Nexpose, which also provide web interfaces. From our list of tools from

4Acunetix. http://www.acunetix.com
5Netsparker. https://www.mavitunasecurity.com/netsparker
6Burp Scanner. http://portswigger.net/burp/scanner.html
7Wapiti. http://www.ict-romulus.eu/web/wapiti
8Arachni. http://www.arachni-scanner.com
9Nessus. http://www.tenable.com/de/products/nessus

10Nexpose. https://www.rapid7.com/products/nexpose
11Nikto. http://www.cirt.net/Nikto2

347



above, the trial of a) only allows to scan predefined sites. Tools b) and c) do not support

a command line or web interface in the versions that are free. A run of tool d) on our test

target Multidae12 took six hours.

Apart from information available online, we experimented with the tools that passed the

filter, in order to obtain data for our tool evaluation (q2). We evaluate the following

(weighted it as indicated in the brackets, cf. queryForTestScenario): installation

simplicity [0.5], costs[1], processor load while scanning[1], clarity and intuitiveness (i.e.

user-friendliness) [1], run duration of a scan [1], quality of the report [2] and the number of

detected vulnerabilities [4]. Lower factors of a criterions’ priority denote that we consider

the criterion less important. Table 1 contains the measured results as well as the average13

and weighted14 results. The results can also be represented by UML diagrams, as can be

seen in [Bus14a].

Tool Inst. Costs CPU Clarity Time Vuln. Report AVG13 WAVG14

Nessus 1 2 2 1 4 1 2 1,86 1,86

Arachni 1 1 4 4 2 1 3 2,29 2,42

Nexpose 4 4 1 2 3 3 1 2,57 2,10

Nikto 1 1 3 4 1 4 4 2,57 3,19

Table 1: Case Study: Final Tool Ranking (adapted from [Lac13])

Security Context Model To allow security engineers to easily access the data we col-

lected, we added entries for Nessus, Arachni, Nexpose and Nikto to the CBK [CBK13].

However, the CBK does not provide fine-grained categories for entering security-specific

information. As SECEVAL’s context model is more detailed, we modeled the context of

vulnerability scanning of web applications and two of the tested tools: Nessus and Nikto.

Figure 9 shows an instance diagram of the context model, which we have already depicted

in Fig. 3.

The three vulnerabilities that are modeled are the top 3 from OWASP’s top 10 project

2013 [Fou13b]. Vulnerabilities may be caused by other vulnerabilities, as e.g., unvalidated

input can lead to injection vulnerabilities. The association between vulnerabilities, as well

as further supported methods are not depicted in Fig. 3, but the interested reader is referred

to the model example that can be downloaded [Bus14a]. The main advantage of a web-

based implementation of SECEVAL would be that connections to existing elements (like

other methods or vulnerabilities), could be added without building the knowledge base

from scratch.

We recommend using additional classes for extensions, e.g., a class to detail a test run,

using attributes as run duration or processor load. Although building the instance model

was straight forward, a future implementation as a kind of semantic wiki would be more

user-friendly.

12NOWASP (Mutillidae). http://sourceforge.net/projects/mutillidae
13AVG: average
14WAVG: weighted average according to ratings

348



Figure 9: Case Study: Instances of Context Model (excerpt)

349



4 Related Work

Evaluation approaches are often tailored to the needs of a specific area. We start by intro-

ducing general approaches and continue with those which are security-specific.

General Evaluation Approaches. KITCHENHAM et al. [KC07] specify so called “Sys-

tematic Literature Reviews” in software engineering. The aim is to answer research ques-

tions by systematically searching and extracting knowledge of existing literature. Our

approach, SECEVAL, is based on their work. We focus instead on the use of arbitrary

resources, as source code or experiments which are carried out to answer a research ques-

tion. In contrast to Kitchenham’s approach, our data collection process is iterative, and

more specific for a chosen context as we define a detailed structure for recording results.

SIQINU (Strategy for understanding and Improving Quality in Use) [BPO13] is a frame-

work for evaluating the quality of a product version. It uses the conceptual framework

C-INCAMI, which specifies concepts and relationships for measurement and evaluation.

SIQinU defines a strategy using UML activity diagrams whereas C-INCAMI is specified

by a UML class diagram.

MOODY [Moo03] proposes an evaluation approach which is based on experiments. Prac-

titioners use methods and afterwards answer questions about perceived ease of use, per-

ceived usefulness and intention to use. A figure how Moody’s approach can be integrated

can be found online [Bus14a].

The CBK (Common Body of Knowledge) [BEHU12] defines a model for software en-

gineers to describe knowledge objects (KOs), which are methods, techniques, notations,

tools or standards. Techniques are methods which do not specify activities (in our ter-

minology: “steps”) for applying the method. The CBK is implemented as a semantic

Wiki [CBK13] and serves as a knowledge base containing all relevant information about

existing KOs. Unlike the CBK, SECEVAL is not implemented yet. In contrast to the

CBK, SECEVAL focuses on security-related features and provides a fine-grained model.

Additionally, it defines a process for the evaluation of KOs.

Security-specific Evaluation Approaches. Security-related frameworks often consider

concrete software systems for their evaluation. An example is the OWASP RISK RATING

METHODOLOGY [Fou13a], where the risk for a concrete application or system is esti-

mated. We added vulnerability-dependent features of the OWASP model to SECEVAL,

as e.g., the difficulty of detecting or exploiting a vulnerability. Features that are related

to a concrete system and the rating of a possible attack are introduced as an extension of

SECEVAL, which can be found online [Bus14a].

Humberg et al. [HWP+13] propose a two-step approach to support compliant and secure

outsourcing of business processes using the concept of ontologies to formalize compliance

and regulatory aspects of IT-security. They show how they can apply it to analyze the con-

tent of documents in a unified way in order to detect dependencies. Our means are similar,

as we want to represent methods, notations and tools in a structured and methodological

350



way. However, we focus on the selection of KOs and not on compliance issues.

The i* [Uni] metamodel is the basis of a vulnerability-centric requirements engineering

framework introduced in [EYZ10]. The extended, VULNERABILITY-CENTRIC I* META-

MODEL aims at analyzing security attacks, countermeasures, and requirements based on

vulnerabilities. The metamodel is represented using UML class models.

Another approach that focuses on vulnerabilities is described by Wang et al. [WG09] Their

concept model is less detailed than the i* metamodel. They create a knowledge base that

can be queried using a language for the semantic web, called SWRL. Unlike our approach,

they do not use graphical models.

5 Conclusion

We present a conceptual framework – called SECEVAL– for the structured evaluation of

methods, tools and notations in the area of secure software. SECEVAL specifies (a) an

improved, flexible security context model (b) a model that records the way how data is

collected (c) an analysis model which defines the analysis strategy, and the filters and al-

gorithms it uses on the collected sources. A UML model is used to represent concepts and

relationships of these three concerns (depicted as UML packages): context, data collec-

tion and data analysis. Furthermore, SECEVAL was improved using a guided interview and

we additionally provided a case study about methods and tools from the area of security

testing. The research question of our case study focuses on the selection of vulnerability

scanners for web applications.

Summarizing, SECEVAL provides a structure for evaluating research questions related to

secure software engineering. We think that this eases the process of doing research in the

area of security no matter if the research question aims at scientific or engineering issues.

When implementing the security context model in the future, it will be helpful to add

axioms to our model. In our case, we could think about rules to describe dependencies

between attributes, like a method should not extend the same version of itself. Addition-

ally, we plan to conduct a case study using SECEVAL for a comprehensive evaluation of

knowledge objects of the domain of secure web modeling.

References

[BEHU12] Kristian Beckers, Stefan Eicker, Maritta Heisel, and Widura Schwittek (UDE). NES-
SoS Deliverable D5.2 – Identification of Research Gaps in the Common Body of
Knowledge. http://www.nessos-project.eu/media/deliverables/

y2/NESSoS-D5.2.pdf, 2012.

[Bis02] Matt Bishop. Computer Security: Art and Science. Addison-Wesley Professional, 1st
edition, 2002.

[BK11] Marianne Busch and Nora Koch. NESSoS Deliverable D2.1 – First release of

351



Method and Tool Evaluation. http://www.nessos-project.eu/media/

deliverables/y1/NESSoS-D2.1.pdf, 2011.

[BK13] Marianne Busch and Nora Koch. NESSoS Deliverable D2.4 – Second Release of
the Method and Tool Evaluation. http://www.nessos-project.eu/media/
deliverables/y3/NESSoS-D2.4.pdf, 2013.

[BPO13] Pablo Becker, Fernanda Papa, and Luis Olsina. Enhancing the Conceptual Framework
Capability for a Measurement and Evaluation Strategy. 4th International Workshop on
Quality in Web Engineering , (6360):1–12, 2013.

[Bus14a] Marianne Busch. SecEval – Further Information and Figures. http://www.pst.
ifi.lmu.de/˜busch/SecEval, 2014.

[Bus14b] Marianne Busch. Secure Web Engineering supported by an Evaluation Framework. In
Modelsward 2014. Scitepress, 2014.

[CBK13] CBK. Common Body of Knowledge. http://nessos-project.eu/cbk, 2013.

[EYZ10] Golnaz Elahi, Eric Yu, and Nicola Zannone. A vulnerability-centric requirements en-
gineering framework: analyzing security attacks, countermeasures, and requirements
based on vulnerabilities. Requirements Engineering, 15(1):41–62, 2010.

[Fou13a] OWASP Foundation. OWASP Risk Rating Methodology, 2013. https://www.

owasp.org/index.php/OWASP_Risk_Rating_Methodology.

[Fou13b] OWASP Foundation. OWASP Top 10 – 2013, 2013. http://owasptop10.

googlecode.com/files/OWASPTop10-2013.pdf.

[HWP+13] Thorsten Humberg, Christian Wessel, Daniel Poggenpohl, Sven Wenzel, Thomas
Ruhroth, and Jan Jürjens. Ontology-Based Analysis of Compliance and Regulatory
Requirements of Business Processes. In 3nd International Conference on Cloud Com-
puting and Services Science, 2013.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[Lac13] Christian Lacek. In-depth comparison and integration of tools for testing security fea-
tures of web applications, 2013. Bachelor Thesis.

[Moo03] Daniel L. Moody. The method evaluation model: a theoretical model for validating
information systems design methods. In C. U. Ciborra, R. Mercurio, M. de Marco,
M. Martinez, and A. Carignani, editors, ECIS, pages 1327–1336, 2003.

[Sch13] Stefanie Schreiner. Comparison of security-related tools and methods for testing soft-
ware, 2013. Bachelor Thesis.

[Uni] RWTH Aachen University. i* notation. http://istar.rwth-aachen.de.

[Ver13] Verizon. Vector for hacking actions. Data Breach Investigations Report,
2013. http://www.verizonenterprise.com/resources/reports/

es_data-breach-investigations-report-2013_en_xg.pdf.

[WG09] Ju An Wang and Minzhe Guo. Security Data Mining in an Ontology for Vulnerability
Management. In Bioinformatics, Systems Biology and Intelligent Computing, 2009.
IJCBS ’09. International Joint Conference on, pages 597–603, 2009.

352


