
Decoupling Classes with Inferred Interfaces
Friedrich Steimann

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

Universitätsstraße 1
58097 Hagen, Germany

steimann@acm.org

Philip Mayer
Lehrgebiet Programmiersysteme

Fernuniversität in Hagen
Universitätsstraße 1

58097 Hagen, Germany

plmayer@acm.org

Andreas Meißner
IBM Ottawa Lab

2670 Queensview Drive
Ottawa, ON K2B 8K1

Canada

meissner@acm.org

ABSTRACT
Using small, context-specific interfaces in variable declarations
serves the decoupling of classes and increases a program’s flexi-
bility. To minimize its interface, a thorough analysis of the proto-
col needed from a variable is required. Currently available refac-
torings for the extraction of interfaces leave the programmer alone
with the decision which methods to include or, more problemati-
cally, which to omit: they let him choose manually from the pro-
tocol of an existing type, and only then offer to use the new inter-
face where (if) possible. To aid the programmer in defining a new
interface, we have developed a new refactoring that infers it from
a variable’s declaration and automatically inserts it into the code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – Classes and objects, Abstract data types, Inheritance.

General Terms
Design, Languages, Measurement, Theory.

Keywords
Type inference, Interface-based programming, Refactoring.

1. INTRODUCTION
It is common wisdom that object references (variables) should be
typed with abstract interfaces rather than concrete classes [4][5].
Ideally, the interfaces would be minimal, i.e., they would contain
only the protocol required from the references. This would in-
crease both security and plugability, by restricting access to and
by reducing the dependency (as measured in terms of the size of
the required protocol) on the referenced objects to what is actually
needed rather than what happens to be offered by an available
type. However, in practice the protocol required from a reference
is often non-obvious, since references get assigned to others, and
these assignments force the programmer to look at many differ-
ence places in a program (particularly if calls to overridden meth-
ods are involved). It is therefore often unclear what the interface
should contain, so that in practice, most programmers still prefer
to use the original classes in type declarations.

We aim to better this situation by providing a fully automated

refactoring that makes the introduction of fitting interfaces an easy
exercise. After presenting a motivating example (Section 2) we in-
troduce a few fundamental definitions (Section 3) necessary to
understand the formal framework of our type inferring algorithm
and refactoring (Sections 5 and 6), as well as the metrics indicat-
ing where it should be applied (Section 4). We then discuss our
work in light of certain language-specific and other problems
(Section 7), and compare it with the work of others (Section 8).

2. A MOTIVATING EXAMPLE
The following piece of JAVA code presents a very simple example
of a mutual coupling between a client and a server. The coupling
is established via the declarations Server s and Client c:
class Client {
 Server s;
 Client() {s = new Server();}
 void do() {s.doThis(); s.doThat(this);}
 void help() {…}
}

class Server {
 void doThis() {…}
 void doThat(Client c) {… c.help(); …}
 void doSomethingCompletelyUnrelated() {…}
}

Refactored for maximum decoupling, the code should look like
interface IClient {void help();}

interface IServer {void doThis();void doThat(IClient c);}

class Client implements IClient {
 IServer s;
 Client(IServer s) {this.s = s;}
 void do() {s.doThis(); s.doThat(this);}
 void help() {…}
}

class Server implements IServer {
 void doThis() {…}
 void doThat(IClient c) {… c.help(); …}
 void doSomethingCompletelyUnrelated() {…}
}

The example is simplistic since what client and server need from
each other is obvious; in particular, it need not be extracted by
following long assignment chains. However, it suffices to show
that with the refactored solution, the server’s services can be used
by clients that do not possess a do method, and clients can use
servers unable to doSomethingCompletelyUnrelated.

3. POSSIBLE, DECLARED, AND
INFERRED SUPERTYPES
Every statically typed object-oriented program comes with a set of
types, T. Every type T ∈ T declares a set of members, μ(T), the
subset

}method nonstatic public a is |)μ({:)π(mTmT ∈=
of which we call the protocol of the type. Our focus on protocol –
rather than all members of a type – is justified in Section 7.1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SAC’06, April 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

1404

The subset relation on the protocols of the types in T induces a re-
flexive and transitive relation, ≤, on T. We write A ≤ B for
π(A) ⊇ π(B) with A, B ∈ T and call A a possible subtype of B. As
usual, we extend the notation and write A = B for A ≤ B ∧ B ≤ A,
as well as A < B for A ≤ B ∧ A ≠ B. Note that because A = B
(meaning that π(A) = π(B)) does not imply the identity of A and B,
≤ is not antisymmetric and ≤ does not define a partial ordering on
types. ≤ is also known as structural type conformance [9], in con-
trast to type conformance by name, which we consider next.

A program may choose to declare some of the possible subtype re-
lationships contained in ≤ as actual (programmatic) subtype rela-
tionships. We write A:<B to express such declarations (A imple-
ments B or A extends B in JAVA syntax) and call A a declared
subtype of B. Note that unlike ≤, :< is not induced by protocol in-
clusion, but must be explicitly stated (which is why it is also
called subtyping by name). Also, :< is not reflexive, and A:<A is
illegal. That :< is not at conflict with ≤, i.e., that for all
A, B ∈ T : A:<B ⇒ A ≤ B is guaranteed by the programming lan-
guage’s rules of inheritance, by which the protocol of a type is in-
herited to all its subtypes. Note that it is possible that different
types, even if unrelated by subtyping, have identical protocol. We
write A ≡ B to denote that (the metasyntactical variables) A and B
denote the same type of T.

In statically typed languages, types are used to give all expres-
sions of a program a declared (static) type. Expressions comprise
user-defined variables (including instance variables, formal pa-
rameters, and temporaries), the special variables this and super,
methods with non-void return types (functions in standard pro-
gramming language terminology), new statements (instantiations),
and cast expressions. In the following we refer to variables (ex-
cluding this and super) and non-void methods collectively as
references (“declaration elements” in [18]). References can be as-
signed objects, which is why they have a dynamic type, which is
the type of the object they refer to at a certain point in runtime.

Besides its declared type, every expression also has an inferred
type. For our purposes, we define the inferred type of a reference
a as that type I whose set of members, μ(I), is the smallest set
containing all members accessed on a, united with the sets ac-
cessed on all references a gets assigned to, both directly and indi-
rectly. Technically, we define μ(I) as a function of a, ι(a), which
can be computed by analysing the “forward flow” of (the contents
of) a, which is specified as the transitive closure of the assign-
ments starting with a on the right-hand side. Since we target at
statically typed languages, Static Class Hierarchy Analysis as de-
scribed in [3] suffices for computing ι(a) (cf. Section 8.2).

The inferred type of a reference can contain fields and non-public
or static methods, in which case decoupling through a (JAVA or
C# style) interface is impossible. Since we may assume that it is
also undesired (cf. Section 7.1), we drop all such cases from our
further considerations and look only at references A a for which
ι(a) ⊆ π(A).

The inferred type of a reference may coincide with its declared
type or some other type in T, but generally, this will not be the
case. However, we know by the rules of static typing that the pro-
tocol π(I) of the inferred type I of a reference declared as A a
must always be a subset of the protocol of its declared type, π(A).
Thus, if the inferred type is in T, then it is at least a possible su-
pertype of the declared type; if a corresponding subtype declara-
tion exists, it is even a declared supertype. If the inferred type
does not exist in T, it can be introduced.

In order to maintain type correctness, the introduction of an indi-
vidual inferred type to a program (together with the introduction

of necessary subtype declarations) must follow certain rules,
which will be dealt with in Section 5. As we will argue next, the
inferred type of a reference – together with its declared type – also
provides a measure of the unnecessary amount of coupling estab-
lished by that reference (its potentially needless “choosiness”), in-
dicating a “bad smell” [5] suggesting a refactoring to decrease that
coupling.

4. MEASURING DECOUPLING
Typed references express unilateral coupling between types, be-
cause the definition of the type holding a reference depends on the
definition of the reference’s type. Coupling of a type with others
can therefore be quantified as the number of imported types, for
instance by the Coupling Between Objects (CBO) metric [2].
However, in presence of subtyping different imported types ex-
press different degrees of coupling: at one extreme, if an imported
type is declared final, the coupling is maximal, since only in-
stances of this type are allowed; at the other extreme, if the im-
ported type is the root of the type hierarchy (e.g., Object), the
coupling is minimal, because any instance is allowed. Clearly, in
all but a few pathological cases it is not possible to minimize cou-
pling simply by replacing the references’ types with Object: typ-
ing rules enforce that the type of a reference must offer at least the
protocol invoked on that reference. But if the type has methods in
excess of what is actually needed by the reference, use of the type
is overly specific in the given context, and coupling unnecessarily
strong.

Intuitively, it would seem that for a declaration A a

|)π(|

|)ι(|

A

a
,

the quotient of the number of methods needed from a reference a,
and the number of methods provided by its declared type A, indi-
cates the amount of unnecessary (or excessive) coupling estab-
lished by a: a degree of 1 expresses that all features are needed so
that coupling cannot be reduced, whereas one of 0 implies that
none of A’s features are used, so that the coupling is maximally
unnecessary. Its difference from 1 is therefore a measure of the
possible reduction of the coupling established by the reference’s
type; we call this measure the Actual Context Distance (ACD) of
the reference and its type. For a declaration A a it is defined by

|)π(|

|)ι(||)π(|
:),ACD(

A

aA
Aa

−= .

For instance, ACD(c, Client) in the original version of the exam-
ple of Section 2 is 1/2, and ACD(s, Server) is 1/3.

Now the actual context distance of a reference and its type can be
reduced by replacing its declared type with a “smaller” one, i.e.,
one that has less excessive protocol. Since such a type can some-
times be found among the declared supertypes of the current type,
contemporary IDEs such as ECLIPSE and INTELLIJ IDEA come
with special refactorings offering the replacement (and with it a
reduction of the ACD) where (if) possible. However, such a type
– if it exists – may still hold excessive features, so that replacing
the present type with its best available generalization may still
leave a positive context distance. We call the context distance in
whose computation the reference’s declared type has been re-
placed by the most general of its useable declared supertypes the
Best Context Distance (BCD) of a reference. (BCD values cannot
be computed for the above examples, because there are no such
supertypes available.) BCD is a measure of the least coupling that
can be achieved using existing types only, and ACD – BCD is a

1405

measure for the improvement of decoupling possible simply by
changing the reference declaration. Thus introducing new super-
types for a type can improve (i.e., decrease) BCD values, whereas
using these (or other) abstractions improves ACD. An ACD value
of 0 is the best possible achievable; for practical reasons, how-
ever, it cannot always be reached (Section 7.1). Yet, in the refac-
tored example ACD values of both c and s drop to 0.

5. REFACTORING FOR DECOUPLING
As outlined in the previous section, the decoupling of a design
can be improved by

a) using existing, better suited (less specific) interfaces, or by
b) introducing new interfaces tailored to suit a certain context,

and using them.

Refactorings for a) exist; in ECLIPSE, these are named Use Super-
type Where Possible and Generalize Type. However, refactoring
for b), the introduction of new interfaces – context-specific ones
especially – is left to the wisdom of the programmer: although
support for copying method declarations of a class into a new in-
terface is offered, the selection process (i.e., the choice which
methods to include) is burdened on the user (cf. discussion of re-
lated work in Section 8.2).

We have therefore implemented a new refactoring, Infer Type,
that computes ι as defined above, i.e., that computes the least spe-
cific type containing all protocol needed from the chosen refer-
ence and all other references it gets possibly assigned to. As out-
lined above, this type, if not already existent, can be introduced to
the program as a supertype of the reference’s declared type, re-
placing the latter in the declaration. However, this does not gener-
ally suffice, as the following considerations show.

The goal is to replace a type A in the declaration of a reference a
by a minimal type I, as computed by Infer Type. If I = A (mean-
ing that both have identical protocol; cf. above), A is also minimal
and no changes to the program are necessary. If a is not minimal,
but terminates an assignment chain (i.e., if it does not get assigned
to other references), adding A:<I is all that needs to be done: it
leaves all assignments to a (now declared as I a) type correct, and
the protocol of A remains untouched.

If however a gets assigned to other references, these may not ac-
cept the “added values” (more objects) allowed by a’s new type I,
because they are no longer declared with the same type as, or su-
pertypes of, a’s declared type (the program thus being type incor-
rect). Further changes to the program may therefore become nec-
essary, including the possible change of the declared types of
other references. However, as will be seen, these are all covered
by what we already have at hand.

We deduce the sufficiency of our Infer Type procedure defined as
above from the examination of the following primitive scenario.
Let there be two declarations A a and B b, an assignment b=a and
let I be the inferred type of a (with π(I) = ι(a)). Since we start
with a (statically) type correct program, we know that:

1. A ≡ B or A:<B by the typing rules of the programming lan-
guage.

2. A ≤ I by construction of I.
3. π(I) = ι(a) ∪ ι(b) ⊇ ι(b) by construction of I, i.e., π(I) con-

tains all and only the methods invoked on a or b.
4. π(B) ⊇ ι(b), i.e., π(B) contains all the methods invoked on b.

If it contains additionally
a) some or all of the methods invoked on a, but no other (so

that π(B) ⊆ ι(a)), then I ≤ B.
b) all of the methods invoked on a, plus some invoked nei-

ther on a nor b (so that π(B) ⊃ ι(a)), then B < I.

c) some methods invoked neither on a nor b, but lacks some
methods invoked on a (so that π(B)\ι(a) ≠ ∅ and
ι(a)\π(B) ≠ ∅), then neither B ≤ I nor I ≤ B.

Because of fact 2, we can declare A:<I and re-declare a to be of
type I (i.e., I a). As above, all assignments to a that were previ-
ously type correct still are, and the protocol of A remains unaf-
fected. Since b=a must also be type correct and the declared type
of a is now I, we must

• either declare I:<B or, if this would add unwanted methods
to I,

• replace B in the declaration of b by some J (possibly I) such
that I ≤ J, make sure (in case not I ≡ J) that I:<J, and de-
clare B:<J (in order to keep other assignments to b type
correct).

Based on the above listed facts, the following four cases must be
distinguished (note that unlike for a, the new type for b need not
be minimal):

i. A ≡ B. In this case, B can be replaced by I in b’s declaration,
since I includes the protocol invoked on b (fact 3 above).

ii. A:<B and B < I. In this case, we can let B:<I and replace B
with I in the b’s declaration as above.

iii. A:<B and I ≤ B. In this case, declaring I:<B is all that needs
to be done; in particular, the type of b can remain un-
changed. However, JAVA’s type system sometimes prevents
this refactoring, because interfaces cannot subtype classes,
and classes can subtype at most one other class directly.
More on this in Section 7.2.

iv. A:<B and neither B ≤ I nor I ≤ B. In this case, B contains
methods that are not in I (which are superfluous, since I re-
gards all uses of b), and I contains methods that are not in B
(which are invoked on a, but not on b or any other refer-
ences further down in the assignment graph). In this case, b
must be typed with a common supertype of B and I, J,
whose protocol can be obtained as the intersection of the
protocol of B and I, or by applying Infer Type on b. In both
cases, B:<J and I:<J must be added to satisfy the typing
rules; however, these declarations are guaranteed to leave A,
B, and I unaltered, since A ≤ B ≤ J and I ≤ J.

Note that in case of I = B (covered by case iii above), we do not
replace the new type I with the existing type B, since this would
propagate B to other assignments a is involved in, potentially let-
ting B become a declared subtype of types it was not intended to.
In fact, by obeying the above rules we make sure that new types
are inserted in the supertype chain of the original reference’s de-
clared type, avoiding inadvertent subtyping (cf. Section 8.2).

Special care must be taken when following the assignments im-
plicit in a method call: if the method is overridden, separate
branches of the assignment graph are commenced and the formal
parameter type B of all overridden definitions must be changed to
the same type I, or overriding becomes overloading.

Thus we have shown that Infer Type is all that is needed to main-
tain a type correct program: if a reference is not assigned to any
other, replacing its declared type by its inferred type and letting
the declared type subtype the inferred type suffices. If it is as-
signed to other references, their declared types have to be changed
and subtype declarations have to be added as described above.
New types, if necessary, can be derived by Infer Type.

Questions that remain are how many declarations have to be
changed, and how many new types the use of a single inferred
type induces. As it turns out, in cases i and ii the new type I is
propagated to subsequent assignments c=b, where the procedure
must be applied recursively (on c). Case iii terminates the ripple
effect of changes to a program imposed by the introduction of an

1406

inferred type; it necessarily occurs if type B is minimal, i.e., if
π(B) = ι(b). Only in case iv, using the inferred type in a refer-
ence’s declaration can lead to the creation of further new types.
Although this could cause an undesirable inflation in the number
of types needed to maintain type correctness, we have found (by
automatically applying Infer Type to all references of several pro-
grams, including JUNIT and JHOTDRAW) that these cases are very
rare. In fact, it seems that most assignments (including all circular
ones) fall under case i, closely followed by case iii. Recursive oc-
currence of case iv (which is by far the rarest) is limited by the
depth of the type hierarchy, since type C of c would have to be a
supertype of both A and B. In practice, we have found that apply-
ing Infer Type to all references of a program roughly doubles its
number of types. A more detailed presentation and analysis of re-
sults will be the subject of another paper.

6. AVAILABILITY
We have implemented the described algorithm as an ECLIPSE
refactoring that derives the new type(s) from a selected reference,
automatically inserts it/them in the type hierarchy and redeclares
all affected references. The refactoring covers the complete Java 2
language specification (including arrays, inner types, and anony-
mous classes) and has been tested extensively by automatically
applying it to all references in several large program bases. It can
be obtained from http://www.fernuni-hagen.de/ps/docs/InferType.

7. DISCUSSION

7.1 Decoupling in Java and C#
Non-publicity and decoupling. In JAVA and C#, access to pub-
lic attributes (fields) and non-public members may prohibit the
use of an interface. As for the former: access to public fields can
be encapsulated by accessor methods, which can then be added to
the interface. This is usually considered good practice, anyway.
As for the latter: decoupling from private members is usually not
an issue, nor is that of protected ones, since inheritance estab-
lishes a stronger coupling between classes than the referencing
through variables or methods. Default (package local) members
(which are also excluded from interfaces) support a package con-
cept, which is meant to present some kind of modularization on
top of the type level. Since coupling within a module (called co-
hesion) is usually a goal rather than a flaw, we assume that ab-
straction from package local type access through a decoupling in-
terface is not what is wanted.

Occasional impossibility of subtyping. The insertion of a new
interface below (i.e., letting the interface subtype) a class is pro-
hibited by JAVA’s and C#’s type system. Although in such a case
an abstract class (rather than an interface) can be introduced, this
prevents its subclasses from extending other classes. This may
make the introduction of a context-specific type more complicated
than described in Section 5. One solution to this problem is to re-
place the superclass that caused the problem by an interface, for
instance by inferring the superclass’s type. For the problem of let-
ting a library type subtype a (new) user-defined type (“retroactive
type abstraction”) see [9].

7.2 Problems with Refactoring
Effects on program semantics. Inferred types of a correctly
typed program are always supertypes of the declared types. Re-
placing a reference’s declared type with an inferred type therefore
leaves all assignments to that reference type correct. In fact, one
could argue that the behaviour of an otherwise untouched pro-

gram remains unchanged if inferred types consistently replace the
declared ones. However, the affected references now accept more
values (objects of different types) than before (which is why refac-
torings in the sake of decoupling are performed in the first place).
This makes uses of those parts of the program exposing the refer-
ences, by others (as well as changes to the program itself) possible
that were impossible before the refactoring. We suggest that this
change is intentional.

Globalization of locally introduced interfaces. Despite the
theoretical bounds mentioned in Section 5, propagation of type
replacements (inferred types) through a program may pose a prob-
lem if the introduced type is meaningful in the context were it was
introduced, but is not where it propagates to (as evidenced, e.g.,
by the inappropriateness of its name in the new context). Such is
particularly the case if a new formal parameter type is introduced
to reflect the role of a collaboration [14], and passing the actual
parameter to another collaboration would make it adopt a new
role, rather than take the old one with it (note that the object’s ref-
erence changes with every assignment, whereas its declared type
does not necessarily). In these cases type casts making the role
change explicit (and confining the dissemination of the new type)
seem conceptually justified. However, this is another issue.

8. RELATED WORK

8.1 Metrics
Extensive experience with metrics has shown that generally valid
measures are hard to establish [7], and that instead metrics must
be tied to a specific goal (the GQM approach [1]). The goals of
the metrics presented in Section 4 are clear cut: to measure the
degree of coupling through typed references in object-oriented
programs. Since no metrics for this purpose existed, the definition
of our own seemed justified.

8.2 Refactoring and Type Inference
Several algorithms for type inference have been described in the
literature. Some are based on solving a set of type constraints at-
tached to the declaration elements of a program (e.g. [12], [21]),
while others rely on a data flow analysis of the program (see [8]
for an overview and in-depth comparison with constraint-based
type inferencing). Data flow analysis as well as the generation of
constraints can be based on a static or a dynamic analysis of a
program’s call graph; although the latter is more precise (the re-
sultant types are less specific, i.e., have fewer elements), the static
typing rules of languages such as JAVA and C# prevent them from
being used in a program. Therefore, static analysis is perfectly ac-
curate for our purposes, which frees us from theoretical issues
such as the tractability of precise dynamic flow analysis.

Although we did not find an existing type inference algorithm for
JAVA, algorithms somewhat related to ours have been imple-
mented as parts of IDEs such as ECLIPSE and INTELLIJ IDEA.
ECLIPSE’s implementation is based on constraint satisfaction, and
used in the refactorings Use Supertype Where Possible and Gen-
eralize Type [18]. However, both refactorings rely on the avail-
ability of suitable interfaces rather than providing them: they
check – rather than compute – possible solutions. Implementa-
tions of Extract Interface in ECLIPSE and INTELLIJ IDEA require
programmers to design their interfaces manually; a newly defined
interface can then be used in variable declarations throughout the
program, where possible. This is in contrast to our approach, in
which we compute a new interface, constructed to be used mainly
for the reference from whose context it was derived.

1407

Tip & Snelting have presented an algorithm based on formal con-
cept analysis that computes for a given program a new type hier-
archy containing all minimal types [13]. Its effect appears to be
roughly the same as that of global type inference in the spirit of
[12]. Streckenbach & Snelting have only recently applied this al-
gorithm to the refactoring of JAVA programs, automatically chang-
ing all type references (including instantiations) in a program (the
KABA system) [17]. KABA also offers a refactoring tool for col-
lapsing and manually reorganizing the produced type hierarchy,
but this operates on (compiled) byte code of an application. It is
unclear to us if their algorithm would also work on individual ref-
erences (rather than all expressions of a package); in any case, it
has not been integrated into an IDE, which is in accord with the
fact that operating on byte code gives it the status of a post proc-
essor in the spirit of JAX [20].

An often overlooked problem with automated refactorings of type
hierarchies based on structural conformance (including those
based on pure concept analysis, but excluding ours, which is
based on conformance by name) is that they cannot deal with ac-
cidental conformance, potentially compromising the (intended)
semantics of a program. For instance, covariant redefinition of an
instance variable (field) may introduce different referenced sub-
types with identical protocol. Now an automated refactoring of the
type hierarchy might be tempted to merge these into one. How-
ever, the variables were redefined covariantly in order to keep
their value domains separate – joining the types would breach the
intended semantics of the program, since the variables can now be
assigned equal – even identical – values. Inadvertent merges of
unrelated or intentionally separated types are particularly disas-
trous if they introduce multiple (interface) inheritance, because
this propagates a cross-over assignment compatibility of formerly
disjoint branches of the type hierarchy to all subtypes.

One general goal of refactoring class hierarchies (as in, e.g., [11]
[17]) is to maximize the (functional) cohesion of a module, i.e., to
ensure that all members of a class are always used together, thus
minimizing (the footprint of) objects. For this, new subclasses
must be introduced, which is why the work is also referred to as
program [17] or class hierarchy specialization [19]. KABA uses
points-to analysis to identify specialization candidates; due to its
approximating nature, this introduces certain artifacts [17]. By
contrast, we are interested only in program generalization, open-
ing it up for wider reuse, increasing decoupling. Consequently, we
do not introduce new concrete classes, nor do we touch instance
creation; points-to analysis is therefore (and because our target
language is statically type checked; cf. above) not needed.

Other work on type inference in statically typed object-oriented
programming languages aims at making downcasts safe without
guarding them [21]. This requires a proof that all objects an ex-
pression being downcast can produce (stands for) are at least of
the target type of the cast (or some subtype thereof). This problem
is somewhat converse to ours, not only because we are interested
in type generalizations (specifically: the maximum allowable up-
cast), but also since it requires an analysis of where the objects
come from rather than where they go.

9. CONCLUSION
The interface-as-type construct [16] is sometimes regarded as
JAVA’s biggest single contribution to mainstream programming.
However, the introduction of good interfaces, ones that are spe-
cifically designed to decouple a client from its servers especially,
remains a tricky problem, since the decision what to put into the
interface would require an in depth analysis of the client’s and

servers’ code. To attack this problem, we have presented a theo-
retical framework for the maximization of decoupling in pro-
grams, and cast it into an automatic refactoring that is available as
an ECLIPSE plugin. Systematic application of this refactoring has
shown that the number of additional types introduced is moderate.

REFERENCES
[1] VR Basili, G Caldiera, D Rombach. “The goal question met-

ric approach” in: Encyclopedia of Software Engineering
(John Wiley & Sons, 1994).

[2] SR Chidamber, CF Kemerer “A metrics suite for object ori-
ented design” IEEE TSE 20:6 (1994) 476–493.

[3] J Dean, D Grove, C Chambers “Optimization of object-
oriented programs using static class hierarchy analysis” in:
Proc. of ECOOP (1995) 77–101.

[4] E Gamma, R Helm, R Johnson, J Vlissides Design Patterns –
Elements of Reusable Software (Addison-Wesley, 1995).

[5] M Fowler Refactoring: Improving the Design of Existing
Code (Addison-Wesley 1999).

[6] J Gößner, P Mayer, F Steimann “Interface utilization in the
JAVA Development Kit” in: Proc. of SAC 2004 (ACM, 2004)
1310–1315.

[7] B Henderson-Sellers Object-Oriented Metrics: Measures of
Complexity (Prentice Hall 1996).

[8] UP Khedker, DM Dhamdhere, A Mycroft “Bidirectional data
flow analysis for type inferencing” Computer Languages,
Systems & Structures 29:1–2 (2003) 15–44.

[9] K Läufer, G Baumgartner, VF Russo “Safe structural con-
formance for JAVA” The Computer Journal 43:6 (2000) 469–
481.

[10] P Mayer “Analyzing the use of interfaces in large OO pro-
jects” OOPSLA 2003 Companion (2003) 382–383.

[11] WF Opdyke, RE Johnson “Creating abstract superclasses by
refactoring” in: ACM Conf. on Computer Science (1993) 66–
73.

[12] J Palsberg, MI Schwartzbach “Object-oriented type infer-
ence” in: Proc. of OOPSLA (1991) 146–161.

[13] G Snelting, F Tip “Understanding class hierarchies using
concept analysis” ACM TOPLAS 22:3 (2000) 540–582.

[14] F Steimann “Role = Interface: a merger of concepts” JOOP
14:4 (2001) 23–32.

[15] F Steimann, W Siberski, T Kühne “Towards the systematic
use of interfaces in JAVA programming” in: Proc. of PPPJ
(ACM, 2003) 13–17.

[16] F Steimann, P Mayer “Patterns of interface-based program-
ming” Journal of Object Technology 4:5 (2005) 75–94.

[17] M Streckenbach, G Snelting “Refactoring class hierarchies
with KABA” in: Proc. of OOPSLA (2004).

[18] F Tip, A Kiezun, D Bäumer “Refactoring for generalization
using type constraints” in: Proc. of OOPSLA (2003) 13–26.

[19] F Tip, PF Sweeney “Class hierarchy specialization” Acta In-
formtica 36:12 (2000) 927–982.

[20] F Tip, P F Sweeney, C Laffra, A Eisma, D Streeter “Practical
extraction techniques for JAVA” ACM TOPLAS 24:6 (2002)
625–666.

[21] T Wang, SF Smith “Precise constraint-based type inference
for JAVA” in: Proc. of ECOOP (2001) 99–117.

1408

