
 33

Towards a BPEL unit testing framework
Philip Mayer, Daniel Lübke

University of Hannover, FG Software Engineering
Welfengarten 1

D-30176 Hannover, Germany
+49 511 762 19672

plmayer@acm.org, daniel.luebke@inf.uni-hannover.de

ABSTRACT
The Business Process Execution Language (BPEL) is emerging as
the new standard in Web service composition. As more and more
workflows are modelled using BPEL, unit-testing these
compositions becomes increasingly important. However, little
research has been done in this area and no frameworks
comparable to the xUnit family are available. In this paper, we
propose a layer-based approach to creating frameworks for
repeatable, white-box BPEL unit testing, which we use for the
development of a new testing framework. This framework uses a
specialized BPEL-level testing language to describe interactions
with a BPEL process to be carried out in a test case. The
framework supports automated test execution and offers test
management capabilities in a standardized and open way via well-
defined interfaces – even to third-party applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Testing
tools

Keywords
BPEL, Composition, Orchestration, Testing, Unit Testing,
BPELUnit

1. INTRODUCTION
With the advent of the service-oriented architecture (SOA),
formerly proprietary software systems are being opened and made
accessible via Web service technology. Web services are software
components accessible via the Internet, which can be integrated
into more complex, and possibly distributed, applications [2][20].
The Business Process Execution Language (BPEL) [3] is a
language for composing Web services. BPEL compositions,
described in XML, form an executable program which interacts
with other Web services. The composition is recursive, as BPEL
compositions are themselves exposed as Web services.
As more and more compositions are modelled using BPEL,
ensuring good-quality BPEL code becomes critical. In other areas
the need for reliable, automated repeatable testing is already
widely recognized, for example in the Extreme Programming

community [6] and in the area of Test-Driven Development [7].
Unit testing has already been proven to improve quality in
practice [11]. Consequently, there are many unit testing
frameworks available for all kinds of programming languages
[14].
However, there are still not many efforts for creating unit testing
frameworks for BPEL, with the exception of [16]. BPEL editors
currently available – like the Oracle BPEL process manager [18],
the ActiveBPEL Designer [1] or the preview version of Suns
NetBeans 5.5 [19] – focus on manual black box testing, i.e.
feeding predefined input data into a BPEL process and comparing
the output to a predefined document (or simply presenting it to the
user).
However, as BPEL compositions are complex, interacting
programs they should be tested like any other software program:
Automated, white-box unit testing with the BPEL process as the
unit under test and systematic testing of its internal logic can
provide valuable feedback and assure quality. In this paper, we
explore the realm of BPEL unit testing, proposing a layer-based
approach for creating BPEL unit testing frameworks and outlining
our implementation.
This paper is structured as follows: First, we introduce the basic
ideas for a BPEL unit testing approach in section 2. In the next
section, we outline the ingredients of BPEL testing frameworks as
well as possible design decisions. Section 4 introduces our own
approach to BPEL testing. In section 5, we discuss related work.
Finally, we draw our conclusions and give an outlook on further
work.

2. TESTING BPEL
BPEL is a language for Web service composition. As such, the
most important functionality of a BPEL process is the invocation
of other Web services and handling the results from such calls.
Internal logic of a BPEL process is often targeted at deciding
which Web services to call with which parameters and how to
proceed with the results, whether they returned correctly or with a
failure (in which case compensation activities take over).
The way BPEL processes communicate with their surroundings –
via standard Web service calls – is of great advantage for testing,
as opposed to other languages like Java which do not have this
kind of unit separation. In fact, defining units when testing Java
programs often requires a specific “testable” program architecture
using interfaces (although some are of the opinion that such code
actually furthers program quality and understanding [7]) to allow
separate testing of so-defined units. In BPEL, we get this
separation for free: A unit is a BPEL process, and its interfaces are
clearly defined through WSDL [20].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TAV-WEB’06, July 17, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-458-8/07/2006…$5.00.

 34

Thus, the natural approach to testing BPEL processes is to create
an harness around the process under test (PUT), enabling the test
to receive data from the BPEL process and to feed data back in at
each of the interfaces the process provides – i.e., every operation
offered by the service and each operation invoked by the service.
There are several possible implementations for achieving this,
which are described in detail in the next chapter.

3. BPEL TESTING ARCHITECTURE
In this chapter, we present a generic, layer-based approach for
creating BPEL testing frameworks, which we later use for the
implementation of our own framework. As a side effect, this
layer-based model can be used for classifying existing
frameworks or implementations of other frameworks.
The architecture consists of several layers which build upon one
another, as outlined in Figure 1. The functionality of each layer
can be implemented in various ways, which are pointed out in the
subsequent sections.

Figure 1: BPEL testing architecture

The first layer is concerned with the test specification – i.e., how
the test data and behaviour are formulated. Building on this, the
tests must be organized into test cases, test suites, and test runs
(test organisation layer).
To achieve results, a test – and therefore also the process under
test – must be executed (test execution layer). The results must
then be gathered and logged or presented to the user (test results
layer).

3.1 Test Specification
Testing a process means sending data to and receiving data from
its endpoints, according to the business protocol imposed by the
process under test and its partner processes.
BPEL interfaces are described using WSDL port types and
operations. Such operations specify whether they are one-way or
two-way and in which direction the data flows. However, the
WSDL syntax lacks a description of the actual protocol involved,
i.e. which operation must be invoked after or before which other
operation (for a discussion, see [2], pp. 137). This is particularly
relevant for asynchronous operations. A testing framework must

provide a way for the tester to specify such a protocol and to
follow it in the test harness. As a BPEL implementation makes no
real distinction between the clients of the process and other
invoked processes, this applies to all partner processes.
As for the information flow between the BPEL process and its
partner processes, we can differentiate between incoming and
outgoing data from the perspective of the test harness developer:

• Incoming data (from the point of view of the test) is data
sent by the PUT. Each expected data package must be
analyzed by the test for correctness.

• Outgoing data (from the point of view of the test) is test
data sent back into the PUT to achieve a certain goal, i.e.
some branch should be taken as a result, a fault handled or
thrown, or a compensation handler activated. The test
specification must provide a way for describing such test
data.

The test specification must provide a way to validate the
correctness of incoming data as well as create outgoing data. As
pointed out by [16], incoming data errors can be classified into
three types:

• incorrect content,

• no message at all, when one is expected, and

• an incorrect number of messages (too few or too many).

There are several ways of formulating the test specification to
achieve these goals. The following two examples are the most
extremes:

• Data-centred approach: for example using fixed SOAP
data, augmented with simple rules. Incoming data from the
process is compared against a predefined SOAP message
(which for example resides in some file on disk). Outgoing
data is predefined too, read from a file and sent to the
process. A simple set of rules determines if messages are
expected at all and takes care of sending/not sending replies.
Needless to say, this approach is very simple, but also least
expressive.

• Logic-centred approach: for example using a fully-fledged
programming language for expressing the test logic. A
program is invoked on each incoming transmission which
may take arbitrary steps to test the incoming data. The
outgoing data is likewise created by a program. This
approach is very flexible and expressive, but requires a lot
more work by the test developer.

Of course, there are several approaches in-between. A data-
centred approach could use a simple XML specification language
to allow testers to specify test data at the level of BPEL, i.e.
XML-typed data records instead of SOAP messages. A logic-
centred approach could use a simple language for expressing basic
conditional statements (“if the input data is such-and-such, send
package from file A, otherwise from file B”).
Beside the questions of expressiveness of the logic and simplicity
for the tester, two additional requirements must be considered:

• Automation: The ultimate goal of a BPEL testing
framework is automated repeatable testing, which means the
test must be executable as a whole. This indicates that
however the test is specified, the specification must be
unambiguous, machine-readable and -executable. The more

 35

sophisticated the test logic, the more complex the test
execution will be.

• Tool support: It should be possible to automate at least
some of the steps for creating the test specification, thereby
relieving the tester of the more tedious tasks and letting him
focus on the actual problem.

3.2 Test Organisation
Each test specification contains the test logic and data for one test
case. This does not mean all specification artefacts reside in one
place, though. A test case could consist of multiple files and/or
database entries. The test organisation must provide a way to
integrate all these different artefacts into one, representing the
complete test case.
However, the true value of automated testing comes from
executing many test cases as often as possible. Therefore, it is
necessary to be able to group tests into composite tests (so-called
test suites). Such organisation has the additional benefit of being
able to group tests which require the same setup and shutdown
procedures, which then need only be executed once.
Another important aspect of test organisation is the integration of
the test framework into the overall development process. For
example, tracing requirements throughout the development cycle
is important to track and react to changes. To permit requirements
tracing throughout the testing process it must be possible to
augment the test cases with custom, requirements-related meta-
data, and to query this data upon test completion.
There are two basic approaches to test organisation:

• Integrated test suite logic: The first approach is to integrate
test organisation with test specification. This is possible only
when a sophisticated test specification method is in place (for
example, when using a high-level language). This approach
has the benefit of being very flexible for the test developer.
There is a huge drawback, however – the test framework has
no way of knowing about composite tests and is not able to
list the results separately.

• Separate test suite specification: The second approach is to
allow formulation of separate test organisation artefacts.
These artefacts could include links to the actual test
specifications and information about setup and shutdown
procedures.

As in the previous section about test specification, it is also
important here to stress the importance of automation and tool
support for test organisation, as the organisation artefacts are the
natural wrappers for the test specification.

3.3 Test Execution
A BPEL process is an executable program which must be
executed in order to test it. For normal execution, BPEL processes
are usually deployed into a BPEL engine, instantiated and run
upon receipt of a message triggering instance creation. However,
for testing a BPEL process there are other possibilities, too.
BPEL process testing means creating a harness (i.e., the test
specification) around the PUT, executing the process, and
handling input and output data for a concrete PUT instance
according to the specification. This can be done in several ways.
The following two approaches are the most obvious ones:

• Simulated testing: Simulated testing, as defined here, means
the BPEL process is not actually deployed in the usual sense
and invoked afterwards by means of Web service
invocations. Instead, the engine is contacted directly via
some sort of debug API and instructed to run the PUT.
Through the debug API, the test framework closely controls
the execution of the PUT. It is therefore possible to intercept
calls to other Web services and handle them locally; it is also
possible to inject data back into the PUT. This approach is
taken by some editors currently available for manual testing
and debugging.

• Real-life testing: Real-life testing, as defined here, means
actually deploying the PUT into an engine and invoking it
using Web service calls. Note that this means that all partner
Web services must be replaced by “mocks” [17] in a similar
way, i.e. they must be available by Web service invocation
and be able to make Web service calls themselves. The PUT
must be deployed such that all partner Web service URIs are
replaced by URIs to the test mocks.

Both approaches are heavily constrained by the existing (or rather,
non-existing) infrastructure:

• Simulated BPEL execution only works if the engine supports
debugging, i.e. has a rich API for controlling the execution of
a BPEL instance. Whilst most engines do support such
features, they are unfortunately in no way standardised. To
avoid vendor lock-in, a test framework must therefore factor
out this part and create adapters for each BPEL engine to be
supported, which may get rather tedious.

• Real-life BPEL execution requires the process to be deployed
first, binding the PUT to custom (test) URIs for the test
partner processes. However, most engines rely on custom,
vendor-specific deployment descriptors, which the test
framework must provide, and which are not standardised as
well. Furthermore, the BPEL specification allows dynamic
discovery of partner Web services. Although frequent use of
such features is doubted [2], a framework relying on real-life
test execution will have no way to counter such URI
replacements.

There are certain correlations between the two approaches
discussed in section 3.1 and the two execution types. Indeed, the
choice of specification has a strong influence on the way the test
should be executed. For example, the test framework can directly
use predefined SOAP messages in the case of simulated testing;
real-life execution requires Web service mocks, which can be
formulated in a higher-level programming language.
However, other combinations are also possible and depend on the
amount of work done by the framework. It is relatively easy to
create simple Web services out of test data, and simulating BPEL
inside an engine does not mean the test framework cannot forward
requests to other Web services or sophisticated programs
calculating a return value.

3.4 Test Results
Execution of the tests yields results and statistics, which are to be
presented to the user at a later point in time. Many metrics have
been defined for testing [22], and a testing framework must
choose which ones – if any – to calculate and how to do this.
The most basic of all unit test results is the Boolean test execution
result which all test frameworks provide: A test succeeds, or it

 36

fails. Failures can additionally be split into two categories, as is
done in JUnit [13]: an actual failure (meaning the program took a
wrong turn) or an error (meaning an abnormal program
termination).
Furthermore, test metrics can be calculated. A very common test
metric is the code coverage metric which has many flavours. It
indicates the percentage of code which has been executed in a test
case (or a test suite, for the matter). Coverage of 100% indicates
each code statement (in case of statement coverage) has been
executed at least once. This does not mean that each path has been
taken; which is indicated by the path coverage metric (also
ranging from zero to 100%).
The more sophisticated the metrics, the more information is
usually required about the program run. This is an important
aspect to discuss because control over the execution of a BPEL
process is not standardised as pointed out in the last section. For
example, it is rather easy to derive numbers on test case failures,
but activity coverage analysis requires knowledge about which
BPEL activities have actually been executed. There are several
ways of gathering this information:

• During BPEL simulation, APIs may be used to query the
activity which is currently active. However, these APIs are
again vendor-specific.

• During BPEL execution, the invoked mock partner processes
are able to log their interactions with the PUT. It is thus
possible to detect execution of most PUT activities (i.e. all
activities which deal with outside Web services, which are in
fact most of the activities). However, this requires additional
logic inside the mock partner processes which will
complicate the test logic. Conclusions about path coverage
may also be drawn from this information, but they will not be
complete as not all paths must invoke external services.

With this explanation of the test result layer, we have finished our
description of the four-layer BPEL testing framework
architecture. In the next section, we present our own instance of
this generic framework.

4. BPELUnit – A BPEL TESTING
FRAMEWORK
Section 3 provided an overview of the possible architectures of
BPEL testing frameworks and presented some of the choices to be
made when instantiating such a framework. In this section we
present our own framework design. We describe the choices made
for each of the framework layers and our implementation
approach.

4.1 Framework Design
In this section, we describe our implementation choices for each
of the four layers of the testing architecture.

4.1.1 Test Specification
The most important choice made for each BPEL testing
framework is how to specify the test logic. This is the first design
decision to be made in our layered architecture.
Our framework is aimed at “test-infected” developers [12], who
interleave testing and coding during development. To support this
development style, a test framework should allow rapid testing,
i.e. creating and running tests should be easy and fast.

Formulating BPEL test cases can be greatly facilitated for the
tester by creating a specialized language which allows
specification of which data is to be sent to the PUT, and which
data is expected at each partner service – and then let the testing
framework do the rest. Creating such a language raises two
questions:

• How to specify the data, i.e. at what level (the lowest
possible level being SOAP, and the highest possible level
depending on the implementation of the corresponding Web
service).

• How to specify the interaction details, i.e. what protocol to
expect at which partner.

BPEL Web services are based on WSDL descriptions which use
XML Schema for type definitions (see [3], Chapter 1). When
creating BPEL processes, developers thus deal with XML
variables and message formats which can be validated against a
given XML Schema. The so-defined XML is therefore the
“natural data language” for BPEL, and we believe it is also the
best language for specifying data to be sent to the PUT.
One could use the same format to check incoming messages – i.e.,
compare the XML node-by-node. However, messages from the
PUT may contain random data like dates or auto-incremented
numbers, which may not even be relevant for the test. Instead of
specifying which data is not relevant in a complete message, we
adopt the opposite approach: Specifying which data is relevant by
means of XPath expressions [10]. An incoming message can then
be checked against one or more Boolean XPath expressions, thus
making sure it contains all the relevant details.
With the data format specified, we can move on to the interaction
details. As the BPEL process is a Web service cooperating with
other Web services, the following interactions can take place:

• One-Way (Receive Only and Send Only). Although
probably rarely used, the combination of these two
interactions can be used for fire-and-forget calls.

• Two-Way Synchronous (Send/Receive and Receive/Send).
These are the most obvious interactions. The first one will be
mainly used in the client of the PUT, whereas the second will
be mainly used by partners.

• Two-Way Asynchronous (Send/Receive and Receive/Send).
Although in fact consisting of two one-way operations, it is
best to think of these interactions as a logical unit. They will
be used in a similar fashion to their synchronous
counterparts.

Testing the PUT means verifying the correctness of the
implemented business protocol. To do this, one needs to simulate
the business protocol of the client and the partners to provoke and
test the reactions of the BPEL process. We will thus allow testers
to specify sequences of the interactions mentioned above for the
client as well as every partner of the PUT. By chaining these
atomic interactions together, it is possible to easily shape different
interaction protocols with the PUT on a case-by-case basis.
A PUT has one client and an arbitrary number (including zero) of
partners. These Web services all run in parallel, interacting with
the PUT. The interaction details must thus also cover a number of
parallel sequences of defined interactions with the PUT, all of
which must be completed successfully for a test case to pass. If
one of the interactions fails, for example if a condition does not
hold or no call is received at all, the test fails and is aborted.

 37

By using XML data and sequences of atomic interactions with the
PUT for the test data specification, our approach lies in-between
the data-driven and logic-driven ends of the scale. As the test data
corresponds directly to the XML Schema type definitions for the
WSDL messages, the tester is able to operate on the same data
level as if he were programming in BPEL. The test specification is
thus a highly specialized mini-language directly aimed at rapid
BPEL testing.
Due to the simplicity of the language, the actual execution is not
very difficult for the framework. Tool support for creating the test
specification is also possible. For every interaction, a wizard may
be created which allows the user to fill in all the relevant details; it
is also possible to create an XML-Schema-based UI to generate
and edit the actual data to be sent.

4.1.2 Test Organisation
As defined in our test specification, a test case consists of a
number of parallel interaction threads describing the simulated
business protocols of client and partners of the PUT. The test
organization must be able to group these test cases into suites.
Additionally, there are still some parts which cannot be integrated:
The PUT itself, referenced WSDL files, and possibly other files
(for example, XSD files with the data types).
Our test organization combines multiple test cases with a setup
part containing links to the external artefacts, thereby creating a
test suite. The test organization is thus separate from the test
specification, although they may reside in the same file.
BPEL testing is different from other xUnit approaches in that a
setup and shutdown phase before and after the test case execution
is mandatory, as partner Web services and the PUT itself need to
be set up before the test, and later shut down again. The setup part
of our test suite document contains all necessary information to
execute these phases.
By using an XML format for the test suite, it is also easily
possible to augment the test cases and test suites with additional
metadata, like for example the requirement tracing data mentioned
in chapter 3.
This approach leaves us with a central access point to the test –
the test suite specification, which is used as a starting point for test
execution.

4.1.3 Test Execution
Both available choices for testing the PUT – simulated and real-
life testing – are dependent on some sort of API or deployment
descriptor in the engine, which means vendor-lock-in, as there are
no standards in this area.
To keep our framework free from such dependencies – and
therefore maximally general – we tried to use an approach which
would allow us to decouple from concrete engines by writing
adapters. The easiest way to do this is to create a wrapper around
the deployment process (possibly including the generation of
deployment descriptors) for each particular engine.
Therefore, we have adopted the real-life deployment approach:
deploying the PUT before the test, running the test, and
undeploying the PUT afterwards.

4.1.4 Test Results
Using real-life deployment within the framework makes it
difficult to gather any information on what is going on inside the

tested PUT instance. As pointed out in chapter 3, one way of
gathering information would be to include specific logic for this in
the test processes. However, such an approach would never yield
complete results.
Another way would be to use available APIs of the engines to
query the engine about the state of a process instance after its
completion. We hope to be able to leverage such APIs across
engine vendors, but this is still subject to further research.

4.2 Implementing the framework
Implementing the BPEL testing framework as laid out in section
4.1 first requires us to define an adequate format for the test suite
document, i.e. a way for developers to define test cases and
deployment information. Our approach is described in section
4.2.1.
Afterwards, we outline the software design of the core framework
which handles test execution and gathering of results. The design
takes arbitrary WSDL styles and encodings, multiple BPEL
engine vendors and UIs into consideration and is described in
section 4.2.2.

4.2.1 Writing tests
As already hinted at in section 4.1, the easiest way of integrating
test data, interactions, and deployment information for a test suite
is to use an XML-based format. Our test suite document consists
of two parts:

• The first part is the deployment section, in which the PUT
and all of the partners are specified

• The second part is the test case section, which contains an
arbitrary number of test cases

In the following two sections, we will discuss each part.

4.2.1.1 The Deployment Section
The deployment section specifies the simulated partners along
with their WSDL files, and contains information on how to deploy
and undeploy the PUT. As our framework is extensible to be used
with different engines, the deployment information is laid down in
a vendor-specific way and passed on to the deployer registered for
the given PUT type.
We will provide deployers for the Oracle BPEL server [18] and
the open-source BPEL engine ActiveBPEL [1]. Our framework
provides extension points which can be used to provide support
for other engines. Adding support for an engine requires
programmatic (un-)deployment support and specification of the
deployment tags for the test suite document.
Running a test suite means deploying the PUT, setting up the
framework for sending and receiving calls on behalf of the client
and partners, running the test cases, and undeploying the PUT
after the test. The deployment section is thus used both for set up
and shut down of the suite.

 38

Figure 2: Deployment Section

Figure 2 shows the deployment section for the Business Travels
Web Service example from [15]. The PUT specification contains
all the necessary details for deployment in an Oracle-specific
format, which will be passed on to the deployer registered to the
type oracle. It also contains a link to the WSDL file of the PUT.
Additionally, two partner Web services are specified, each with a
link to the implemented WSDL. The names of the partners will
later be used in the test case section.

4.2.1.2 The Test Case Section
The second part of the test suite document contains the test cases.
Each test case contains one thread for each partner, called a
partner track, which contains a sequence of interactions, called
activities, which describe expected actions from the PUT or
actions the partner must take.
Figure 3 shows an example test case section. Two partner tracks
are specified – one for the client and one for a partner called
Airline. Each partner track contains a sequence of activities.
As can be seen in the example we also define a property-based
extension mechanism for each test case and test suite, which can
be used to define arbitrary properties and their values (like the use
case specification in the example) to add test management
capabilities. These remain untouched by the framework, but are
provided via API to clients (see section 4.2.2).

Figure 3: Test Organisation Example

As an example of an activity, Figure 4 shows a synchronous
send/receive inside a test specification for the Business Travels
Web Service example from [15]. This is an activity for the client
of the PUT, instructing it to send the specified data to the PUT,
wait for a synchronous answer, and verify the answer according to
the given condition.

Figure 4: A synchronous send/receive

<clientTrack>

 <sendReceive
 service="travel:TravelDoc"
 port="TravelDocPort"
 operation="process">

 <send>

 <data>
 <travel:TravelDocProcessRequest>
 <travel:employeeData>

 <emp:FirstName>Philip</emp:FirstName>
 <emp:LastName>Mayer</emp:LastName>

 <emp:Department>SE</emp:Department>
 </travel:employeeData>

 <travel:flightData>
 ...
 </travel:flightData>

 </travel:TravelDocProcessRequest>
 </data>

 </send>

 <receive>

 <condition>

travel:TravelDocProcessResponse/
aln:Approved[1]='true'

 </condition>

 </receive>

 </sendReceive>

</clientTrack>

<deployment>

 <put type="oracle" name="TravelDoc">

 <deploymentOptions>

 <bpd:oracleDeployment

 xmlns:bpd="http://www...oracle"

 processName="TravelDoc"
 compiledBPELJarFile=

 "bpel_TravelDoc_1.0.jar"

 domain="default"
 password="bpel" />

 </deploymentOptions>

 <wsdl>TravelDoc.wsdl</wsdl>

 </put>

 <partner name="Employee"
 wsdl="EmployeeDatabase.wsdl"/>

 <partner name="Airline"
 wsdl="TravelAirlineReservation.wsdl"/>

</deployment>

<testCases>

 <testCase name="Travel Test">

 <property name="useCase">245</property>

 <clientTrack>
 ...
 </clientTrack>

 <partnerTrack name="Airline">
 ...
 </partnerTrack>

 </testCase>

</testCases

 39

The framework assists the tester in detecting the three kinds of
incoming data errors listed in section 3.1. Incorrect message data
is easy to detect: the XPath conditions in the receive block take
care of this. A missing message is detected through timers in the
framework: If an expected message is not received within a
certain time, a fault is generated. The case of too many messages
is also handled by the framework: If it does not find a waiting
receive block for a message, a fault is generated.
Figure 5 shows a sequence diagram of a typical interaction
between the framework, its client and partner tracks, and the PUT.
The PUT is a simple BPEL process which delegates a credit
request to two partners.

Figure 5: A Testing Sequence

When thinking about the specification of data and interactions for
use in a real-life setup, one has to take two additional challenges
into consideration: the different possible SOAP styles and
encodings, and how to address partners in asynchronous calls.

4.2.1.2.1 Handling SOAP styles and encodings
The XML data specified in the test suite document is plain XML-
Schema-based XML as specified in the type definitions for a
WSDL message. However, this data may be very different from
the SOAP data on the wire. The wire format depends entirely on
the concrete style and encoding of the given WSDL binding. For
example, in the case of a document/literal encoding the SOAP
envelope is merely a very thin wrapper around the literal XML
data; in the case of RPC/literal, there are even more wrappers, and
in other encodings, the whole message may change.
In our opinion, a tester should not need to concern himself with
the actual wire format of the messages. This is a task best left
automated, and our framework will automatically create the wire
format required for each partner Web service and the PUT itself
according to the selected bindings.
To allow this kind of operation, the specification of each activity
includes links to the service, port, and operation (see Figure 4).
The framework uses this information – among other things – to
extract the SOAP message style and encoding from the WSDL,
which is required for correctly encoding or decoding a message

sent to or received from the PUT. As pointed out in chapter 4.1,
the WSDL may specify arbitrary styles and encodings. Our
framework contains encoders for the two styles allowed by the
WS-I Basic Profile [5] (document/literal and rpc/literal), but
contains an extension point to plug-in arbitrary encoders for other
formats.

4.2.1.2.2 Handling asynchronous addressing
When using synchronous send/receive or receive/send operations
and the HTTP transport, the respective answer can simply be
returned in the same connection, and no special addressing is
needed. However, when using asynchronous messaging, a
separate HTTP request must be used for the call-back, and
addressing information for this request is required.
Where and how to specify call-back information is basically up to
concrete Web service implementations. Therefore, the framework
uses an extensible mechanism to allow arbitrary addressing-
related manipulation of SOAP headers before a message is sent
and right after it is received. We provide an implementation of the
WS-Addressing specification [8]; other processors may be
registered with the framework by means of an extension point.
The concrete addressing implementation to use is specified by the
tester using a special tag inside of asynchronous activities.

4.2.2 Framework Core Layout
Consistent with many BPEL engines and the goal of platform-
independence, our framework is written in Java. The tasks of the
framework include reading the test suite specification, deploying
the linked BPEL process, starting and managing the partner
tracks, and gathering results from the tracks, and possibly, the
engine.
Figure 6 shows the design of the framework. The core provides an
API and three extension points for external software.
The API is intended to be used by clients of the framework to
present a UI to the user and as such allow execution of tests.
Examples of such clients are displayed in the figure – a command
line client, an ant integration library, and a plug-in for Eclipse.
At the extension points, adapters can plug in to offer deployment
for a particular BPEL engine, encoding support for a particular
WSDL/SOAP style and encoding, and header processors for a
particular addressing mechanism.

• A BPEL deployer is registered with a type (or name). If this
type is used within a test suite specification, the
corresponding deployer is instantiated. At the beginning of
the test run, the deployer is instructed to deploy the process
with the deployment settings from the test suite specification.
After the test cases have been run, the deployer is instructed
to remove the process from the engine.

• An encoder is responsible for encoding to and decoding from
a particular SOAP message format. An encoder is registered
with a certain style and binding. If that combination is
encountered in a WSDL file by the framework, the encoder is
instantiated. When a message is about to be sent, the encoder
is responsible for converting the literal data into a complete
SOAP message. When a message is received, the encoder is
responsible for retrieving the literal data from inside the
SOAP message.

• A header processor is registered with a name, which allows it
to be referenced from inside an activity, where the tester

 40

specifies the processor required for a certain operation.
Header processors are free to change the SOAP header in any
way they see fit, although the main objective is to allow call-
back addressing.

On the right-hand side in Figure 6, the user-written test
specification is displayed, which in turn contains links to the user-
written BPEL process. Note that the BPEL code just passes
through the core, processing it is not required.

Figure 6: Framework Core Layout

The framework is invoked with a test suite document via the UI
APIs. It passes the information on to the selected deployment
implementation, which deploy the linked process. The partner
tracks are then instructed to start the test. The framework waits for
the tracks to complete (throwing a fault, or returning normally).
Afterwards, the selected deployer is instructed to undeploy the
BPEL process, and the next test suite may be run.
As an example of a UI, Figure 7 shows the Eclipse test runner
which deliberately looks like the JUnit test runner already
supplied with Eclipse. A test run may be started inside Eclipse by
creating a BPELUnit launch configuration for a test suite
specification file. During the launch, the BPELUnit framework
core is instantiated and instructed to run the test suite. During and
after the run, the progress and results of the run are presented to
the user.

Figure 7: BPELUnit Eclipse View

The BPELUnit view differs from the JUnit view in the following
ways:

• The tree view does not only show the test suite and test cases,
but offers a deep view into what is going on inside the
partner tracks and activities. This is of particular importance
as there are nearly unlimited sources of error when dealing
with remote calls. The test runner shows a complete history
of every message sent or received, from literal data to
complete SOAP message.

• Instead of a Java stack trace, the detail pane shows more
information about a selected test artefact. In the figure, a
complete SOAP message is shown; selecting activities would
yield more information about how the activity was executed.

• There are two progress bars; one for the test cases and one
for the activities of the current test case, which allows better
progress tracking.

 41

4.3 Tool Support
Although the test specification is very simple, writing the XML
document can be tedious work for the developer. Therefore, we
propose tool support for aiding the developer in creating both the
test interaction details as well as the actual test data.
The first question to be answered when contemplating tool
support is the intended target group, i.e. the users of the tools. On
the one hand, BPEL is a programming language which allows
writing rather complex programs. On the other hand, BPEL
compositions are fairly high-level artefacts; close to business
goals and requirements of the resulting system. Two different user
groups of BPEL testing tools can therefore be anticipated:

• BPEL developers: Naturally, there must be someone who
wrote the original PUT BPEL code, and as suggested by
some [6][7], testing and development should be interleaved.
Therefore, one option is to create tool support for the
developer himself.

• Specialized testers: Another way of approaching testing is to
entrust testing to a specialized department consisting of
professional testers. These testers are closer to requirements
than they are to code; therefore the tool support must
concentrate on requirements, too.

In the case of BPEL developers as the target group, the tool
support probably should consist of creating skeletons for the test
specification document, which are then to be filled by the
developer. In the case of specialized testers, the tool support could
provide wizard-based test generation tools based on more simple
representations of the test data. This, however, will not be possible
for all types of PUTs and interactions. It will be an interesting
challenge, though, to see how far this approach scales.

Figure 8: Eclipse Tool Support

The tool support for BPEL testing is currently under research and
has not yet been implemented. Figure 8 shows a basic
architectural diagram of the tool support, which will be
implemented as Eclipse plug-ins.
Note that the actual framework and the tool support are
independent of one another and only connected through the test
specification and the linked PUT and WSDL. Therefore, other
forms of tool support are easily implemented on top of the
framework.

5. RELATED WORK
As the BPEL language is relatively new, there are still not many
efforts for creating unit testing frameworks specifically targeted at
BPEL. The area of BPEL testing is currently restricted to either
theoretical approaches [16] or practical embedded approaches (as
implemented in the ActiveBPEL designer, or NetBeans 5.5).

• The approach in [16] contains some initial ideas on BPEL
unit testing. It uses BPEL as the test specification language,
requiring testers to create a BPEL test process for each
partner of the PUT as well as a central, coordinating process.
Testing BPEL with BPEL is an interesting approach,
especially in lights of the xUnit family. However, the paper
does not contain information about how to actually run the
tests (as BPEL itself does not allow user interactions), how to
deploy the processes, and on the particular problem of
parameterizing the BPEL test mocks, i.e. instructing the
mocks what data to expect and send in a particular test case.
Our approach differs from [16] in that it goes a step further
by clearly addressing test parameterization, organization, and
execution.

• Existing practical approaches built into IDEs fall into two
categories. In the first category, a simple black-box approach
is used, i.e. data is sent into a BPEL process and an answer is
expected. This means that the BPEL process is not tested as a
composition, but as a simple Web service, which is a
different setup. In the second category, the respective BPEL
engines run in a “simulation mode”, which allows the testing
framework to directly inject or extract data instead of making
actual SOAP test calls. These approaches focus on manual
testing, are limited to a particular engine and also do not test
the complexities involved in the SOAP encoding process as
well as the message transport.

As BPEL processes are Web services, existing web-service testing
tools can also be used for BPEL testing. However, most of these
testing tools regard Web services as black boxes, only to be
instrumented by a client and without simulating possible partners.
Simulating a partner is in many ways opposite to client-side
testing of Web service, as the testing tool must simulate a Web
service instead of interacting with it, for example by extracting
and using addressing information for not only receiving
asynchronous call-backs, but actively creating and sending them.
As an example of such tools, we discuss WS-Unit [21] and
ANTEater [4], both of which are open source. WS-Unit is a “Web
service consumer tester”, i.e. it can be used to simulate a BPEL
partner. ANTEater, on the other hand, is a functional testing tool,
intended for simulating a client (including asynchronous call-
backs). Both tools also allow simple copying and verification
rules like the ones we use in our framework. However, our
framework differs in two important points from these tools:

• We are using literal XML data as the data specification
format instead of complete SOAP envelopes, which puts the
tester on the same level with the BPEL compositions.

• Instead of focussing on single interaction sequences, our
framework allows the specification of parallel threads of
activities required for simulating several partners of a PUT at
once, and also provides the ability to extract call-back
information to create server-side call-backs.

 42

6. CONCLUSION
In the first part of this paper, we have presented a generic layer-
based approach to creating testing frameworks for repeatable
white-box BPEL unit testing. Each layer has been described
systematically and several implementation techniques have been
proposed. We believe that the given architecture can be used for
classification of existing frameworks and as an aid for future
implementations of BPEL testing frameworks.

In the second part of this paper, we have presented our specific
implementation of this framework, which uses literal XML data
and a custom interaction mini-language for the test specification
as well as a Java-based test runner which can be extended to
support multiple BPEL engines, SOAP styles and encodings,
addressing modes and UIs for test execution and result
presentation. We believe that our approach greatly facilitates
BPEL testing, as it is easy to use, operates on the same data level
as BPEL, and provides extensive reporting capabilities inside the
Eclipse UI.

Due to a flexible architecture, our BPEL testing framework is
usable both on the client side by the developer himself, for
example inside an IDE such as Eclipse, as well as on the server
side, for example by using Ant for running all tests as part of a
nightly build.

As outlined in the previous chapters, our BPEL testing framework
is still a work in progress. We will continue working on the
question of gathering metrics from the process under test to create
coverage figures, and on tool support for aiding both programmers
and testers in creating BPEL test cases. Especially the integration
into development environments including tool support is an
important aspect; our implementation will feature integration into
the Eclipse IDE. The presented concepts for a BPEL unit testing
framework will serve as a solid foundation for our future research.

7. REFERENCES
[1] ActiveBPEL Engine. http://www.activebpel.org/
[2] Alonso, G., Casati, F., Kuno, H., Machiraju, V. Web

services. Springer-Verlag Berlin Heidelberg, 2004.
[3] Andrews, T., Curbera, F., et al. Business Process Execution

Language for Web services 1.1. July 2002. http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/.

[4] ANTEater. Ant-based functional testing.
http://aft.sourceforge.net/

[5] Ballinger, K., Ehnebuske, D., et al. WS-I Basic Profile
Version 1.0. http://www.ws-i.org/Profiles/BasicProfile-
1.0.html

[6] Beck, K. Extreme Programming Explained. Addison-Wesley,
2000.

[7] Beck, K. Test-Driven Development by Example. Addison-
Wesley, 2003.

[8] Box, D., Christensen, E., et al. Web Services Addressing
(WS-Addressing). http://www.w3.org/Submission/ws-
addressing/

[9] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.
Web Service Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

[10] Clark, J., DeRose, S. XML Path Language Version 1.0.
http://www.w3.org/TR/xpath

[11] Ellims, M.; Bridges, J.; Ince, D.C., "Unit testing in practice,"
Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on Software Reliability
Engineering, pp. 3- 13, 2-5 Nov. 2004

[12] Gamma, E., Beck, K. JUnit Test Infected: Programmers Love
Writing Tests. http://junit.sourceforge.net/doc/testinfected/
testing.htm

[13] Gamma, E., Beck, K. JUnit. http://www.junit.org/
[14] Hamill, P. Unit Test Frameworks. O’Reilly, 2004
[15] Juric, M. B. Business Process Execution Language for Web

Services Second Edition. Packt Publishing, 2006.
[16] Li, Z., Sun, W., Jiang, Z. B., and Zhang, X. 2005. BPEL4WS

Unit Testing: Framework and Implementation. In
Proceedings of the IEEE international Conference on Web
services (Icws'05) - Volume 00 (July 11 - 15, 2005). ICWS.
IEEE Computer Society, Washington, DC, 103-110.

[17] Mackinnon, T., Freeman, S., and Craig, P. 2001. Endo-
testing: unit testing with mock objects. In Extreme
Programming Examined, G. Succi and M. Marchesi, Eds.
The XP Series. Addison-Wesley Longman Publishing Co.,
Boston, MA, 287-301.

[18] Oracle BPEL Process Manager. http://www.oracle.com/
technology/products/ias/bpel/index.html

[19] Sun NetBeans Enterprise Pack. http://www.netbeans.org/
products/enterprise/index.html

[20] Weerawarana, S., Curbera, F., Leymann, F., Storey, T.,
Ferguson, D. Web services Platform Architecture. Prentice
Hall PTR, 2005.

[21] WS-Unit. The Web Service Testing Tool.
https://wsunit.dev.java.net/

[22] Zhu, H., Hall, P. A., and May, J. H. 1997. Software unit test
coverage and adequacy. ACM Comput. Surv. 29, 4 (Dec.
1997), 366-4

