

D1.4a: UML for Service-Oriented Systems

Lead contractor for deliverable: LMU
Author(s): Nora Koch (FAST & LMU), Philip Mayer (LMU), Reiko Heckel (ULEICES), László Gönczy
(BUTE), Carlo Montangero (PISA)

Due date of deliverable: 31.08.2007
Actual submission date: 14.10.2007
Revision: Final
Classification: PU

Contract Start Date: September 1, 2005 Duration: 48 months
Project Coordinator: LMU
Partners: LMU, UNITN, ULEICES, UWARSAW, DTU,
PISA, DSIUF, UNIBO, ISTI, FFCUL, UEDIN, ATX, TILab,
FAST, BUTE, S&N, LSS-Imperial, LSS-UCL, MIP, ATXT

Sensoria

016004
Software Engineering for Service-Oriented

Overlay Computers

Integrated Project funded by the
European Community under the
“Information Society Technologies”
Programme (2002—2006)

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 2

Executive Summary

This deliverable presents a UML-based modelling approach for service-oriented systems. The aim is to
introduce service-specific model elements to ease the modelling activity of service-oriented architectures
(SOAs). The UML 2.0 extension is built on top of a Meta Object Facility (MOF) metamodel defined as a
conservative extension of the UML metamodel. For the elements of this metamodel, a UML profile is created
using the extension mechanisms provided by the UML. The result is a so-called UML profile for a service-
oriented architecture (UML4SOA), which provides model elements for structural and behavioural aspects, and
for business goals, policies and non-functional properties of SOAs. Such a metamodel and the corresponding
UML profile constitute the basis for model transformations and code generation defining a model-driven
development process. The distinguishing feature of UML4SOA is its compliance with standards like UML 2.0 ,
MOF, OCL and XMI.

Contents

1 Introduction .. 3

2 UML4SOA: A Domain-Specific UML Extension .. 3
2.1 Modelling Structure ... 4
2.2 Modelling Behaviour ... 5

2.2.1 Modelling Service Orchestration .. 5
2.2.2 Modelling Service Protocol .. 7
2.2.3 Modelling Requirements for SOAs... 7

2.3 Modelling Business Goals and Policies ... 7
2.4 Modelling Non-functional Properties of Services ... 8

3 A UML Profile for Service-Oriented Architecture (UML4SOA) .. 9
3.1 UML Extension for Structural Modelling of Services ..10
3.2 UML Extension for Behavioural Modelling of Services ..11
3.3 UML Extension for Business Policies ..12
3.4 UML Extension for Non-Functional Properties of Services ...13

4 Modelling with UML4SOA.. 14
4.1 Requirements Specification ..15
4.2 Architecture ..15
4.3 Structure and Behaviour ...15
4.4 Business Goals and Policies ...18
4.5 Non-functional Properties...19

5 Final Remarks... 20

6 Relevant SENSORIA Publications and Reports.. 20

7 Other References .. 21

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 3

1 Introduction

The UML 2.0 is accepted as lingua franca in the development of software systems. To use the UML for
modelling service-oriented systems has many advantages when compared to the use of proprietary modelling
techniques for a project. These advantages are on the one hand the existing CASE tool support, which is
provided by commercial and open source tools. On the other hand, it avoids the definition from scratch of a
new modelling language, which would require an own project to detail their syntax, semantics and provide
user-friendly tool support. In addition, the UML provides flexible extension mechanisms for defining a
domain-specific language (DSL) – a so-called UML profile. Examples of such domain-specific languages are:
UML Profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE), UML Profile for
Modeling QoS and Fault Tolerance Characteristics and Mechanisms, UML Profile for Schedulability,
Performance and Time, UML Profile for System on a Chip (SoC), UML Testing Profile, etc. (see [OMGP])

The objective of a UML profile for service-oriented architectures (SOAs) is to provide a notation that allows
for intuitive and expressive specifications of service-oriented systems. Hence, the benefit of such an extension
when compared to the use of “pure” UML is to provide model elements for concepts frequently used in the
modelling of service-oriented architectures and to define for them a well-defined semantics. Some of these
elements provide shortcuts for service patterns.

First, we built a MOF metamodel of service-oriented concepts, which are required to specify SOAs. This
metamodel is based on the SENSORIA ontology. In the graphical representation of this metamodel we show
some UML metaclasses, those which are directly related to the new SOA concepts. The metamodel is defined
as a conservative extension of the UML, i.e. the UML metamodel is not altered. Relationships between SOA
elements and UML elements are restricted to inheritance from UML elements and directed associations to
UML elements.

For each element of the metamodel a stereotype is defined establishing an extension relationship to an
appropriate UML metaclass. Tagged values and OCL constraints are optionally added in order to specify
restrictions. Most of the available CASE tools support the use of profiles that can be imported and applied to
different modelling projects.

In Section 3 we describe the metamodel on which UML4SOA is based. In Section 4, the UML Profile is
presented as an extension of model elements of the UML 2.0. Finally some examples are given in Section 5.

2 UML4SOA: A Domain-Specific UML Extension

The Service-Oriented Architecture (SOA) introduces many new concepts and architectural patterns to the
modelling of software systems. In order to allow developers and modellers to use these concepts to their full
potential, a modelling language like UML 2.0 needs to be extended with specific elements which are geared
towards expressing the new concepts on the right level of abstraction.

To enable developers to model SOA applications in a straightforward way, we have devised the Service-
Oriented Profile (UML4SOA), a UML extension which defines a so-called domain-specific language (DSL) for
service-oriented systems. In this language, the main concepts introduced by Service-Oriented Architectures are
used as shown in Figure 1, which presents an overview of both the structural and behavioural aspects of SOAs.

It introduces the following concepts for the structural view of service-oriented systems:

�� Components that provide or require services.
�� Services are provided by components, which implement services as ports. Attached to a service are

provided and required interfaces.
�� Provided interfaces contain operations that are implemented by the service itself.
�� Required interfaces contain operations, which the service needs, i.e. they must be implemented by other

parties (partners), which are then bound to the service.
In general, SOAs are used for modelling and implementing complex business applications. Therefore, we need
to cover not only the structural and behavioural view of the SOA system, but also

�� business goals and policies;
�� non-functional properties of services.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 4

These can be classified as crosscutting concerns and potentially affect all of the elements introduced above.

Figure 1: Main concepts in the Service-Oriented Architecture Profile (UML4SOA)

Service-Oriented Architectures place great emphasis on the composition, or orchestration, of services. In our
profile, we introduce specific support for implementing services as compositions by providing elements for
modelling a complete behavioural specification of a composed service.

2.1 Modelling Structure

The metamodel includes model elements to support specification of structural aspects of services. The UML
2.0 extension comprises model elements for UML structure diagrams (see Figure 2) and UML deployment
diagrams, which are shown in Figure 3. Service, service interface and service description as well as service
provider and service requester are concepts that were defined in the Ontology, which is a result of Task 1.1 in
the SENSORIA project.

In all our diagrams, we represent existing classes from the UML metamodel with a yellow background, while
the new UML4SOA classes have a white background.

Figure 2: UML4SOA metamodel: package Structure

The following important relationships are defined in this part of the model:

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 5

�� An orchestrated component may contain several services implemented as ports. The orchestration of
these services define a new service.

�� Each service may contain a required and a provided interface.
�� Each interface may contain operations. These operations, in turn, may contain an arbitrary number of

parameters.
�� A service is described by a service description.

Figure 3(a) shows both the UML model elements (yellow background) and Figure 3(b) the UML4SOA
concepts defined for permanent, temporary and on-the-fly communication paths, which are used in modelling
architectures by deployment diagrams. These temporary and on-the-fly communication paths are typical for
SOA architectures.

Figure 3: Deployment: (a) UML model elements (b) UML4SOA metamodel: package Structure

For each element of the structural package of the metamodel a stereotype for the Service-Oriented Profile
(UML4SOA) is defined (see section 3). A description of each element is given in that section as well.

2.2 Modelling Behaviour

 Our following metamodel includes UML4SOA model elements that support the specification of behavioural
aspects of service-oriented systems, which comprise the implementation of the components and the service
behaviour described by its protocol. The focus is on service interactions, long running transactions and their
compensation and exception handling. The metamodel is presented in two parts: In the next section, service
orchestration along with compensation activities is shown. In Section 2.2.2 and 2.2.3 we briefly discuss
modelling of the service protocol and requirements for SOAs .

2.2.1 Modelling Service Orchestration

Service orchestration is the process of combining existing services together to form a new service to be used
like any other service. To allow modelling of such compositions in UML, we add specific service-aware
elements to be used in activity diagrams.

The metamodel depicted in Figure 4 details the definition of orchestration activities and the information sent and
received by messages. The following relationships are defined in this figure:

�� An orchestrated component contains an orchestration as its implementation.
�� The orchestration contains a root scope, which in turn contains all necessary elements for the workflow

modelling.
�� The service interaction has been defined specifically for service interaction, like sending and receiving

data. It is defined as an UML abstract class.
�� Service interactions may have interaction pins for sending or receiving data.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 6

Figure 4: UML4SOA metamodel: package Behaviour - Orchestration

In addition, the metamodel shown in Figure 5 presents new elements to be used for compensation activities. In
particular, it defines:

�� Compensation edges which link orchestration activies to other activities that model the compensation.
�� Compensate and CompensateAll activities which can be used to compensate scopes.

Figure 5: UML4SOA metamodel: package Behaviour - Compensation

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 7

2.2.2 Modelling Service Protocol

At service level, the behaviour of the port providing services to or requiring services from other parties is
specified using an UML state machine. Future work will be a detailed analysis of the requirements for these
state machines for service-oriented systems. The requirements are mainly given by the transformations to be
defined to follow a model-driven approach. See Figure 6 for a general approach based on general UML protocol
state machines.

Figure 6: UML4SOA metamodel: package Behaviour - Protocol

2.2.3 Modelling Requirements for SOAs

The UML4SOA approach provides in addition a way to specify at requirements specification level which
functionality of a SOA will be implemented and published as services, i.e. a specific service-oriented use case
is defined.

For each element of the behavioural package of the metamodel a stereotype for the Service-Oriented Profile
(UML4SOA) is defined (see Section 3). A description of each element is given in that section as well.

2.3 Modelling Business Goals and Policies

This section discusses how UML can support business process modelling, and especially its variability via
policies, as expressed in the Service-targeted Policy-oriented Workflow Language (StPowla) [GMRFS07].
StPowla introduces a novel combination of policies and workflows that adds to each of the concepts being used
on their own, since it permits to capture the essential requirements of a business process by workflow notation,
and at the same time to express the inevitable requirements variability by policies in a descriptive way, at a
similar level of abstraction. Besides this contribution to the SENSORIA software development process,
StPowla makes a contribution to the engineering of service-oriented systems, since it creates a clear link
between this enhanced workflow mechanism and services. Tasks are being executed by services, and StPowla
permits to define requirements and SLAs that together specify which service can be chosen and what
guarantees it has to provide.

We show how there is a limited need for extensions to UML to capture the needed modelling concepts,
provided that the business models are built in the context of a suitable framework. The StPowla profile
introduces stereotypes, to characterize the tasks in a workflow linking them to services and policies. The
StPowla framework has three components: the workflow notation, which is used to express the core flow of the
business; the policy language, which is used to adapt the workflow to the varied requirements of the
stakeholders; and the specialization of the policy language to implement workflows via services.

The role that UML can play is different in the three components. Representing workflows has been done
graphically since the early time of business process modelling, and so naturally lends itself to a representation
in UML. Also, activity diagrams are natural candidates for workflow representation. The business process core
is defined in terms of sequential, parallel and decision-based composition of building blocks called tasks. Then
we need to capture in UML the semantics of StPowla tasks. In StPowla, a task has a type, which identifies its
functionality in business terms, as well as attributes. These are used to refer to the state of the execution of the
workflow, and characterise properties of individual tasks or of the whole workflow. Besides, a task may have
input and output values. The main point in StPowla is that the task is carried out by (at least) one service, and
that the choice of the service(s) may be specified by policies associated to the task. A default policy is initially
associated with each task: when the control reaches the task, a service is looked for, bound and invoked, to
perform the main functionality of the task, as expressed by the constraint.

The policies can express their choices by inspecting and/or using both the attributes and the input values. The
way policies constrain the choice of the implementing service(s) is by specifying the service SLAs, according
to predefined dimensions that define the admissible variability. For instance, in the example in Section 4.4 we
use the dimension Automation, which may take two values, i.e. interactive and automated.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 8

The behaviour of tasks is represented by the state machine of Figure 11 (where we are loose with respect to the
arguments and the results of the task/service). It is assumed that there are two engines at run-time, which
exchange signals and take care of the execution of workflows and policies, respectively. Then, upon activation
of the task, the WorkflowEngine signals the PolicyEngine that the task has been entered, and then waits for the
outcome of the policy from the PolicyEngine. If the policy succeeds, the results are made available to the
WorkflowEngine to proceed with the next task. If the policy fails, any relevant information is returned via an
exception, which may be captured at the workflow level, e.g. in a choice pattern [GRFT07].

Finally, StPowla is targeted to SOA. Its users, though informatically naives, should be aware that the business
is ultimately carried out by services, i.e. computational entities that are characterized by two series of
parameters: the invocation parameters (related to their functionalities), and the Service Level Agreement (SLA)
parameters. Stakeholders can adapt the core workflow by modifying these agreements. Tasks are the units
where BPM and SOA converge, and where adaptation occurs, by using policies: the intuitive notion of task is
revisited to offer the novel combination of services and policies offered in Figure 7.

Figure 7: Metamodel for tasks and policies

In general a policy may find several services that satisfy several requests, and bind and invoke them. Each
request has a condition, which restricts its application to some states of the workflow, identifies a service
signature (TaskType), and may have SLAs that may involve attributes of the workflow and tasks. There is a
notion of match between the offered and requested SLAs. A possible implementation of these requirements,
which uses the policy language Appel following [GMRFS07], is exemplified below, in Section 4.4.

2.4 Modelling Non-functional Properties of Services

This section describes the UML extension for modelling non-functional parameters of services. The semantical
basis for this extension is defined in the SENSORIA Ontology in View 3 (Non-functional properties of
services) while the style of the UML metamodel and the refinement of the concepts is inspired by the ”UML
Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”. Relevant part of
General Resource Model profile was also considered.

Our profile is a UML implementation of the SENSORIA Ontology, View Non-functional properties of services
[BFGK06], refined to meet the needs of service development. The style and elements of the UML metamodel
is guided by the OMG specification UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms [Obj06]. The UML Profile for Schedulability, Performance and Time [Obj05]
is a previous related specification of OMG, targeting mainly the modelling issues of realtime and embedded
systems. Web Services Service Agreement Language (WSLA, [IBM] by IBM) is another related industrial
specification, dealing with the detailed definition of SLAs in the SOA context. Service Component

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 9

Architecture (SCA) is a specification for composing services implemented in heterogeneous technologies (Web
services, Java, PHP, etc.).

SCA consortium in [Con07] proposes to use descriptions in WS-Policy language to describe non-functional
extensions (called intents). Intents are translated to policies depending on the capabilities and standards of the
particular implementation platform. However, currently there is no visual modelling support for this
mechanism. [OH] presents a profile for extra-functional properties of Web services using Aspect Oriented
Programming as implementation technique and WS-Policy as service descriptor. In the SENSORIA project,
[GV06] shows an example for an extension of the core SOA model using Reliable Messaging as a case study.

As described in the Technical Annex of SENSORIA, modelling concepts are based on a common knowledge,
represented by the SENSORIA Ontology [BFGK06]. This document defines a non-exclusive set of elements to
describe the non-functional properties of a service. On the other hand, as already mentioned above, we adapted
the QoS and FT extension of OMG to the needs of SENSORIA.

Figure 8 shows the metamodel of the extension. Notes refer to relationship with elements of SENSORIA
Ontology. In this extension, we focused on the Quality of Service parameters. The concept of ”QoS” refers to
any kind of runtime attribute which can be measured (in terms of qualitative or quantitative metrics).

Using an SLA-driven approach, the profile is built to support contracts (NFContract, agreement in the
SENSORIA ontology) between provider and requester parties, optionally using external third-party services for
monitoring runtime characteristics. These are represented by requester and provider roles and a Monitor class
(see SENSORIA ontology [BFGK06]), respectively. A certain non-functional aspect of service (e.g.,
Performance) is defined as a NFCharacteristic (defined as property in the SENSORIA ontology). These
characteristics are described by a set of attributes (e.g., Throughput) called NFDimensions (defined as attributes
in the SENSORIA ontology).

Figure 8: UML4SOA metamodel: non-functional properties

3 A UML Profile for Service-Oriented Architecture (UML4SOA)

In order to be able to use the elements of the UML4SOA metamodel in UML 2.0 CASE tools that are
extensible with UML profiles, the profile must be specified by means of stereotypes and their relationships to
the classes of the UML metamodel.

Our profile will be presented in four parts. The first subsection shows extensions for modelling the structural
specification. The second one includes the stereotypes for the behavioural specification. The third and fourth
subsections address stereotypes defined for modelling business goals, policies, and non-functional properties of
services. We define a stereotype for all non-abstract classes of the metamodel defined in the previous section
(excluding UML classes). The objective is to have a distinct graphical representation and clear semantics for
service-oriented concepts.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 10

3.1 UML Extension for Structural Modelling of Services

The UML profile for service-oriented systems includes the following constructs for modelling the structure of
SOAs: A stereotype OrchestratedComponent indicating that the component is the result of the orchestration of
services, stereotypes for specifying services, i.e. Service, ServiceInterface, and ServiceDescription and
stereotypes for distinguishing different types of communication paths, i.e. Permanent, Temporary and the more
service specific OnTheFly.

Figure 9 depicts a UML structure diagrams showing these elements of the UML4SOA profile and the
corresponding UML elements, for which they define an extension. Table 1 provide a description of each
stereotype.

Figure 9: UML profile for service-oriented systems: structural elements

.

Stereotype name UML base class Description Used in Constraints

Orchestrated Component Component Component which is realised through
orchestration. Structure diagram

All ports are
stereotyped

services

Service Port
Groups service provisions and
requirements on services. Services are
published, discovered, and bound

Structure diagram

ServiceInterface Interface Interface specifying provided or required
operations of a service. Structure diagram

ServiceDescription Artefact

Characterization of the capabilities of a
service that is defined according to
standard languages and published
according to standard protocols.

Structure diagram

Permanent CommunicationPath
Permanent communication paths
between deployment targets for the
exchange of messages and signals.

Deployment
diagram

Temporary CommunicationPath
Temporary communication paths
between deployment targets for the
exchange of messages and signals.

Deployment
diagram

OnTheFly CommunicationPath

Communication paths between
deployment targets that require a
discovery process for the exchange of
messages and signals.

Deployment
diagram

Table 1: UML4SOA concepts of package Structure

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 11

3.2 UML Extension for Behavioural Modelling of Services

The UML profile for service-oriented systems includes the constructs for modelling the behaviour of SOAs, i.e.
stereotypes for service-specific use cases, orchestration, compensation, and exchange of messages (service
interaction).

Figure 10 depicts the UML structure diagrams showing these elements of the UML4SOA profile and the
corresponding UML elements, for which they define an extension. Table 2 provide a description of each
stereotype.

Figure 10: UML profile for service-oriented systems: behavioural elements

Stereotype name

UML base class

Description

Used in

Constrains

Orchestration Activity
Activity that specifies the
orchestration of services to be
executed.

_
(Abstract class)

Scope Structured
ActivityNode

Activity group that may be have
associated event, exception and
compensation handlers.

Activity diagram

ServiceInteraction Action Interaction for the communication
between partners.

_
(Abstract class)

Send CallAction

Action that invokes behaviour sending
a message synchronously, i.e. waits
until the corresponding partner
receives the message.

Activity diagram

Receive AcceptCallAction
Reception of a message. It blocks
until a message is received.

Activity diagram

SendAndReceive/
SendReceive CallAction

Is a shorthand for a sequential order of
send and receive actions.

Activity diagram

SendPin Pin A pin that holds output values
produced by an action (UML). Activity diagram

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 12

Stereotype name

UML base class

Description

Used in

Constrains

ReceivePin Pin A pin that holds input values to be
consumed by an action (UML). Activity diagram

ExceptionEdge ActivityEdge Edge used to associate exception
handlers to activities and scopes. Activity diagram

CompensationEdge ActivityEdge Edge used to associate compensation
handlers to activities and scopes. Activity diagram

Compensate Action
Action that triggers the execution of
the compensation defined for a scope
or activity.

Activity diagram

CompensateAll Action

Action that triggers compensation of
the actually compensated scope (i.e.
calling compensation on all subscopes
in the order of their completion). Can
be inserted in compensation handlers
only.

CompensationHandler Element
Handler that specifies a body to
execute in case a compensation is
triggered by a compensate action.

Activity diagram

ServiceUseCase Use Case

Use case (functionality of the system)
that will be offered as service, i.e. it
will be published, discovered and
other parties will be bound to the
service when implemented.

Use Case Diagram

Table 2: UML4SOA concepts of package Behaviour

3.3 UML Extension for Business Policies

Most of the concepts in the metamodel outlined in Section 2.3 can be rendered in standard UML provided that
a suitable framework is defined, as we do in the end of this section. The main point to be addressed remains the
representation of the tasks, i.e. of their behaviour in relation to policies. UML provides two ways, namely two
Actions, to model the invocation of a behaviour in an Activity model: CallOperationAction and
CallBehaviorAction. The latter is more direct, but CallOperation is more apt to our purposes. Indeed, this
action calls an operation of an object. It is straightforward to associate the intended behaviour, shown in Figure
11, to such an operation. Moreover, the object can be used to hold the task attributes. Finally, the action
input/output pins can hold the arguments/results of the operation.

The graphical representation of a task then is the standard one (see Figure 18), where the stereotype means that
the invoked behaviour is the one defined above: The second line node in the workflow (to distinguish two
occurrences of the same task type in a workflow), and the last line lists the type of the task (a related class
diagram showing attributes may help here), and the called operation (taskBehaviour).

Figure 11: The StPowla framework

To complete the profile and obtain a modelling environment, we need also a framework. The StPowla profile
deals with tasks, as elements of the workflows. It is specified in Table 3.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 13

Figure 12: UML profile for service-oriented systems: business goals and policies

Stereotype
name UML base class Description Used in Constrains

Task Action A task is a node in a workflow, executed by a
service implementing the task type, activated
via the policy associated to the node.

Activity
diagram

The operation
behaviour is
taskBehaviour

TaskType Class A task type describe the type of a task Class diagram

Policy ValueSpecification A policy specifies choice of services Class diagram

Sladim Class These classes are used to specify the domain
of SLAs.

Class diagram

Dim Dependency The target specifies one of the SLA
dimensions of the source.

Class diagram The source is
stereotyped TaskType,
the target is
stereotyped sladim

Table 3: UML4SOA concepts for business goals and policies

To understand the constraint in the first row, we need to consider, besides the profile, a (simple) framework that
allows us to declare tasks, and so to deal with operations and attributes. Dealing with the attributes of the tasks
requires more than the Actions, since in UML it is not possible to define attributes for Actions1. What we do
then, is to define the task types as classes that inherit from a prototypical one, defined in the
StPowlaFramework, as shown in Figure 11. Besides introducing two general attributes of the StPowla task
types, i.e. automation and actor, the framework accounts for their standard behaviour. The task types used in
the workflows will inherit this behaviour, but they can redefine its signature, to take care of the arguments and
results of the specific requested service.

3.4 UML Extension for Non-Functional Properties of Services

The UML profile for service-oriented systems is enriched with constructs for modelling non-functional
properties of services: stereotypes for the requester and provider specification and for the characteristics and
dimensions of these characteristics. Monitoring of the contracts is also supported.

Figure 13 depicts the UML structure diagrams showing the elements the UML4SOA profile includes for
modelling non-functional properties of services and the corresponding UML metaclasses, for which they define
an extension. Table 2 provide a description of each stereotype.

1 Or, at least the CASE Tool Rational Software Modeler does not support them.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 14

Figure 13: UML profile for service-oriented systems: Non-functional properties

Stereotype name UML base class Description Used in Constrains

NFCharacteristic Class Describes a certain non-functional
aspect of a service, e.g., Performance.

Structure
diagram

NFSpecification Class Specifies non-functional requirements. -
(abstract

class)

NFContract Class A concrete contract between two
components. Contains specifications,
may be extended with additional
information (e.g., obligations).

Structure
diagram

There must be two services
connected by “contractor”
assoc, one having a
RequesterSpecification and
the other having a
“ProviderSpecification”.

NFDimension Class Determines a certain attribute (e.g.,
ResponseTime). May have additional
attributes (such as deviation.etc.).

Structure
diagram

RunTimeValue Class Measured data; relation between
RuntimeValue and NFDimension must
be included in the contract.

Structure
diagram

NFMonitor Class External service to perform monitoring
actions.

Structure
diagram

RequesterSpecification Class Specification describing requested
functionality w.r.t non-functional
characteristics.

Structure
diagram

ProviderSpecification Class Specification describing provided
functionality w.r.t non-functional
characteristics.

Structure
diagram

Table 4: UML4SOA concepts for non-functional properties of services

4 Modelling with UML4SOA

In this section the On Road Assistance scenario of the automotive case study is used to illustrate modelling with
the UML4SOA profile. The scenario is described in deliverable D8.0 [GtBB+06]. For an overview of the
specification of automotive scenarios, the reader is referred to deliverable D8.2a [KB2007] and for a detailed
UML specification of the On Road Assistance scenario to [Ko2007].

In the On Road Assistance scenario, the diagnostic system reports a severe failure in the car engine; for
example, the vehicle’s oil lamp reports a low oil level. This triggers the in-vehicle diagnostic system to perform
an analysis of the sensor values. The diagnostic system reports for example a problem with the pressure in one
cylinder head, and therefore the car is no longer driveable, and sends a message with the diagnostic data and
the vehicle’s GPS data to the car manufacturer or service centre. Based on availability and the driver’s
preferences, the service discovery system identifies and selects the appropriate services in the area: garage
(repair shop), tow truck and rental car. When the driver makes an appointment with the garage; the diagnostic

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 15

data is automatically transferred to the garage, which could then be able to identify the spare parts needed to
perform the repair. A towing service is also identified by the discovery system, providing the GPS data of the
stranded vehicle. The driver makes an appointment with the towing service, and the vehicle is towed to the
garage. The selection of services takes into account personalised policies and preferences of the driver. We
assume that the owner of the car has to deposit a security payment before being able to order services.

4.1 Requirements Specification

Functional requirements are represented as uses cases. Figure 14 shows the UML 2.0 Use Case Diagram.
Services are modelled using the stereotype «service use case»2.

Figure 14: Use case diagram for the On Road Assistance scenario of the automotive case study

4.2 Architecture

Figure 15 depicts an overview of the architecture, which is represented as a UML 2.0 Deployment Diagram.
The model shows the distribution of the components within the different physical devices of the vehicle. The
UML4SOA stereotypes «temporary» and «on the fly» visualize temporary and on-the-fly communication
paths. Communication of components within the vehicle usually uses permanent communication paths. The
«permanent» stereotype is not visualized in order to avoid an overloaded diagram.

4.3 Structure and Behaviour

The Orchestrator is an architectural element that is in charge to achieve a goal by means of composition of
services. Figure 16 shows the structure of the Orchestrator component and all components that the orchestrator
needs to communicate with in order to orchestrate services in the On Road Assistance scenario. These
components are the Reasoner and the Local Services, which are needed to discover services

2 Stereotype names are written slightly different in the diagrams modelled by CASE tools that require Java-like
notation for names.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 16

(findLocalServices) and select services (bestServices) respectively. On the other hand, dynamic binding will be
performed with external service providers such as a Garage, a TowTruck and a RentACar, which have been
selected in the previous step according to the results of the discovery and reasoning process. For a more simple
graphical representation, these services are accessible through the Vehicle Communication Gateway

Figure 15: UML deployment diagram for the Architecture of the automotive case study

Figure 16: UML structure diagram for the Orchestrator component in the On Road Assistance scenario

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 17

Figure 17: UML activity diagram for Orchestration of services in the On Road Assistance scenario

The process starts with a request from the Orchestrator to the Bank to charge the driver’s credit card with the
security deposit payment, which is modelled by an asynchronous UML action RequestCardCharge. To charge
the credit card the card number is provided as a send parameter of the UML stereotyped call action. In general,
to determine receive and send parameters, the following assignment is used: Receive pins have an arrow
pointing towards to the action; send pins have an arrow pointing away from the action.

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 18

4.4 Business Goals and Policies

When looking at the car repair scenario from the business modelling perspective that is proper of StPowla, one
has to concentrate on those facets that are relevant for the business workflow, as it appears to the final users.
This attitude is different from the one of detailed service development, taken e.g. in the previous section. For
instance, we assume that compensations will occur as needed, while compensations are a primary design
concern there. In StPowla the scenario is described by a workflow, to which some policies apply.

Figure 18: Car repair workflow

As an example of adaptation, we discuss a policy taking care of the fact that usually a driver already knows and
trusts some of the garage and towing truck services of his own town.

P1: If the car fault happens in the driver's own town, then he wants to select the services to be used.
Otherwise he wants them chosen automatically.

This policy can be expressed in StPowla as a policy which applies to task selectBest:

P1: appliesTo selectBest
 when taskEntry([])
 if findService.location = myTown
 do req(main, [], [Automation = interactive])
 seq
 when taskEntry([])
 do req(main, [], [Automation = automatic])

It is defined as a sequence, the first argument being the request of an interactive choice and the second one
dealing with the general case. Operator seq checks its second argument only if the first one is not applicable,
i.e. if the location is different from the driver’s town. In the third and eighth lines, the StPowla action req looks
for, binds and invokes a service of type selectBest with a SLA along the Automation dimension that
ensures proper automation in the choice.

To make this policy expressible, the domain has to be specified appropriately, as shown by the class diagram in
Figure 19: task type SelectBest has a SLA dimension, Automation. Any service which implements
selectBest, that is, any service eligible for execution when the workflow reaches the task, must exhibit the
ability to fulfil one of the foreseen automation modes. Then, the service request in the policy associated with
the node will select one of the appropriate services. In addition, the task node FindService has an attribute,
location, which carries the town where the car failure occurred (among other information, not specified
here for sake of space).

Figure 19: Domain for car repair (partial)

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 19

4.5 Non-functional Properties

The model presented here is part of the specification of OnRoadAssistance scenario of the automotive case
study of SENSORIA. Parts of the structural model of this scenario were taken and extended with specifications,
properties and contracts. Figure 20 shows Vehicle Communication Gateway component, and its specifications.
This component as also tagged visually- provides some services (as a gateway for external communication) and
requires some from external components, physically not contained within the car. As such, it has provider
specifications and requester specifications as well. For the sake of visibility, specifications of two requested
services (denoted by ports), namely those of BankCharge and GPS are included. To keep the diagram
understandable, not all possible aspects are covered here, the aim was to show how different aspects (e.g.,
performance, secure communication, availability, etc.) can be incorporated using SENSORIA profile. Some
example attributes are also listed to illustrate the detailed definition of NFDimensions, however, the list is not
intended to be exhaustive. Usually, an SLA-like description includes not only one guaranteed value of a
parameter, but minimum/maximum intervals, deviation, average, the length of the measurement interval, etc.
This additional information can be added to concrete NF Dimensions, as shown by the example of Throughput
and ResponseTime. Such models can be the basis of performance analysis and runtime monitoring as well.

Figure 20: Specifications of non-functional properties for the Vehicle Communication Gateway

Figure 21: Contracts between the Vehicle Communication Gateway and the Bank components

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 20

5 Final Remarks

The SENSORIA UML profile defines services to be described by port protocols regulating the message
exchange between service provider and requester. These protocols, typically specified as UML state machines
or described by UML interactions, can be verified by using the tools developed in T3.5 for model checking
UML designs. The current profile includes security annotations as non-functional properties, further security-
related aspects will be pursued in T3.5.

There are some other approaches defining UML extensions for some aspects of service-oriented systems, such
as [SCA07], [HLT03] and [UPMS]. UML4SOA is based on these approaches and the objective is to provide an
integrate UML profile covering modelling requirements of structural and behavioural, policies and non-
functional properties of SOAs.

To our knowledge, there is no much work on the use of UML in relation with policies. Class diagrams are used
to relate the entities involved in Rule Based Access Control by Koch and Parisi-Presicce in [CPP03], where
they use Alloy and graph-transformations for verification. Like we do, UML is used to provide the context for
the use of policies, rather than to express them. Work in progress is the UML Profile and Metamodel for
Services [UPMS] that is integrating a set of existing approaches that focus on different architectural styles.
Based on the experience modelling with our UML4SOA we will be able to provide comments and suggestions
for the UPMS approach, which is performed within the scope of an OMG standardisation process.

The experience using the UML4SOA profile in modelling the architectural and behavioural aspects of the On
Road Assistance scenarios of the automotive case study and the experience done so far with the StPowla profile
and framework seems promising. In particular, our results in modelling of service specific behaviour such as
orchestration and compensation of services are interesting, but require further refinement. In addition, there is
need of more work in two directions: more extensive modelling of case studies to straighten the details, and
experimentation with UML design tools that fully support the profiling mechanism.

6 Relevant SENSORIA Publications and Reports

[BFGK06] Laura Bocchi, Alessandro Fantechi, László Gönczy, and Nora Koch. D1.1.a: Sensoria Ontology.
Prototype Language for Service Modelling: Ontology for SOAs presented through Structured Natural
Language. Technical report, 2006. Deliverable D1.1.a of SENSORIA.

[GMRFS07] Stephen Gorton, Carlo Montangero, Stephan Reiff-Marganiec and Laura Semini. Expressing essential
requirements and variability of Business Processes. Third International Workshop on Engineering
Service-Oriented Applications: Analysis, Design and Composition. Vienna, Sept. 17th, 2007. To appear.

[GRFT07] Stephen. Gorton, Stephan Reiff-Marganiec and Emilio Tuosto. Policy-driven Reconfiguration of
Service-Targeted Workflows. SENSORIA Tech. Rep. July 2007.

[GtBB+06] Stefania Gnesi, Maurice ter Beek, Hubert Baumeister, Matthias Hoelzl, Corrado Moiso, Nora Koch,
Angelika Zobel, and Michel Alessandrini. D8.0: Case Studies Scenario Description. Technical report,
2006. Deliverable D8.0 of SENSORIA.

[GV06] László Gönczy and Daniel Varró. Modeling of reliable messaging in service oriented architectures. In
Andrea Polini, editor, Proceedings of International Workshop on Web Services Modeling and Testing
(WS-MaTe2006), pages 35–49, Palermo, Sicily, ITALY, June 9th 2006.

[HLT03] Reiko Heckel, Martin Lohmann and SebastianThöne Towards a UML Profile for Service-Oriented
Architectures, Workshop on Model Driven Architecture: Foundations and Applications (MDAFA),
CTIT Technical Report TR–CTIT–03–27, University of Twente, The Netherlands, June 2003

[Ko2007] Nora Koch: Automotive Case Study: UML Specification of On Road Assistance Scenario, SENSORIA
Report, August 2007

[KB2007] Nora Koch and Dominik Berndl: Requirements Modelling and Analysis of Selected Scenarios
Automotive Case Study Technical Report 2007. Deliverable D8.2a of SENSORIA

D1.4a: UML for Service-Oriented Systems October 10th, 2007

016004 (Sensoria) 21

7 Other References

[CPP03] Manuel Koch and Francesco Parisi-Presicce. Visual Specifications of Policies and their Verification.
Proc. FASE 2003, 278-293, LNCS 2621, Springer.

[Obj05] Object Management Group. UML Profile for Schedulability, Performance and Time, version 1.1.
Technical Report, 2005. OMG Available Specification.

[Obj06] Object Management Group. UML profile for modeling quality of service and fault tolerance
characteristics and mechanisms, version 1.0. Technical report, 2006. OMG Available Specification.

[OH] Guadalupe Ortiz and Juan Hernández. Toward uml profiles for web services and their extrafunctional
properties. In IEEE International Conference on Web Services (ICWS’06).

[OMGP] OMG: Catalog of UML Profiles. http://www.omg.org/technology/documents/profile_catalog.htm, last
visit:1.10.2007

[SCA07] SCA Consortium. SCA Policy Framework. Version 1.0. Technical report, 2007.

[UML] OMG. Unified Modeling Language: Superstructure, version 2.1.1 formal/2007-02-05, 2007.

[UPMS] OMG. UML Profile and Metamodel for Services, http://www.omg.org/docs/ad/07-06-02.pdf, last visit:
1.10.2007

[WSLA] IBM. Web Service Level Agreements Project. http://www.research.ibm.com/wsla/, last visit:1.10.2007

