
A Model-Driven Approach to Service Orchestration

Philip Mayer, Andreas Schroeder, Nora Koch

Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

{mayer, schroeda, kochn}@pst.ifi.lmu.de

Abstract

Software systems based on Service-Oriented

Architectures (SOAs) promise high flexibility, improved
maintainability, and simple re-use of functionality. A
variety of languages and standards have emerged for
working with SOA artifacts; however, service computing
still lacks an effective and intuitive model-driven
approach starting from models written in an established
modeling language like UML and, in the end, generating
comprehensive executable code. In this paper, we
present a conservative extension to the UML2 for
modeling service orchestrations at a high level of
abstraction, and a fully automatic approach for
transforming these orchestrations down to the well-
known Web Service standard BPEL.

1. Introduction

With the introduction of the Service-Oriented
Architecture (SOA), formerly proprietary software
systems are being opened up and made available as
services. On top of these services, business processes
and technical workflows are being (re-)implemented as
compositions of services, which has come to be known
as service orchestration. Service computing has quickly
been embraced by both academy and industry, as it
promises highly flexible software systems, simple re-use
of functionality, and improved maintainability.

While model-driven approaches are already in use for
other programming paradigms, service-oriented design
still falls short of effective and comprehensive domain-
specific modeling and code generation tools. In order to
support software engineers with intuitive and easy to
adopt design and implementation techniques for service-
oriented software, we propose (1) to extend the reach of
UML to the modeling of SOA systems, and (2) to
exploit so-designed models for creating running
systems, in particular through code generation.

UML is a well-known and mature language for
modeling software systems, however it is strenuous right
now to model SOA artifacts with UML2, as native
support for services and service orchestration concepts

is missing. We therefore introduce a UML2 extension
for SOA – called the UML4SOA profile – which is a
high-level domain specific language for modeling
service orchestrations as an extension of UML2 activity
diagrams (Section 2). Based on this profile, we have
defined transformation mechanisms from UML4SOA
models to executable languages like BPEL, Java, and
Jolie [5]. Here, we introduce our transformation to
BPEL (Section 3). The paper concludes with a review of
related work (Section 4) and a summary (Section 5).

2. Modeling Service Orchestration in UML

Modeling service orchestrations in plain UML
reveals several important shortcomings, leading to the
introduction of (unreadable) technical constructs. In
particular, the following key distinguishing concepts of
service compositions are missing: modeling of partners
of a service; message passing among requester and
provider of services, long-running transactions,
compensation, and events. For example:

• It is not possible to restrict the set of valid callers of
certain services – as needed e.g. to ensure that only
specific external services can invoke an action – on
an UML AcceptCallAction. All restrictions must be
implemented manually.

• Event handlers are not directly supported. For
example, temporally enabled event handlers must be
manually disabled using technical constructs. Russel
et al. [7] suggest using InterruptibleActivity-
Regions containing the tasks to disable, and
interrupting edges for normal task completion.
However, using these technical constructs makes
the diagrams harder to understand.

• Similarly, compensation handling is not directly
included. Compensation for an activity cannot be
associated directly with it, but must be programmed
within explicit compensation logic. Modeling the
compensation logic for more than one compensable
activity is a tedious and error prone task [10].

Due to these shortcomings, modeling service
orchestrations with plain UML is a cumbersome task. At
the same time, the resulting UML models are difficult to

transform to other languages, as the patterns used to
handle the issues named above need to be recognized
appropriately.

2.1. UML4SOA
To overcome these difficulties, we extend the UML2

with service-specific model elements, providing special
elements for service interactions, long running
transactions and their compensation as well as event-
and exception handling.

Our UML2 extension is built on top of the Meta
Object Facility (MOF) metamodel [6] and defined as a
conservative extension of the UML2 metamodel. For the
new elements of this metamodel, a UML profile is
created using the extension mechanisms provided by
UML. The principle followed is that of minimal
extension, i.e. to use UML constructs wherever possible
and only define new model elements for specific
service-oriented features and patterns making diagrams
simple, concise, and easy to understand.

The metamodel depicted in Figure 1 shows the
model elements we introduce to UML2 activity
diagrams. A brief description of the most distinguishing
stereotypes is given below.

• An orchestration is a specialized UML Activity for
modeling service orchestrations. Each
orchestration contains a root scope.

• A scope is a UML StructuredActivityNode that
contains arbitrary ActivityNodes, and may have an
associated compensation handler.

• Specialized actions have been defined for sending
and receiving data. In particular, a send is an UML
CallBehaviourAction that sends a message; it does
not block. A receive is a UML AcceptCallAction,

receiving a message, which blocks until a message
is received.

• Service interactions may have interaction pins for
sending or receiving data. In particular, lnk is an
UML Pin that holds a reference to the service
involved in the interaction, snd is a Pin that holds
a container with data to be sent, and rcv is a Pin
that holds a container for data to be received.

• Finally, specialized edges connect scopes with
handlers. For example, compensation is a UML
ActivityEdge to add compensation handlers to
actions and scopes.

Our profile also contains elements for event- and
exception handling; they are not included here for lack
of space. For a complete overview, see [3].

Figure 2 shows an example orchestration scenario –
a typical SOA example of a ticket booking service
which works in-between a theater and a customer. It is
important to note that the metamodel introduced above
only defines the new elements required for service
orchestration and leaves everything else to the UML:
the diagram shows how elements from the UML (in
this case, actions, structured activity nodes, and
branches) have been combined with new elements for
service orchestrations (in this case, stereotypes for
scopes and service interactions as well as new
elements for compensation).

In general, using the UML4SOA constructs greatly
reduces the number of technical constructs needed to
model key SOA concepts like service interactions,
compensation, and event handling. In the example,
service interactions are specified by stereotypes;
complex data flow edges have been replaced by pins
with incoming and outgoing stereotypes; and

Figure 1: UML4SOA Metamodel (UML metaclasses in grey)

compensation handling has been introduced by using a
specialized edge.

The value of the produced diagrams is increased for
both human reading and automatic processing: the
former profits from the concise and explicit – but
minimalistic – labeling of constructs, while the latter
profits from the simpler model structure.

Figure 2: Orchestration Example

The UML2 profile defined above is available as a
plug-in for IBM’s Rational Software Architect as well as
the MagicDraw UML modeler. Both are available for
download from our website, www.pst.ifi.lmu.de/
projekte/uml4soa/.

3. Code Generation

The UML models we have introduced above already
have great value for communicating the orchestration
workflow; however, they are not yet executable.
Therefore, we have implemented code generators for
several target languages, among them BPEL/WSDL, the
Jolie language, and Java code. In this section, we will
detail our transformation to BPEL. The transformers are
available as plug-ins for Eclipse and are likewise
available from the website mentioned previously.

3.1. Transforming to BPEL
Although BPEL allows several alternatives for

modeling processes, using structured activities like
repeatUntil, while, or if/else is commonly favored over a
graph-based approach due to better readability. Indeed,
with BPEL 2.0 there seems to be a shift towards a more

structured approach to the modeling of processes, as
more structuring activities have been added.

Transforming to a structured BPEL process,
however, poses some problems as the source models
(activity diagrams) use graph structures. For example,
branches and loops are modeled using the same
elements (decisions/merges); their meaning therefore
needs to be inferred from the context, i.e. the number of
edges connected to them and their position within the
control flow. Thus, the UML4SOA model transformer
employs a depth-first rule-based approach to the
conversion, which uses a partitioning algorithm to group
UML activity diagram nodes for implementation by a
certain BPEL structured activity.

There are three types of partitions which need to be
identified in the UML source:

• Branches. Branching the control flow is modeled in
UML with decision and merge nodes. In BPEL,
branching is modeled with an if structured activity
which may contain elseif branches for alternatives.

• Loops. We assume loops in the control flow to be
modeled in UML with merge and decision nodes,
with one control path leading from the decision at
the end to the merge at the beginning. The
equivalent BPEL construct for this is the
RepeatUntil loop, which runs at least once.

• Parallel flows. Parallel execution is modeled in
UML by using fork and join nodes. In BPEL,
parallel flow is handled through the flow construct.

Besides these induced partitions, we also exploit
explicit structuring mechanisms; for example, the newly
introduced scope or the compensation handlers. Note
that handlers are external to a scope in UML, which

<scope name="RootScope">
 <compensationHandler>
 ...
 </compensationHandler>

 <sequence>
 <receive name="ReservationRequest"
 operation="ReservationRequest"
 partnerLink="customer"
 variable="event"/>

 <repeatUntil>
 ...
 </repeatUntil>

 <invoke name="ReserveTicket"
 inputVariable="event"
 operation="ReserveTicket"
 partnerLink="theater"/>
 </sequence>
</scope>

Figure 3: Generated BPEL Code

means that they need to be moved to the appropriate
code block inside the generated BPEL scopes.

Having handled structural aspects, single actions can
be converted; for example:

• Send: The send action is intended for sending a
message to an external partner. It is modeled as a
BPEL invoke with only an input variable.

• Receive: The receive action is intended for receiving
incoming messages from external partners. It is
modeled as a BPEL receive.

As an example for the transformation, Figure 3
shows the (simplified) BPEL code generated for the root
scope of the UML diagram in Figure 2.

4. Related Work

Several other attempts exist to define UML
extensions for service orchestrations. Most, however,
require very detailed UML diagrams from designers, try
to force other languages (like BPEL) on top of UML, or
do not provide extensions to model vital parts of
orchestrations such as compensation handling.

The work of Skogan et al. [8] has a similar focus as
our approach. However, although they identify patterns
to ease the transformations, the approach lacks an
appropriate UML profile preventing building models at
a high level of abstraction.

In a recently published article, Ermagan and Krüger
[2] extend the UML with components for modeling
services defining a UML profile for rich services.
Collaboration and interaction diagrams are used for
modeling the behavior of such components. Neither
compensation nor exception handling is explicitly
treated in this approach.

A first automated mapping of UML models to BPEL
[1] defines a very detailed UML profile that introduces
stereotypes for almost all BPEL 1.0 activities – even for
those already supported in plain UML, which makes the
diagrams drawn with this profile hard to read.

Another approach is shown in [4], which defines
BPEL-like stereotypes to handle data flow, but does not
provide support for compensation. Conversely to these
approaches, UML4SOA focuses on the improvement of
the expressive power of UML by defining a small set of
stereotypes for modeling SOA orchestrations.

5. Conclusion and Outlook

In this paper, we have presented the UML4SOA
approach for modeling service orchestrations in UML2
and utilizing these models for code generation; in
particular, for generating BPEL code.

The main advantage of our approach is the provision
of a concise and intuitive solution to the modeling of
services in UML: a UML2 profile with a small set of
model elements that allow the service engineer to

produce diagrams which on the one hand visualize an
orchestration of services in a easy-to-read fashion, and
on the other hand contain enough information for the
generation of executable code. The main aim of our
transformations is the generation of comprehensible and
maintainable code for further development.

We believe that being able to model service
orchestrations in UML and generating executable code
is an important step towards an effective model-driven
development of services. We will continue to work on
modeling and transformation of other service artifacts,
in particular on modeling service interfaces and protocol
specifications as well as investigate the need for
constructs to model complex control flow patterns.

Thanks go to Alexander Knapp for fruitful

discussions on the UML4SOA profile. This research has
been partially supported by the EC project SENSORIA
(6th Framework IST 016004).

References

[1] J. Amsden, T. Gardner, C. Griffin, S. Iyengar. “Draft
UML 1.4 Profile for Automated Business Processes with a
Mapping to BPEL 1.0”, IBM, 2003, updated 27.12.05,
ibm.com/developerworks/rational/library/content/04April/
3103/3103_UMLProfileForBusinessProcesses1.1.pdf.

[2] V. Ermagan, I. Krüger. “A UML Profile for Service
Modeling”. In Proc. of Int. Conf. on Unified Modeling
Language, LNCS 4735 Springer, 360-374, 2007.

[3] N. Koch, P. Mayer, R. Heckel, L. Gönczy, C.
Montangero, “UML for Service-Oriented Systems”,
SENSORIA D1.4a, 2007, pst.ifi.lmu.de/projekte/Sensoria
/del_24/D1.4.a.pdf.

[4] K. Mantell. “From UML to BPEL”, IBM,
ibm.com/developerworks/webservices/library/ws-
UMLbpel/, 2005.

[5] F. Montesi, C. Guidi, G. Zavattaro. “Composing Services
with Jolie”. Proc. of ECOWS’07, Halle, Germany, 2007.

[6] OASIS. “Web Services Business Process Execution
Language”, Version 2.0 (WS-BPEL 2.0). docs.oasis-
open.org/wsbpel/2.0/, visited: 01-21-08.

[7] N. Russel, A.H.M. ter Hofstede, W.M.P. van der Aalst,
N. Mulyar. “Workflow Control Patterns. A Revised
View”, BPM Center Report BPM-06-22, 2006.

[8] D. Skogan, R. Grønmo, I. Solheim. “Web Service
Composition in UML”, Eighth IEEE International
Enterprise Distributed Object Computing Conference
(EDOC'04), 47-57, 2004.

[9] W3C. “Web Services Description Language”, Version
1.1, www.w3.org/TR/wsdl, visited: 01-21-08.

[10] M. Wirsing, A. Clark, S. Gilmore, M. Hölzl, A. Knapp,
N. Koch, A. Schroeder. “Semantic-Based Development of
Service-Oriented Systems”. In Proc. of FORTE06, Paris,
France, LNCS 4229, pp. 24–45. Springer, 2006.

