Safety and Response-Time Analysis of an
Automotive Accident Assistance Service

Ashok Argent-Katwala!, Allan Clark?, Howard Foster!,
Stephen Gilmore?, Philip Mayer?, and Mirco Tribastone?

! Imperial College, London, England
2 The University of Edinburgh, Scotland
3 Ludwig-Maximilians-Universitit, Munich, Germany

Abstract. In the present paper we assess both the safety properties
and the response-time profile of a subscription service which provides
medical assistance to drivers who are injured in vehicular collisions. We
use both timed and untimed process calculi cooperatively to perform the
required analysis. The formal analysis tools used are hosted on a high-
level modelling platform with support for scripting and orchestration
which enables users to build custom analysis processes from the general-
purpose analysers which are hosted as services on the platform.

1 Introduction

Service providers who sell services which are concerned with human health and
human safety have a responsibility to assess the quality of the service which they
provide in terms of both its correctness of function and its speed of response.
One way to carry out such an assessment is to construct a precise formal model
of the service and perform the analysis on the model to shed light on the behav-
iour of the service itself. Such an assessment exercises the ability to apply both
qualitative methods (such as model-checking) and quantitative methods (such as
transient analysis) in service evaluation. The service providers delivering these
critical services may not themselves have the technical skills to apply methods
such as these. Further, even if they are able to source the necessary skills from
expert users elsewhere, they may not be happy to take advantage of this because
they would then risk revealing information about their current service provision
which they might be unwilling to disclose to anyone outside their organisation.

One possible way in which the stakeholders of formal analysis methods can
contribute to alleviating this problem is by embedding their analysers in mod-
elling environments which lower the barrier to use of the methods. These en-
vironments can then be adopted and applied by the service providers in-house,
allowing them to evaluate their service provision without revealing sensitive in-
formation about their current service. The SENSORIA Development Environ-
ment (SDE) assists us in the goal of bringing state-of-the-art analysis methods
closer to the service providers who need to apply them.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 191-[205] 2008.
© Springer-Verlag Berlin Heidelberg 2008

192 A. Argent-Katwala et al.

The SDE brings together analysis tools for process calculi and allows users to
combine them using scripting. In particular the SDE includes analysis tools for
the two process calculi which we use in the present work:

— Finite State Processes (FSP), and
— Performance Evaluation Process Algebra (PEPA).

Specifically, the SDE hosts the following tools:

— the LTSA model-checker for FSP, and
— the ipclib response-time analyser for PEPA.

We describe the use of the SDE on an analysis problem which is of particular
interest to one of the industrial partners in our current research project. The
partner in question is a consultancy providing advice to a major Bavarian car
manufacturer. They have been asked to consult on a subscription service which
uses the on-board diagnostic and communication systems in high-end cars to
provide an accident assistance service. In this paper we use the SDE and other
tools to assess the accident assistance service against both safety properties
(using model-checking over labelled transition systems) and response-time prop-
erties (using transient analysis of continuous-time Markov chains).

2 Service Design

Our model of the Accident Assistance Service details the events which are the
area of responsibility of the service itself. That is, those activities which occur
between an accident report being received and the service discharging its re-
sponsibility to act on the accident report. In some cases this will lead to an
ambulance being sent, and in other cases not. Our model does not require us to
know — or allow us to predict — anything about activities which happen before
or after these events. For example, we do not estimate how often accidents occur
and we do not calculate how long ambulances take to arrive. Both of these many
be interesting to know, but our model here does not speak of them.

The activity diagram shown in Figure [Il provides a high-level view of the
events in the scenario. Events are triggered by an incoming accident report
which the service begins to process (Process Accident Data). From this incoming
report is obtained all of the available information about the status of the vehicle.
Multiple attempts are made to contact the driver (Contact Driver) and the
service must then respond (Classify Severity). In the cases when the accident has
been classified as critical medical assistance is dispatched (Dispatch Ambulance).
Events are logged in a central log for audit purposes, whether an ambulance was
dispatched or not.

The service needs to take two major decisions during its realm of responsibil-
ity. First, whether to continue to attempt to contact the driver, or assume that
they are injured. Second, to classify this accident as critical or not.

Considering the accident assistance service at a lower level of detail we note
that the service is triggered by any impact or collision which causes the car

Safety and Response-Time Analysis 193

[driver contacted ||
call == max_calls]

. | Process Accident Data " Contact Driver

[no answer && calls < max_calls]

Classify Severity

[not critical]

[critical]

Fig. 1. UML2 Activity Diagram of Accident Assistance Service

airbag to deploy. Immediately after the airbag has deployed the on-board com-
munication module transmits to the assistance service a report with as much
information as it can obtain from the car’s diagnostic system. This report in-
cludes information about the state of the car itself obtained from sensors in the
engine and the braking system. The report also specifies the speed of the car at
the moment of impact and, most importantly, the geographical location of the
car as obtained from the on-board GPS.

On receipt of such a report, the subscription service attempts to contact
the registered driver of the car by mobile telephone. If the driver answers the
telephone and confirms that they are unhurt then no further action needs to
be taken. If they instead say that they have been hurt in the accident then the
service will dispatch an ambulance to the reported location to assist them.

The third case to consider occurs when the service cannot get confirmation from
the driver that they do not need assistance. It might seem that the obvious course
of action should be to consider not getting an answer to be a critical case but
there is evidently a possibility that the service will send an ambulance when it is
not needed. That is, the driver is unhurt but did not have their mobile telephone
with them, or it had no battery charge, or they had no signal from their telephone
service provider, or many other similar reasons. Because critical services should
not be deployed without good reason, the accident assistance service would like
to reduce the number of occasions when an ambulance is dispatched in error.

The information on the car status and the speed of the car at the moment of
impact sent with the accident report become significant in the case where we have
no answer from the driver. The service needs to classify this accident as critical
or not and many factors will influence the classification of an accident. Speed at
the time of impact is a major factor, as is degree of damage to the car, but the
geographical location and the time of day also impact on the classification. The
reason for this is that the injured driver is less likely to get help from passing
motorists if the car accident happens in a remote location late at night than if
the accident happens in a heavily-populated area during the day.

194 A. Argent-Katwala et al.

In the case of no answer and car diagnostics which point to very little damage
(say, the car was stationary at the time of impact, and the engine, brakes, lights
and other critical functions seem to be functioning normally) then the service
will decide not to send an ambulance to prevent sending one when it could be
needed elsewhere.

3 Safety Analysis of the Assistance Service

In this section we discuss the safety analysis of the Accident Assistance Ser-
vice. Safety Analysis is concerned with assuring that properties of the service
behaviour are upheld and in particular, that there are no undesirable behaviour
traces exhibited given the various constraints of the service. The nature of this
service exhibits various specified conditions of progress, for example, if the driver
answers his or her cellphone within a number of attempts, then the progress is
different to that if he or she does not. Such conditions need to be examined
for behaviour consistency. For this reason, we focus on the behaviour process of
the service rather than data analysis, given the design of the service specified
in section 2l and an implementation written in some software process language.
For the purpose of our analysis, we translate the service process workflow in to
the Finite State Process (FSP) notation to concisely and formally model the
workflow states and transitions.

3.1 FSP, LTS and Behaviour Models

The FSP notation [I2] is designed to be easily machine readable, and thus pro-
vides a preferred language to specify abstract processes. FSP is a textual notation
(technically a process calculus) for concisely describing and reasoning about con-
current programs. FSP supports a range of operators to define a process model
representation.

A summary of the operators for FSP is given as follows.

Action prefix “->”: (x->P) describes a process that initially engages in the
action x and then behaves as described by the auxiliary process P;

Choice “|”: (x->P|y->Q) describes a process which initially engages in either
x or y, and whose subsequent behaviour is described by auxiliary processes
P or Q, respectively;

Recursion: the behaviour of a process may be defined in terms of itself, in
order to express repetition;

Sequential composition “;”: (P;Q) where P is a process with an END state,
describes a process that behaves as P and when it reaches the END state of P
starts behaving as the auxiliary process Q;

Parallel composition “||”: (P||Q) describes the parallel composition of
processes P and Q;

Relabelling “/”: Re-labelling is applied to a process to change the names of
action labels. The general form of re-labelling is / {newlabel/oldlabel};

Safety and Response-Time Analysis 195

The hiding, trace equivalence minimisation, and weak semantic equivalence min-
imisation operators of FSP are not used here. We omit their descriptions for
brevity.

3.2 Translation of Service Design to FSP

The Accident Assistance Service design illustrated in Figure [1 specifies a num-
ber of activity transitions linked either as a sequence or through decisions. To
translate these to the FSP notation, and a formal model, we traverse the work-
flow and build a series of FSP processes composed to build a complete process
architecture model. To begin with we start with the initial node. The initial node
specifies a transition to the Process Accident Data activity, which represents a
report from the on-board vehicle diagnostics system. Additionally at this step,
we need to determine and store a variable which holds a report status. In the
FSP (listed below), we represent these actions by creating a process (PROCES-
SACCIDENTDATA) and a sequence for the choice of status reported from the
vehicle diagnostics. The VEHDIAGCHOICE process has two options, one for a
normal status or one for a critical status. Note that we need to look ahead to
see which activity follows this to determine whether this process composition is
complete. In this case the next activity is again a simple transition.

// Diagnostics Composition
DIAGCHOICE =

(vehicle.emergsrv.diags_normal ->emergsrv.diag.write [0]->END

| vehicle.emergsrv.diags_critical ->emergsrv.diag.write[1]->END).
REQUESTDIAGS = (emergsrv.vehicle.requestdiags->END).
REQUESTDIAGSEQ = REQUESTDIAGS; DIAGCHOICE; END.

| IDIAGNOSTICS = (REQUESTDIAGSEQ).

Immediately following the Process Accident Data activity is the Contact Driver
activity. This activity is linked with two steps in the workflow. Firstly the ac-
tivity itself is linked with a decision step, to determine if either the driver was
successfully contacted or a maximum number of calls has been reached. The
composition for this therefore is the action of calling the driver, and then a
choice of either proceeding to the next step of the workflow (because the call
was successful or maximum call attempts reached) or the action is repeated.

// Call Attempts Composition
const Max 3 // no of calls before automatic dispatch
range Int 0..2 // 0 - not critical, 1 - critical, 2 - unknown

CALLATTEMPT(N=0) = CALL[N],
CALL[v:Int] = (emergsrv.driver.callphone->ANSWER([v]),
ANSWER [v:Int] =

(driver.emergsrv.noanswer ->CALL [v+1]

| driver.emergsrv.answer->ANSWEREDACTION),
ANSWEREDACTION =

(emergsrv.phone.write [0]->END

| emergsrv.phone.write[1]->END),
CALL[Max] = (emergsrv.phone.write[2]->END).

set ACTSET = {emergsrv.driver.callphone,

driver.emergsrv.noanswer, driver.emergsrv.answer}
TERMS = (ACTSET->TERMS).
| | CALLATTEMPTS = (TERMS || CALLATTEMPT(0)).

196 A. Argent-Katwala et al.

Lastly, two processes are built to represent the Classify Severity and Dispatch
Ambulance activities. In the first activity again the workflow specifies a deci-
sion point. The classification activity represents a choice of transition depending
on the status of both the accident data report and contacting the driver. To
represent this in FSP we recall the values assigned as part of the two previ-
ous compositions (Process Accident Data and Contact Driver). The choice of
process transition is represented using a conventional structured construct of
IF..THEN..ELSE. The FSP below represents the conditional operation of the
diagnostics status reported by the vehicle. A similar model is built to represent
the result of calling the driver and then these two choice models are composed.
The comparison of whether the status is critical determines if the Dispatch Am-
bulance is undertaken.

// check phone answered
QUERYPHONESTATUS = (emergsrv.phone.read[i : 0..2]->QUERYPHONESTATUS[il),
QUERYPHONESTATUS[i : 0..2] =
if (i==2) then QUERYDIAGSTATUS; END
else if (i==1) then DISPATCH; END
else LOGREPORT; END.

// check diagnostic information received
QUERYDIAGSTATUS = (emergsrv.diag.read[i : 0..1]->QUERYDIAGSTATUS[il]),
QUERYDIAGSTATUS[i : 0..1] =

if (i==1) then DISPATCH; END

else LOGREPORT; END.

A simple sequence process represents the actual Dispatch Ambulance activity,
which is triggered if the status is critical. In preparation for analysis a com-
plete architecture model — representing the sequence composition of the workflow
processes we have defined — is also summarised in the code below.

// Dispatch Ambulance
SENDAMBULANCE = (emergsrv.station.send_ambulance—>END).
| IDISPATCH = (SENDAMBULANCE) .

// Dispatch Report (Final Action)
LOG = (emergsrv.log.result->END).
| ILOGREPORT = (LOG).

// Service Main sequence

set PHONE_ALPHABET = {emergsrv.phone.{read,writel}.[0..2]}

MAINSEQ = ACCIDENT; AIRBAG; GETSTATUS; QUERYPHONESTATUS; END
+ {PHONE_ALPHABET}.

3.3 Analysis Using LTSA

The constructed FSP can be used to model the exact transition of workflow
processes through a modelling tool such as the Labelled Transition System Ana-
lyzer (LTSA) [I], which compiles an FSP model into a state machine and provides
a resulting Labelled Transition System (LTS). LTSA is made available as a com-
ponent of the SDE. The LTSA tool has an inbuilt safety check to determine
whether a specified process is deadlock free. Deadlock analysis of a model in-
volves performing an exhaustive search of the LTS for deadlock states (i.e. states

Safety and Response-Time Analysis 197

with no outgoing transitions). A default deadlock check of the service process
results in no violations being found (i.e. that there are no deadlock states in the
model).

However, we need to check properties of the service to meet the requirements
in operation. For example, that an ambulance is dispatched only when requested
by the driver or, (in the case of no answer) when the car diagnostics indicate
severe damage. We add this property to the model through a further FSP state-
ment using the keyword property and specifying that both the driver asked for
an ambulance (emergsrv.phone.read[1]) or did not answer but the diagnostic
information on the car indicated severe damage (emergsrv.diag.read[1]). The
formal statement of this property is listed below.

// FSP Property to check only critical status leads to dispatch

property PROP =
(emergsrv.phone.read[2] ->

emergsrv.diag.read[l] ->
emergsrv.station.send_ambulance -> END
| emergsrv.phone.read[1] ->
emergsrv.station.send_ambulance -> END
).
Using this property specification language we were able to apply model-checking
to uncover errors in our original model which we corrected before going on to

response time analysis of the model.

4 Response-Time Analysis of the Assistance Service

Response-time analysis considers the timed behaviour of the system under study
in the context of a particular workload and a particular sequence of activities
which must take place. It is possible to think of this as a sub-scenario with a
distinguished start activity which starts a clock running and a distinguished stop
activity which stops it. The analysis will determine the probability of completing
the work needed to take us from the start activity to the stop activity, via
any possible path through the system behaviour. This probability value can be
plotted against time to give a complete picture of the response-time distribution.
With respect to the accident assistance service we will consider the response-
time from the airbag being deployed until the assistance service logs that it has
completed its investigation and has discharged its duty to send an ambulance if
one was required (or it has determined that an ambulance was not required).

For this aspect of the work we require a timed process algebra (FSP is un-
timed). We will use Performance Evaluation Process Algebra (PEPA) [3], a
stochastically-timed Markovian process algebra. The PEPA language is sup-
ported by the Sensoria Development Environment and by formal analysis tools
on the SDE such as the PEPA Eclipse Plug-in project [4] and the ipclib tool
suite [5].

4.1 PEPA, CTMCs and Response Time

Many of the combinators of the PEPA language resemble the operators of FSP
seen in Section Bl The most significant difference is that all activities in PEPA

198 A. Argent-Katwala et al.

are timed. We provide a brief summary of the language here, referring the reader
to [3] for the full formal details.

Prefix: (a,r).P describes a process which will first perform the activity « at
an exponentially-distributed rate r and then evolve to become P.

Choice: («a,r).P+(8,s).Q describes a process which either performs activity a
at rate r and evolves to become P, or it performs activity 0 at rate s and
evolves to become (. The two activities @ and are simultaneously enabled
and whichever completes first will determine the continuation of the process.

Cooperation: In P Dﬁﬁ Q@ the processes P and @) cooperate over all of the ac-
tivities in the set £, meaning that they must synchronise on these activities.
Activities not in £ are performed independently, without any synchronisa-
tion. We write P || Q if £ is empty.

Hiding: The process P/L is identical to P except that any uses of the activities
in the set £ have been renamed to 7 (the silent activity) and no other
process may cooperate with these activities. The duration of the activity is
unchanged so that, for example, (3, s) becomes (7, s).

Because an exponentially-distributed random variable is associated with the rate
of each activity a PEPA model gives rise to a stochastic process, specifically a
continuous-time Markov chain (CTMC). The generator matrix, @, of this CTMC
is “uniformised” with: P = Q/q + I where ¢ > max; |Q;;| and I is the identity
matrix. This process transforms a CTMC into one in which all states have the
same mean holding time 1/q. The required computation for the response-time
distribution is to compute the probability of reaching a set of designated tar-
get states from a set of designated source states. This rests on two key sub-
computations. First, the time to complete n hops (n = 1,2,3,...), which is an
Erlang distribution with parameters n and ¢. Second, the probability that the
transition between source and target states occurs in exactly n hops. After gen-
erating the state-space of the model to derive the generator matrix of the CTMC
the required response-time distribution can be computed by uniformisation [6][7].

4.2 Analysis Using ipclib

Because of the strong similarity between FSP and PEPA translating our exist-
ing FSP model into the PEPA language was straightforward. We checked the
consistency of the PEPA model against the FSP model by translating the FSP
logical propositions into PEPA stochastic probes [8] and confirmed that (the
translations of) these propositions held for (the translation of) the model.

We analysed the PEPA model with the ipclib [5] tool suite. We investigated
the response time of the model across a range of feasible rates for each of the
activities performed. Each of the rates can vary independently of the others and
to cover all of the cases being considered we generated more than 300 experi-
mental runs of the ipclib tools with different parameter values. We performed
sensitivity analysis of response-time profiles for the possible parameter values.

We varied the three rates corresponding to the rates at which each subsequent
call attempt is ended either by the customer answering the phone or a timeout.

Safety and Response-Time Analysis 199

08 08

06 06
04 Pr 04

02 02

cooooo0o0
oIRERGEI8E-

Fig. 2. Response-time graphs for the accident assistance service

These are the rates r_wait_answer_1, r_wait_-answer_2 and r_wait_answer_3.
The analysis tool then produces a group of sensitivity-analysis graphs for each
of the three rates. Each graph in the first group plots the cumulative distribution
function of completing the passage against the varying rate of r_wait_answer_1
while the other two rates are kept constant. There is one such graph in the
first group for all possible combinations of the two rates r_wait_answer_2 and
rowait_answer_-3. Each graph in group one relates the effect that varying the
rate r_wait_answer_1l will have on the completion of the passage. There must
be one for every combination of the other two rates because the effect that
r_wait_answer_l has on the outcome depends upon the values of the other two
rates.

Figure 2l shows two graphs in the first group of sensitivity graphs. In the graph
on the left rates r_wait_answer_2 and r_wait_answer_3 are at low values while
in the graph on the right the two rates are held at high values. We see that in
either case the rate of r_wait_answer_1 does have an effect on the probability of
completion. We can see this because each line in the graph is different resulting
in a ‘warped’ surface plot. The graph on the left is less warped than the graph
on the right. This suggests that varying the rate of r_wait_answer_1 has more
effect whenever the two other rates are at high values. This is because when those
rates are high, the bottleneck in completing the passage becomes the activities
performed at rate r_wait_answer_1. When the other two rates are lower they
become the bottleneck and indeed we see that by time ¢t = 15 there is not yet a
probability of approximately 1.

Figure [B] shows two graphs in the third group of sensitivity graphs. These
look similar to the graphs in Figure[2l but we see that they are less warped. This
tells us that r_wait_answer_3 has less effect on the probability of completing the
passage. This confirms our intuition because the activities which occur at rate
r_wait_answer_3 are not always performed at all in a successful completion of
the passage. In some cases the driver will answer the phone call at the first or
second attempt. The graph on the left shows the sensitivity of r_wait_answer_3
when the rates r_wait_answer_1 and r_wait_answer_2 are held at low values
and in the graph on the right those rates are held at high values. As before we
see that the varied rate has more effect when the unvaried rates are held high.
Again this confirms our intuition; all of the rates measured here are performed
along the passage and increasing any one of them has a positive effect on the

200 A. Argent-Katwala et al.

08
06
Pr 04

02

Fig. 3. Response-time graphs for the accident assistance service

probability of completion, therefore we expect that when one rate is the slowest
rate varying that rate will achieve more of a performance gain than varying
the already faster rates. Overall from these sensitivity-analysis graphs we can
surmise that if one wishes to increase the performance then it is of most benefit
to increase the rate of the first rate (r-wait_answer_1) before the others and the
second rate (r_wait_answer_2) before the final rate (r_wait_answer_3). However
if any of the rates are significantly slower than the others then that is the rate
which should be increased even if it is r_wait_answer_3.

We also obtain summary information about all of the experiments performed.
The graph (Figure [left) shows best case, worst case, median and the 20-80
percentiles over all response-time graphs. From this we can see that we need to
wait until time 80 to be over 50% confident that the passage will have completed
regardless of the configuration. However at this time the median is above 95%
meaning that in half of the configurations we are very confident that the passage
will have completed. Also at this time removing the worst performing 10% of
the configurations gives us over 80% confidence of completing the passage. Also
from this graph we can see that at time 120 the median begins to approximate
100% confidence that the passage has completed (meaning that in half of the
configurations we can be sure that the passage has completed).

Probability of completion at a time bound can be plotted across the more
than 300 experiments which we performed, leading to a different summary
(Figure M right) from which we can make conclusions such as “the probabil-
ity of service being completed by ¢t = 195 seconds is at least 90%, even if all
calls to the driver take the longest time which has been allocated for them”. We
can also see from both styles of summary graphs that the difference between the
best and lowest performing configurations starts off small at low time bounds
where there is little probability of completing the passage regardless of the con-
figuration. As the time increases the gap grows wider until at some point the
worst performing configuration begins to close the gap until eventually there is
a near 100% probability of completing the passage for all configurations. For the
modeller if this peak in the difference occurs at an important time the config-
uration of the real system is very important. On the other hand the modeller
may be given more confidence if this peak occurs before a time bound in which
(for whatever reason) they are particularly interested.

Safety and Response-Time Analysis 201

J T ITTTTTT

0.6 | time =15.0 ——
time = 30.0
time = 45.0
time = 60.0
time = 75.0
time = 90.0
V time = 105.0

7 time =120.0 -~ -~
L 4 L v] time=135.0

02 02 -~ time = 150.0 ——
é J time = 165.0
- time = 180.0
time = 195.0

Probability
Probability

0.4

0

. 0
0 20 40 60 80 100 120 140 160 180 0 50 100 150 200 250 300
Time Instance Number

Fig. 4. Summary information for all response-time calculations

5 SENSORIA Development Environment

The previous sections have described qualitative and quantitative methods with
corresponding tools for performing safety and response-time analysis of services.
In order to make these tools available to software engineers in the field, they
have been integrated into the SENSORIA Development Environment (SDE).
The SDE is a modelling, simulation and analysis platform which supports the
integrated evaluation of both functional and non-functional aspects of systems
and services. Based on Eclipse, the SDE may also be integrated with various
other tools available for this platform.

5.1 SDE Features

Being based the OSGi platform underlying Eclipse, the SDE is itself built in
a service-oriented way. Upon installation, tools register themselves in the SDE
core, thereby offering their functionality to all other installed tools, including
orchestrators. Through various integrated tools, the SDE currently offers func-
tionality which falls into these major categories:

— Modelling functionality. This includes graphical editors for familiar mod-
elling languages such as UML, as supported by industry-standard tools such
as the Rational Software Architect, which allow for intuitive modelling on a
high level of abstraction. However, there are also text- and tree-based editors
for process calculi.

— Formal analysis functionality. The SDE offers model checking and nu-
merical solvers for stochastic methods based on process calculi code defined
by the user or generated by model transformation.

The tools presented in this paper offer functionality which falls into the second
category. In particular, the PEPA tools including the SRMC extensions [4] as
well as LTSA and WS-Engineer have been made available as services in the SDE.
They offer the follow functionality:

202 A. Argent-Katwala et al.

— Simulators and Single-Step Navigators which allow the user to inves-
tigate a model and look for modelling errors in the input and unexpected
behaviour in execution related to liveness or reachability problems.

— Model-Checkers which check consistency between the model and an inter-
esting property. In case of errors, a (graphical) violation trace is generated.

— Steady-State and Transient Analysers for performance analysis. These
analysers provide simulation traces showing variation in the states of the
model components over time, and utilisation charts, cumulative distribu-
tion plots and other visualisations which represent graphically the numerical
results computed.

Through scripting, these analyses can be combined, as will be outlined in the
next section.

5.2 Orchestrating Tools with the SDE

During software development and analysis of software systems, it is often desir-
able to run several analyses as a suite, perhaps passing input from one tool to
the other, and gathering and presenting the output in a single place — in other
words, orchestrating tools to perform as a whole.

To enable such orchestrations, the SDE offers the ability to compose installed
tools by means of arbitrary orchestration mechanisms. In particular, we offer the
ability to script such orchestrations by means of JavaScript. An orchestration
may be written as a set of annotated JavaScript functions, thus in effect creating
a new service orchestrating the referenced tools.

As an example, we consider the orchestration of the tools for the methods pre-
sented in the previous sections to perform analysis on the Automotive Accident

function checkUML(umlSource) {

\ 4

UML Model // transform to PEPA

uml2pepa = sCore.findToolById("umlZpepa’);
UML2FSP
transformer

pepaModel = uml2pepa.transform(umlSource);

// perform analysis with PEPA tool

pepa = sCore.findToolById(pepa’);

markovChain = pepa.getMarkovChain (pepaModel) ;
distribution = pepa.getSteadyState (markovChain);
throughput = pepa.getThroughput (markovChain) ;

UML2SRMC
transformer

// back annotation

uml2pepa.reflect (unlSource, distribution, throughput);
SRMC code FSP code // transform to LTSA FSP (input to WS-Engineer)
uml2ltsa = sCore.findToolById(uml2ltsa’);
‘ fspModel = uml2ltsa.uml2fsp(umlSource);

// perform analysis with WS-Engineer
LTSA wse = sCore.findToolById(g
Model Checker result = wse.analyse(fspModel);

PEPA/SRMC
Analyzer

if (result.hasErrors())
return ltsa.mscFromLTSATrace (result.getTrace());

Analysis (Graphical) return umlSource;
Results violation traces

Fig. 5. Orchestration of the four tools together with JavaScript orchestration code

Safety and Response-Time Analysis 203

Assistance Service. As the orchestration is intended to be used by developers
not too familiar with formal methods, we will start with a UML model and, at
the end, provide back-annotated UML for showing results of the quantitative
analysis with PEPA/SRMC as well as a (graphical) violation trace in case of
errors during the qualitative analysis with LTSA.

The JavaScript code for this orchestration is concise (Fig. Bl right). In the
beginning, we retrieve the tools by unique identifiers, invoke the functions in-
volved, and finally return the combined output to the user. Within the SDE,
a generic wizard handles this call such that users are able to select the input
model graphically using a file open wizard, and also get the results opened in
appropriate editors inside the Eclipse workbench or externally. Thus, it is easy
for developers to employ such orchestrations as part of their work.

6 Related Work

We have considered performance aspects of the accident assistance service previ-
ously [9]. Our work in that earlier paper did not incorporate any model-checking
aspects and dealt only with a simpler version of the accident assistance service
without priority classifications.

Other authors have applied model-checking to analyse automotive safety ser-
vices. In [I0] the authors use high-level UML specification that makes use of
domain-specific extensions The on-the-fly model checker UMC [II] is subse-
quently used to verify a set of correctness properties formalized in the action-
and state-based temporal logic UCTL. Subsequently to the authors writing this
paper the UMC model-checker has been made available as a service on the SDE,
opening the possibility of conjoined use with the methods deployed in this paper.

In [12] an on-road assistance scenario is considered where the authors treat the
process of obtaining assistance for a car subsequent to a breakdown (which is not
necessarily a life-threatening accident). The authors formalise the problem in the
COWS process calculus and give a formal treatment of fault and compensation
handling.

Formal model-checking of service compositions has been undertaken mostly
on their implementation, rather than the design of the service itself. For example,
as a result of new standards to define and execute service compositions (such as
the Web Services Business Process Execution Language), model-checking these
has included translation to Finite State Machines, graphs and simulation models.
We have already considered analysing these models in [I3], whilst more recently
in [I4] using UML Deployment Models to analyse service compositions with
deployment constraints. There has also been some similiar work on UML to
Finite State Machines, particularly Activity Diagrams in [I5]. These works also
define a formal semantics for UML Activity Diagrams, but do so with a differing
focus of aligning activities as two or more distributed processes and structure of
roles within activities.

204 A. Argent-Katwala et al.
7 Conclusions

In this paper we presented a co-ordinated analysis of safety properties and the
response-time profile of an automotive accident assistance scenario. We used
the untimed process calculus FSP to express our model of the scenario and
model-checked critical properties using the WS-Engineer tool in the SDE. We
added rate information to convert the FSP model into one in the stochastically-
timed process calculus PEPA. We next converted the FSP logical properties into
stochastic probes on the PEPA model. We then used the PEPA Eclipse Plug-in
to check that the PEPA model which was obtained by translation from FSP
respected the stochastic probes which were obtained by translation from the
FSP logic. The PEPA Eclipse Plug-in confirmed that this was the case. We then
used the ipclib tool suite to perform many response-time evaluations leading
to the quantitative results seen.

Our overarching goal in this work has been to make the outputs from the
formal analysis tools open to inspection by users who are not experts in process
calculi. To this end, reports are often returned in a graphical form such as a
message sequence chart or a graph. Our next goal is to streamline the mod-
elling process by allowing users to express their initial model in a language with
widespread acceptance, such as UML. We have made some progress on this, and
have a scripting infrastructure in place to allow such conversions to be performed
automatically but more remains to be done in this area.

Acknowledgements. The authors are supported by the EU FET-IST Global
Computing 2 project SENSORIA (“Software Engineering for Service-Oriented
Overlay Computers” (IST-3-016004-IP-09)) and the EPSRC PerformDB project
(EP/D054087/1). The ipc/Hydra tool chain has been developed in co-operation
with Bradley, Knottenbelt and Dingle of Imperial College, London.

References

1. Magee, J., Kramer, J.: Concurrency - State Models and Java Programs, 2nd edn.
John Wiley, Chichester (2006)

2. Magee, J., Kramer, J., Giannakopoulou, D.: Analysing the behaviour of distributed
software architectures: a case study. In: 5th IEEE Workshop on Future Trends of
Distributed Computing Systems, Tunisia (1997)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

4. Tribastone, M.: The PEPA Plug-in Project. In: Harchol-Balter, M., Kwiatkowska,
M., Telek, M. (eds.) Proceedings of the 4th International Conference on the Quan-
titative Evaluation of SysTems (QEST), pp. 53-54. IEEE Computer Society Press,
Los Alamitos (2007)

5. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quanti-
tative Evaluation of SysTems (QEST), pp. 55-56. IEEE Computer Society Press,
Los Alamitos (2007)

10.

11.

12.

13.

14.

15.

Safety and Response-Time Analysis 205

Grassmann, W.: Transient solutions in Markovian queueing systems. Computers
and Operations Research 4, 47-53 (1977)

Gross, D., Miller, D.: The randomization technique as a modelling tool and solution
procedure for transient Markov processes. Operations Research 32, 343-361 (1984)
Argent-Katwala, A., Bradley, J., Dingle, N.: Expressing performance requirements
using regular expressions to specify stochastic probes over process algebra mod-
els. In: Proceedings of the Fourth International Workshop on Software and Per-
formance, Redwood Shores, California, USA, pp. 49-58. ACM Press, New York
(2004)

Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, pp. 172-185
(2006)

ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: Proceedings of the 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, pp.
613-622. ACM Press, New York (2008)

UMC model checker (2008), http://fmt.isti.cnr.it/umc/

Lapadula, A., Pugliese, R., Tiezzi, F.: Specifying and analysing SOC applications
with COWS. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 701-720. Springer, Heidelberg (2008)
Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based Verification of Web
Service Compositions. In: Proc. of the 18th IEEE Int. Conference on Automated
Software Engineering, pp. 152-161. IEEE Computer Society Press, Los Alamitos
(2003)

Foster, H., Emmerich, W., Magee, J., Kramer, J., Rosenblum, D., Uchitel, S.:
Model Checking Service Compositions under Resource Constraints. In: The Eu-
ropean Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2007) (2007)

Badica, C., Badica, A., Litoiu, V.: Role activity diagrams as finite state processes.
In: Second International Symposium on Parallel and Distributed Computing (2003)

http://fmt.isti.cnr.it/umc/

	Introduction
	Service Design
	Safety Analysis of the Assistance Service
	FSP, LTS and Behaviour Models
	Translation of Service Design to FSP
	Analysis Using LTSA

	Response-Time Analysis of the Assistance Service
	PEPA, CTMCs and Response Time
	Analysis Using ipclib

	SENSORIA Development Environment
	SDE Features
	Orchestrating Tools with the SDE

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

