
Sensoria
016004
Software Engineering for Service-Oriented Overlay Computers

www.sensoria-ist.eu

D1.4.b

UML for Service-Oriented Systems (second version)

Lead contractor for deliverable: LMU
Author(s): Howard Foster (LSS) and László Gönczy (BUTE) and Nora Koch (LMU,CIR) and Philip
Mayer (LMU) and Carlo Montangero (PISA) and Dániel Varró (BUTE)

Due date of deliverable: February 28, 2010
Actual submission date: January 20, 2010
Revision: Draft
Dissemination level: PU

Contract start date: September 1, 2005 Duration: 48 months
Project coordinator: LMU
Partners: LMU, UNITN, ULEICES, UWARSAW, DTU, PISA, DSIUF,

UNIBO, ISTI, FFCUL, UEDIN, ATX, TILab, FAST, BUTE,
S&N, LSS-Imperial, LSS-UCL, MIP, ATXT, CIR

Integrated Project funded by the
European Community under the
“Information Society Technologies”
Programme (2002—2006)

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Executive Summary

A trend in software engineering is towards greater model-driven development. Models are used to docu-
ment requirements, design results, and analysis in early phases of the development process. However, the
aim of modeling is very often more ambitious as models are used for automatic generation in so-called
model-driven engineering approaches. The relevance of models leads to the need of both, high-level
domain specific modeling languages (DSML), and metamodels which are the basis for the definition of
model transformations and code generation.

For the service-oriented computing domain we developed within the SENSORIA project a DSML
for building and transforming SOA models. This DSML is defined as a family of UML profiles, which
complement the SoaML profile for the specification of SOAs structure. In this deliverable we describe
our family of profiles which focus on orchestration of services, service-level agreements, non-functional
properties of services, implementation of service modes and service deployment.

Contents

1 Introduction 3

2 Case Study 4

3 Modeling Structural Aspects of SOAs 4

4 Service Orchestrations 5
4.1 Metamodel . 6
4.2 Example . 6
4.3 Model-Driven Development Support . 8

5 Non-Functional Properties of Services 10
5.1 Metamodel . 10
5.2 Examples . 10
5.3 Model Driven Development Support . 11

6 Business Policies Support 12
6.1 Metamodel . 12
6.2 Examples . 13

7 Service Modes for Adaptive Service Brokering 14
7.1 Metamodel . 15
7.2 Examples . 16

8 Service Deployment 17
8.1 Metamodel . 18
8.2 Examples . 18

9 Related Work 19

10 Conclusions 20

016004 (Sensoria) 2

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

1 Introduction

A range of domain-specific languages and standards are available for engineering service-oriented ar-
chitectures (SOAs) such as Web Services Description Language (WSDL), Web Services Business Pro-
cess Execution Language (WS-BPEL), Web Services Choreography Description Language (WS-CDL),
WS-Policy and WS-Security. These languages deal with the various aspects of SOA systems, such as
service descriptions, orchestrations, policies and non-functional properties of services at a specifica-
tion level. However, more systematic and model-driven approaches are needed for the development of
service-oriented software. Models of SOAs are required for providing a complete – whenever possible a
graphical – picture of the system represented at a high level of abstraction. Achieving the properties of
service-oriented systems mentioned above requires then model elements that ease the understanding of
the individual artefacts of the system, and their integration.

Within the SENSORIA project, we have created ways of modeling these different aspects with the
help of the Unified Modeling Language (UML)[OMG09b]. The UML is accepted as lingua franca in
the development of software systems. It is the most mature language used for modeling. However,
plain UML is not expressive enough for the specification of structural and behavioral aspects of services.
Service modeling introduces a new set of key distinguishing concepts, for example partner services,
message passing among requester and provider of services, compensation of long-running transactions,
modes, and policies associated to services. Without specific support for those concepts in the modeling
language, diagrams quickly get overloaded with technical constructs, degrading their readability.

Several attempts have been made to add service functionality to the UML. Most notably, SoaML
[OMG09a] is an upcoming standard UML profile of the OMG for specification of service-oriented ar-
chitectures, which does only cover structural aspects. Our own contribution to the field of UML ser-
vice modeling complements SoaML, and consists in introducing more service-specific model elements
mainly for the behavioral aspects of services-oriented software. In a first step, metamodels are defined
as a conservative extension of the UML metamodel, i.e. they do not imply any adjustment in the UML
metamodel. In a second step, UML profiles are created for these metamodels using the UML extension
mechanisms provided by mapping stereotypes to the metaclasses. The result is the SENSORIA family of
UML profiles for the development of SOAs.

The use of the UML for modeling has many advantages when compared to the use of proprietary
modeling techniques. These advantages are (1) to be able to use existing CASE tool support, which is
provided by commercial and open source tools; (2) to avoid the definition from scratch of a new modeling
language, which would require an own project to detail their syntax, semantics and provide user-friendly
tool support. These metamodels and the corresponding UML profiles constitute the basis for model
transformations and code generation defining a model-driven development process. In particular, the
MDD4SOA (Model Driven Development for SOA) transformers – also developed within the scope of
the SENSORIA project – are model transformations implemented as Eclipse plug-ins. They automati-
cally transform service orchestrations specified with our UML4SOA profile to executable code, such as
BPEL/WSDL, Java and Jolie.

In the following sections, we will discuss the individual UML extensions which form our SENSO-
RIA family of profiles for SOA development and the SoaML profile (section 3), which are jointly used
to model the different aspects of service-oriented software. The SENSORIA family of profiles com-
prise UML4SOA, a profile for service orchestration (section 4), for non-functional properties of services
(section 5), business policies (section 6), for implementation modes of SOAs (section 7), and service
deployment (section 8). These UML profiles can be used separately or in combination, depending on
the software requirements and the decisions of the service engineer. The running example belongs to the
case study from the automotive domain, which is detailed in section 2. Finally, in section 9 we present
some related work and conclude in section 10.

The results presented in this deliverable are closely related to the deliverable D1.4a [KMH+07] which
presented the first version of the “UML for Service-Oriented Systems” and the theme-oriented deliver-
able Th04.b [GV+08] that describes our methodologies for model-driven development and deployment.

016004 (Sensoria) 3

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

2 Case Study

The SENSORIA family of profiles that are presented in the following sections are illustrated by models
of the On Road Assistance scenario of the automotive case study [KB07, XK09]. In this scenario, the
diagnostic system reports a failure in the car engine, for example, the vehicle’s oil lamp reports a low
oil level. This triggers the in-vehicle diagnostic system to perform an analysis of the sensor values. The
diagnostic system reports e.g. a problem with the pressure in one cylinder head, and therefore the driver
will not be able to reach the planned destination. The diagnostic system sends a message for starting the
assistance system, which orchestrates a set of services.

Based on availability and the driver’s preferences, the service discovery system identifies and selects
the appropriate services in the area: repair shops (garage) and rental car stations. The selection of services
takes into account personalized policies and preferences of the driver to find these ”best services”. We
assume that the owner of the car has to deposit a security payment before being able to order services. In
order to keep the scenario simple, we limit the involved services, but they could be easily extended e.g.
to identify as well a towing service, providing the GPS data of the stranded vehicle in case the vehicle
is no longer drivable. In such a case, the driver makes an appointment with the towing service, and the
vehicle will be towed to the shop.

The On Road Assistance scenario is complemented with the Emergency scenario [KB07] that is
needed when the damaged car blocks the route and a convoy behaviour is required from other cars. It
is used to illustrate the reconfiguration issues of a service-oriented system. In case of an emergency, the
vehicles that are driven in a default mode are reconfigured to be driven in a convoy mode guided by the
Highway Emergency System. The master vehicle is then followed by the other vehicles of the convoy.
In the Emergency scenario the car navigation system is able to react to events which cause the switching
between the modes specified in the different architecture configurations.

3 Modeling Structural Aspects of SOAs

The basic structure of a software system is the ground layer on which other specifications are based
– this holds true not only for traditional architectures, but also for the SOA-based systems we have
considered in SENSORIA. Although the UML does include mechanisms for modeling structural aspects
of software, the specific requirements of SOA systems – for example, the central concept of a service
and the separation of requested and provided services – cannot be expressed in a concise way, as services
and service providers are not first level citizens of the UML.

We therefore need an extension of the UML to be able to express these ideas. In SENSORIA, we have
chosen to use the existing profile SoaML, which is currently in a beta phase and on its way to becoming
an OMG standard. We feel that we can adequately express our ideas of structural aspects of services in
SoaML, and have therefore sought to integrate our own specific profiles presented in later sections with
SoaML.

In this section, we introduce some of the basic concepts specified in SoaML which we need for
modeling our case study and as a basis for defining our profiles. For the complete description, please
refer to the SoaML specification [OMG09a].

Structural service modeling employs the basic UML mechanisms for modeling composite structures,
enhanced with stereotypes from the SoaML profile – �participant�, �servicePoint�, �requestPoint�,
�serviceInterface� and �messageType� (listed in Table 1). The basic unit for implementing service
functionality is a service participant, modeled as a class with the stereotype �participant�. A participant
may provide or request services through ports, which are stereotyped with �requestPoint� or �ser-
vicePoint�, respectively. Each port has a type, which is a �serviceInterface� implementing or using
operations as defined in a standard UML interface definition.

As an example for using these stereotypes, we present the structural diagram for the scenario intro-
duced in the previous section (see Fig. 1). As can be seen from the figure, the central orchestration of

016004 (Sensoria) 4

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Table 1: SoaML metaclasses and stereotypes
Metaclass Stereotype UML Metaclass Description
Participant �participant� Class Represents some (possibly concrete) entity or component that

provides and/or consumes services
ServicePoint �servicePoint� Port Is the offer of a service by one participant to others using well

defined terms, conditions and interfaces. It defines the con-
nection point through which a participant provides a service to
clients

RequestPoint �requestPoint� Port Models the use of a service by a participant and defines the
connection point through which a participant makes requests
and uses or consumes services

ServiceInterface �serviceInterface� Class Is the type of a �servicePoint� or �requestPoint�,
specifying provided and required operations.

MessageType �messageType� DataType, Class Is the specification of information exchanged between service
requesters and providers

the case study – i.e., the component which coordinates the actions of all the services – is modeled as
a �participant�. The OnRoadAssistant participant has seven ports, six of which are �RequestPoint�s,
indicating that a certain service is requested. The last port is a �ServicePoint�, indicating that a certain
service is provided.

As mentioned above, each �RequestPoint� and �ServicePoint� is typed with a �ServiceInter-
face� which defines, though interface realizations and usage assocations, the operations required or
provided at the given port. In our case, the orchestration provides, through the �ServiceInterface� Cli-
entInterface, the operation startAssistant to clients. In the other direction, it requires the operation se-
lectBestGarage from another service, which is indicated through the �ServiceInterface� SelectBestIn-
terface which is the type of the �RequestPoint� selectBestGarage.

With the basic structure of service-based systems and our case study specified using SoaML, we can
move on to define profiles for additional aspects of SOA systems.

Figure 1: SoaML structural diagram of the on road assistance scenario

4 Service Orchestrations

A key aspect of service-orientation is the ability to compose existing services, i.e. creating a description
of the interaction of several services, which has come to be known as an orchestration. An orchestration

016004 (Sensoria) 5

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

is a behavioral specification of a service component, or �Participant� in SoaML. As with structural as-
pects, the UML does contain mechanisms for specifying behavior – for example, as activity or sequence
diagrams – but does not contain specific support for constructs used in service orchestrations such as
message passing, compensation, event handling, and the combination of these.

To enable developers to model service orchestration behavior in an easy and concise way, we have
created UML4SOA, a profile for UML which defines a high-level domain specific modeling language
(DSML) for behavioral service specifications. UML4SOA was first introduced in [MSK08a] and de-
scribed in more detail in [MSK08b]. It has been used as the central language for the specification of the
SENSORIA case studies and enjoys the support of several formalisms and formal tools.

4.1 Metamodel

An excerpt of the UML4SOA metamodel is shown in Fig. 2, which includes the main concepts of our
DSML and the relationships among these concepts. For example, we introduce elements such as Ser-
viceSendAction for modeling the asynchronous invocation of a service, i.e. without waiting for a reply
from the external partner. Another specific concept of the service-oriented domain is the compensation of
long-running transactions. Therefore we define model elements such as CompensationAction and Com-
pensationEdge. For each non-abstract class of the metamodel we defined a stereotype with the objective
of producing semantically enriched and increased readable models of service-oriented systems, e.g. a
stereotype �sendAction� for the ServiceSendAction metaclass, and a stereotype �compensate� for the
CompensateAction metaclass. Table 2 provides an overview of the elements of the metamodel, the stereo-
types that are defined for these metamodel elements (they comprise the profile UML4SOA), the UML
metaclasses they extend, and a brief description. For further details on UML4SOA, including the full
metamodel, the reader is referred to [MKS09].

UML4SOA proposes the use of UML activity diagrams for modeling service behavior, in particular
for modeling orchestrations which coordinate other services. We assume that business modelers are most
familiar with this kind of notation to show dynamic behavior of business workflows. An UML4SOA
�ServiceActivity�, as noted above, can be directly attached as the behavior of a �Participant�.

4.2 Example

As an example for modeling a service-oriented system in UML4SOA, we show the implementation of
the OnRoadAssistance process defined in Fig. 1.

The process On Road Assistance is modeled as a UML4SOA orchestration (see Fig. 3) . It illustrates
how the assistance process interacts with its client and its partners through ports. It starts with a receipt
(�receive�) of the call startAssistant through the client port, receiving the request to start the assistance.
Note that the initial call to startAssistant starts the complete activity – a convention we chose to make the
workflow more explicit. Furthermore, note that the port is given in the �lnk� pin, while the operation is
denoted in the main body of the action.

Once the initial request has been received, the process goes on to interact with partner services. The
process first charges the credit card of the user to ensure that payment is available for later actions.
This is done with the help of a �send&receive� action, invoking the operation �chargeCredit� on the
service attached to the �RequestPoint� creditChargeService. The �send&receive� action also uses a
�snd� pin for denoting the information to be sent (the variable userData, in this case) and the variable in
which the return information will be stored (creditChargeData, defined in the �receive� pin). A similar
call is placed to retrieve the position of car using the locationService port.

Once this initial setup phase has completed, the process enters the findAssistance service activity.
Here, it simultaneously interacts with two external services available through the findGaragesService
and findRentalCarStationsService ports. If the process finds both a garage and a rental car station, it
continues to retrieve the nearest one. If it is not able to find at least one garage and one rental car station,
an exception is thrown.

016004 (Sensoria) 6

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Table 2: UML4SOA metaclasses and stereotypes
Metaclass Stereotype UML Metaclass Description
ServiceActivity Node �serviceActivity� Activity, StructuredActivi-

tyNode
Represents a special activity for service behavior or
a grouping element for service-related actions

ServiceSendAction �send� CallOperation-Action Is an action that invokes an operation of a target ser-
vice asynchronously, i.e. without waiting for a re-
ply. The argument values are data to be transmitted
as parameters of the operation call. There is no re-
turn value

ServiceReceiveAction �receive� AcceptCall-Action Is an accept call action representing the receipt of an
operation call from an external partner. No answer
is given to the external partner

ServiceSend&Receive �send&receive� CallOperation-Action Is a shorthand for a sequential order of send and re-
ceive actions

ServiceReplyAction �reply� ReplyAction Is an action that accepts a return value and a value
containing return information produced by a previ-
ous ServiceReceiveAction action

CompensationEdge �compensation� ActivityEdge Is an edge which connects an orchestration element
to be compensated with the one specifying a com-
pensation. It is used to associate compensation han-
dlers to activities and scopes

EventEdge �event� ActivityEdge Is an edge connecting event handlers with an orches-
tration element during which the event may occur.
The event handler attached must contain a receive
or a timed event at the beginning.

CompensateAction �compensate� Action Triggers the execution of the compensation defined
for a certain named scope or activity (can only be
inserted in compensation or exception handlers)

CompensateAllAction �compensateAll� Action Triggers compensation of all nested scopes from the
scope attached to the current compensation or ex-
ception handler. The nested scopes are compensated
in reverse order of completion.

LinkPin �lnk� InputPin Holds a reference to the partner service by indicat-
ing the corresponding service point or request point
involved in the interaction

SendPin �snd� InputPin Is used in send actions to denote the data to be sent
to an external service

ReceivePin �rcv� OutputPin Is used in receive actions to denote the data to be
received from an external service

016004 (Sensoria) 7

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Figure 2: Excerpt of the UML4SOA metamodel (includes some highlighted UML metaclasses)

Note that there is a standard UML exception handler attached to the service activity. Inside the
exception handler, the process invokes a �compensateAll� action. The meaning of this action is to
undo previously and successfully completed work. In this case, the process refers of course to the
credit card charge. To be able to undo this operation, a compensation handler is attached to that action,
which consists of an action canceling the charge with another service call to the service identified by the
CreditChargeInterface port.

As can be seen from Fig. 3, the behavioral specification of this process is concise and very readable.
The specification also directly uses elements defined in the structural diagram in Fig. 1, thus exploiting
the information defined there, not repeating it unnecessarily.

4.3 Model-Driven Development Support

UML4SOA specifications can be used for more than just modeling to understand the semantics of a
system. With the MDD4SOA (Model Driven Development for SOA) transformers, UML4SOA orches-
trations can be automatically transformed to executable code in BPEL/WSDL, Java, and Jolie by using
model transformations.

Also, UML4SOA models enjoy formal methods support – the SENSORIA project includes tools and
methods for checking qualitative and quantitative properties of orchestrations, as well as checking proto-
col compliance of an orchestration. We refer the interested reader to other chapters of this book for more
information.

016004 (Sensoria) 8

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Academic Use Only

<<serviceActivity>>
Main

<<serviceActivity>>
findAssistance

<<send&receive>>
selectBestRentCarStation

rentalCarList

rentalCarStationselectRentalCarService

<<send&receive>>
findGarages

carLocation

garageList

f indGaragesService <<send&receive>>
findRentalCarStations

carLocation

rentalCarListf indRentalCarStationsService

<<send&receive>>
selectBestGarage

garageList

garage

selectGarageService

<<raiseException>>
noAssistancecancel

<<serviceActivity>>
cancelation

<<send>>
cancelCreditCharge

creditChargeData

creditChargeService

<<serviceActivity>>

<<send&receive>>
chargeCredit

creditChargeData

userData creditChargeService

<<send&receive>>
getPosition

carLocation

userData

locationService

<<serviceActivity>>
 : NoAssistance

cancel

<<receive>>
startAssistant() client

 [else]

 [garageList.size == 0 or rentalCarList.size == 0]

<<compensation>>

Figure 3: UML4SOA activity diagram showing the OnRoadAssistance participant

016004 (Sensoria) 9

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Figure 4: Metamodel of non-functional extensions (includes some highlighted SoaML metaclasses

5 Non-Functional Properties of Services

Non-functional extensions of UML4SOA aim to provide the modeling of arbitrary “quality of service”
properties defined for a particular given client-server pair.

Since in real service configurations, service properties can vary for different classes of clients, we
follow a contract-based approach, where non-functional properties of services are defined between two
participant components, namely, the service provider and the service requester. These contracts are
modeled by �nfContracts�. Different non-functional aspects (performance, security, etc.) are modeled
in corresponding �nfCharacteristics� which group different properties in �nfDimensions� (where a
�runTimeValue� is associated to each dimension). The reason for creating separate classes for these
instead of storing in properties is to correlate real SLAs where most parameters are typically bound to a
range of allowed values. Moreover, concepts like average values, deviation, etc. need to be modeled in a
uniform way.

During a negotiation process, participants create an agreed contract of the provider and requester.
Finally, properties of services need to be monitored runtime (modeled as �monitor� either by the partic-
ipating parties or by involving a separate entity.

5.1 Metamodel

A metamodel of UML4SOA-NFP is shown in Fig. 4. The profile was motivated by the UML 2.0 Profile
for QoS & Fault Tolerance [OMG08]. However, we followed a more simple way of defining a general
framework for QoS, which then can be ”instantiated” by defining concrete aspects such as performance,
security, etc. Table 3 shows the usage of the stereotypes.

5.2 Examples

In the On Road Assistance scenario, several QoS requirements can be formed on service connections.
To illustrate the use of UML4SOA-NFP, we modeled (part of) a contract between OnRoadAsssistant
(the orchestrator component) and CreditChargeProvider. First we show a brief textual specification of
non-functional requirements:

016004 (Sensoria) 10

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Figure 5: Non-functional paramaters in (part of) the Automotive Case Study

• All communications between these services must be secure, e.g. message content must be en-
crypted and digitally signed.

• All messages from the orchestrator component to the credit card manager must be acknowledged
when received.

• As all succesful scenarios pass this step, the throughput of the service must be high enough (1000
requests per hour) with a reasonable response time.

Fig. 5 shows an excerpt of a concrete contract. Note that the class diagram corresponds to a template
which is filled (instantiated as object diagram). This will include concrete values for encrypting methods,
response time, etc.

5.3 Model Driven Development Support

As this profile may describe arbitrary types of requirements (logging, security, performance, etc.), the
development support for different aspects obviously vary for different development phases (early de-
sign/analysis/deplyoment/operation).

UML4SOA-NFP has support for middleware-level performability analysis as described in [GDV08]
and [GV10]. This enables the early estimation of a trade-off between reliability and performance. Evolv-
ing model transformations are developed to support the automated code generation of middleware con-
figuration with QoS constraints. Details of this technology are described in [GGK+10] (modeling),

Table 3: UML4SOA-NFP metaclasses and stereotypes
Metaclass Stereotype UML Metaclass Description
NFContract �nfContract� Class Represents a non-functional contract between a service

provider and a service requester
NFCharacteristic �nfCharacteristic� Class Represents a non-functional aspect such as perfor-

mance, security, reliable messaging, etc.
NFDimension �nfDimension� Class Groups non-functional properties within a non-

functional aspect (characteristics)
RunTimeValue �runTimeValue� Attribute An actual non-functional property
Monitor �monitor� Class A run-time service to monitor a contract (not used in

the paper)

016004 (Sensoria) 11

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Figure 6: The MetaModel for Business Policies Support: Task Specification (includes some highlighted
UML classes

[GDV09] (performability analysis) and [GV10] (transformations for deployment). These transforma-
tions are based on the VIATRA framework, described in details in chapter “Advances in model transfor-
mations by graph transformation: Specification, Analysis and Execution”.

Also a transformation-based technique is currently under development, which will help to create sim-
ple transformations on UML4SOA-NFP models extended with additional information on their intended
usage (e.g. security analysis) and/or target platform (e.g. Apache stack). These models and transfor-
mations give a flexible tool to support the quickly changing WS-* platforms in every phase of service
engineering. This transformation set will include validation steps to check both modeling errors and
domain specific requirements.

6 Business Policies Support

This part of the UML4SOA profile deals with the connection of services and business policies, in the
context of STPOWLA [GMRMS09]. The goal of STPOWLA is to define the business process so that the
business stakeholder can easily adapt it to the current state of affairs, by controlling the resources used
by the basic tasks in the workflows. To this purpose, the stakeholders issue policy definitions, which
constrain the resource usage as a function of the state of the workflow when a task is needed.

Here we show how to define business workflows in terms of taskSpecifications, that is, interfaces
of ServicePoints as from SoaML, enriched with information on the ranges of variability in the use of
resources (service level dimensions).

We note that the profile we present here does not cover policies explicitly. This is why it is called
Business Policies Support profile. Indeed, policies are better expressed as tables than as UML models.

6.1 Metamodel

The metamodel for business policies support consists of a series of related elements, relationships, and
a number of constraints. Not all the concepts are new, since we exploit the NFDimension concept from
the NF-UML4SOA profile, (cfr. Section 5). We deal first with the elements devoted to the basic tasks in
(Fig. 6):

• ServiceInterface specifies the interface of the service point a Task connects to at enaction time.
Constraint: just one operation specified.

• Requires is used to link a TaskSpecification to its ServiceInterface.

• TaskSpecification specifies a Task, identifying (via Requires) the ServiceInterface. It also specifies
(via Dim) the non-fuctional dimensions that characterize the service to invoke.

016004 (Sensoria) 12

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Figure 7: The metamodel for business policies support: Workflow specification

• TaskSpecification owns an operation called main, with the same parameters and return type of
the required service. Indeed, main triggers the search and invocation of a suitable service, and
returns the computed result. The search identifies a service impleemntation that satisfies the current
policies.

• Dim allows specifying the relevant service level dimensions in a TaskSpecification, by linking to
�nfDimension� from NF-UML4SOA. It also defines a default value, which is used to select the
service provider, when no policy with specific requirements for the target dimension is in place.

The next concepts are depicted in Fig. 7:

• WfSpecification defines a workflow, specifying its attributes and internal behavior. The formers can
be used to express conditions in the policies. The behavior is specified by the owned WfActivity.

• Workflow is an activity action that calls the specified behavior, i.e., a lower level workflow.

• Task is an activity action that calls the specified main operation.

• WfActivity defines the behavior of a workflow. Constraint: an owned action is either a Workflow
or a Task.

All the concepts above are rendered as stereotypes in the profile shown in Table 4. The defaultValues are
rendered as tagged values of the �dim� dependency: the tag is defaultValue, and the type is given by the
target dimension.

6.2 Examples

To show how STPOWLA supports flexibility in the On Road Assistance scenario, we consider, within the
general OnRoadAssistance workflow, a single task, namely the one that selects the best garage, and a
policy that allows the driver to choose directly the repairing services which he knows and trusts, in his
own town:

If the car fault happens in the driver’s town, then let him select the services to be used. Otherwise
choose the services automatically.

Figure 8 shows some excerpts from the model of the scenario just outlined, exemplifying the use of the
concepts both at the workflow and at the task level. To formalize the policies, the modeler needs to define,
for the workflow, the attributes that specify the driver’s home town and the car crash location, as detected
by the embedded car GPS. Indeed, they are needed to express the conditions in the policy. So, the
�wfSpecification� RoadAssistance, at the top-centre of the figure, lists the two attributes crashLocation
and driverTown. The relevant part of the related �wfActivity� is shown to the left: the actions appear as
shown: here, the task invokes the main operation of FindGarage, whose �taskSpecification� appears to

016004 (Sensoria) 13

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Table 4: Business Policies: Metaclasses and steretypes
Metaclass Stereotype UML Metaclass Description
ServiceInterface �serviceInterface� Interface Specifies the interface of the service point a Task con-

nects to at enaction time
Requires �Requires� Association Associates a TaskSpecification to the signature of the

services that implement it
TaskSpecification �taskSpecification� Class Specifies a Task, functionally via Requires, and non-

functionally via Dim. The latter identifies the QoS
dimensions that characterize the service to invoke. It
owns a main operation, with the same parameters
and return type of the required service, whose behav-
ior is to trigger the search and invocation of a suit-
able service (i.e., one whose QoS characteristics sat-
isfy the current policies), and to return the computed
result

Dim �Dim� Dependency Allows specifying the relevant service level dimen-
sions in a TaskSpecification, by linking to �nfDi-
mension� from UML4SOA-NFP

WfSpecification �WfSpecification� Class Defines a workflow, specifying its attributes and in-
ternal behavior. The latter is specified by the owned
WfActivity

WfActivity �WfActivity� Activity Defines the behavior of a workflow. Constraint: an
owned action is either a Workflow or a Task

Workflow �Workflow� CallBehaviour-Action Calls the specified behavior, namely, a lower level
Workflow

Task �Task� CallOperation-Action Calls the specified main operation

Figure 8: Fragments of the RoadAssistance model

the right (bottom). The name of the node is of little importance, being useful only to distinguish two
nodes in the same workflow, when they use the same �taskSpecification�.

Moreover, �taskSpecification� FindGarage requires the findGarage service (at its left), and declares
the main operation accordingly. The modeler here has to also introduce a suitable �nfDimension� to
express the choice between the service that searches for a garage nearby the crash location, and the
service that interacts with the driver to contact his own choice. This is AutomationLevel (top-right). The
default value is fixed as automatic, via the tagged value for �dim�.

7 Service Modes for Adaptive Service Brokering

In this section we describe a part of the SENSORIA family of profiles that addresses service adaptation
and reconfiguration based upon operational states of the service system being described. The Service
Modes profile complements the UML4SOA profile for orchestration by providing an abstraction of ser-
vice system adaptation through architecture, behavior and constraints. Service Modes are an extension
of Software Architecture Modes.

016004 (Sensoria) 14

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Software Architecture Modes are an abstraction of a specific set of services that must interact for
the completion of a specific subsystem task, i.e., a mode will determine the structural constraints that
rule a (sub)system configuration at runtime [HKMU06]. Therefore, passing from one mode to another
and interactions among different modes formalize the evolution constraints that a system must satisfy:
the properties that reconfiguration must satisfy to obtain a valid transition between two modes which
determine the structural constraints imposed to the corresponding architectural instances. A Service
Mode represents a Software Architecture Mode scenario of a service system. It combines a service
architecture with behavior and policy specifications for service components within the service system
and is intended to be evolved as new requirements are desired from the system. In this section we detail
the specification of service modes by way of a Service Modes profile in the UML notation.

7.1 Metamodel

A metamodel for service modes (illustrated in Figure 9) extends and constrains a number of UML core
elements. As an overview, a ModeModel defines a package which contains a number of service archi-
tecture scenarios (as Mode packages) and components and also contains a ModeModelActivity to define
how to switch between different service scenarios. Each scenario is defined in a Mode package which
is a container for a ModeCollaboration and describes the role that each component plays within the sce-
nario (e.g. a service requester and/or a provider). Each ModeCollaboration holds a ModeActivity which
describes the process in which the mode orchestration is fulfilled. Each ModeCollaboration also re-
fines the components of the Mode for additional service adaptation requirements (such as the constraints
for service brokering). A ModeConstraint specifies a constraint on adaptation of ModeCollaborations.
These constraints can also specify Quality-Of-Service (QoS) attributes for service components, and we
reuse the QoSRequired and QoSProvided stereotypes defined in the QoS Profile (as discussed in section
5.1). We now elaborate on service mode architecture, behaviour and adaptation relationships through
examples.

Figure 9: A Metamodel for service modes and service brokering specification (includes some highlighted
UML classes)

016004 (Sensoria) 15

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

7.2 Examples

A Service Modes Architecture consists of specifying the service components, their requirements and
capabilities and interface specifications. A high-level architecture configuration is given in UML to
represent the component specifications and their relationships. Each component will offer services to its
clients, each such service is a component contract. A component specification defines a contract between
clients requiring services, and implementers providing services. The contract is made up of two parts.
The static part, or usage contract, specifies what clients must know in order to use provided services.
The usage contract is defined by interfaces provided by a component, and required interfaces that specify
what the component needs in order to function. The interfaces contain the available operations, their
input and output parameters, exceptions they might raise, preconditions that must be met before a client
can invoke the operation, and post conditions that clients can expect after invocation. These operations
represent features and obligations that constitute a coherent offered or required service. At this level,
the components are defined and connected in a static way, or in other words, the view of the compo-
nent architecture represents a complete description disregarding the necessary state of collaboration for
a given goal. Even if the designer wishes to restrict the component diagram to only those components
which do collaborate, the necessary behaviour and constraints are not explicit to be able to determine
how, in a given situation, the components should interact. An example composite structure diagram for
a service modes architecture is illustrated in Fig. 10 for the In-Vehicle Service Architecture of the Auto-
motive Case Study (discussed in section 2). Note that the architecture represents both local services (via
a localDiscovery component) and remote services (remoteDiscovery via a Vehicle Services Gateway).

Figure 10: In-Vehicle service brokering architecture with Modes profile

Service Mode Behavior specification is a local coordinated process of service interactions and events
for mode changes. The behavior is similar to that of service orchestrations, for which orchestrations lan-
guages such as WS-BPEL are widely adopted. Service Mode Behavior may be formed as described in
section 4. At design time however, the activities for mode orchestration consist of two concepts. Firstly,
orchestrating the default composition of services required and provided in the specified mode architec-
ture. Secondly, the orchestration should also be able to react to events which cause mode changes, or
in other words cater for the switching between the modes specified in the different architecture config-
urations. To specify mode changes, the engineer adds event handlers (and follow on activities) to react
to certain events which cause a mode change. An example Service Mode Behavior is illustrated in Fig-
ure 11. Note the events that lead to mode changes, for example receiving notification of an accident from

016004 (Sensoria) 16

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

an Highway Emergency Service leads to a mode switch to a Detour mode configuration.

Figure 11: Convoy service mode behavior specified in activity diagram

Service Dynamism and Adaptation focuses on constraining changes to architecture and services,
identifying both functional and non-functional variants on the specification. Using the Service Modes
Profile we identify ModeCollaborations (composite structure diagrams) with ModeConstraints (UML
constraints) which are categorised further by a constraint stereotype. Additionally, architectural con-
straints may be specified in the Object Constraint Language (OCL) or another constraint based language.
The constraint language adopted becomes an implementation-dependent aspect of analysing models in
UML. The ModeConstraint is itself extended to support a specific kind of adaptation, that for Service
Brokering. A BrokerComponent defines a service component which is included in service brokering
specifications and can be used to identify the role of the brokered component (either requested or pro-
vided), and holds a specification for the service profile. Additionally, one or more (BrokerConstraints)
can be associated with a BrokerComponent, to identify the QoS either requested or provided by the ser-
vice. An example constraint applied to a BrokerComponent is also illustrated in Fig. 10, in this case for
the requirement that a QoSResponseTime should be offered less than 20ms by the OtherVehicle service.

As a summary of the semantics for the Service Modes profile, we list each profile metaclass, stereo-
type and UML metaclass in Table 5. Service Mode models built using the specification described in this
section can be analysed for safety and correctness using the approach described in [Fos09] and used for
generating runtime Service Broker requirements and capability specifications as described in [FUMK08].

Table 5: Service Mode Profile Semantics for UML2
Metaclass Stereotype UML Metaclass Description
ModeModel �ModeModel� Package A Model containing Mode packages
ModeModelActivity �ModeModelActivity� Activity The process flow for a ModeModel (policy)
ModeCollaboration �ModeCollaboration� Collaboration Contains composite structure and interactions
ModeActivity �ModeActivity� Activity The process flow for a Mode (orchestration)
ModeConstraint �ModeConstraint� Constraint Constraints on mode service or activity action
ModeInteraction �ModeInteraction� Interaction Interaction protocol between Mode components
BrokerComponent �BrokerComponent� Component Service component to be brokered within a Mode
BrokerConstraint �BrokerConstraint� ModeConstraint A constraint on a BrokerComponent

8 Service Deployment

In this section we describe a part of the SENSORIA family of profiles that addresses describing service
composition deployment and more specifically, how service orchestrations are configured with appro-
priate infrastructure nodes and resources. A Service Deployment profile complements the UML4SOA

016004 (Sensoria) 17

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

profile for orchestration by providing an abstraction of service composition deployment through infras-
tructure nodes such as Web Server and Servlets.

Service compositions, implemented as web services using BPEL or other execution languages, are
executed by a specialist container, sometimes called a service composition engine or run-time envi-
ronment. These containers use various system resources depending on the activities specified in the
composition. BPEL engines will, for example upon receiving a SOAP message to start a BPEL process,
instantiate this process and execute it in a separate thread concurrently with other ongoing BPEL pro-
cesses. Again BPEL engines typically have configurable database connections and thread pools and they
would delay the start of a BPEL process until they can assign a thread from a pool. Both Web service and
BPEL containers typically map these threads efficiently to a set of operating system threads. The amount
of operating system threads however, is finite due to the finite amount of memory required to handle
the stack segment of the thread. Administrators must therefore carefully configure the thread pools to
avoid exhaustion of the operating system resources. A Service Deployment model of the architecture
can describe the characteristics of the host server and orchestration, and can be used to analyze such
configurations for safety and correctness.

8.1 Metamodel

The Service Deployment MetaModel (illustrated in Fig. 12) focuses on modelling the deployment ar-
chitecture nodes (Servlet, WebServer) and deployment artifacts (ServiceOrchestration and Resource).
One or more service orchestrations (of type ServiceOrchestration) are modelled as artifacts which are
deployed on to servlet nodes. A service orchestration can only be deployed to one servlet instance.
Servlets are hosted on web server nodes (a web server is a web container which manages the creation
and deletion of servlet instances). A servlet also has pre-defined resource allocations, which are mod-
eled as one or more objects of type Resource artifact. Resource is a general object for any finite system
allocation object, however in this example we also illustrate a ThreadPool type of Resource.

Semantics The metamodel for service deployment consists of a series of related elements, relationships
and a number of constraints. For each element we list each profile metaclass, stereotype and UML
metaclass in Table 6.

8.2 Examples

A deployment model using the Service Deployment profile is illustrated in Figure 13. Two service
orchestrations (RoadAssitance and RoutePlanning) are deployed to a single servlet artifact. The servlet
artifact manages a collection of threads in a ThreadPool. The servlet is also hosted by a WebServer.
The example can be used to model check that the collaborating service orchestrations, along with the
management of thread acquisition and release, is safe and correct.

Figure 12: A metamodel for service composition deployment and resources (includes some highlighted
UML classes)

016004 (Sensoria) 18

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

Table 6: Service Deployment Profile Semantics for UML2
Metaclass Stereotype UML Metaclass Description
ServiceOrchestration �ServiceOrchestration� Artifact A reference to a service orchestration process
Servlet �Servlet� Node An execution container for orchestration pro-

cesses
WebServer �WebServer� Node A host for servlet containers
Resource �Resource� Artifact A type of resource used by a Servlet or Web-

server
ThreadPool �ThreadPool� Resource A resource collection of threads

Figure 13: Example Deployment Model for two Service Orchestrations and one Servlet

For a more complete example of using the Service Deployment Profile, along with detailed analysis
of the model, the reader is invited to refer to [FEK+07].

9 Related Work

Several other attempts exist to define UML extensions for service-oriented systems. Most, however,
do not cover aspects such structural, behavioral and non-functional aspects of SOAs. For example the
UML2 profile for software services [Joh05, MFMR05] provides an extension for the specification of
services addressing only their structural aspects. The UML extension for service-oriented architectures
described by Baresi et al. [BHTV05] focuses mainly on modeling SOAs by refining business-oriented
architectures. The extension is also limited to stereotypes for the structural specification of services.
Other modeling approaches require very detailed UML diagrams from designers trying to force service-
oriented languages (like BPEL) on top of UML in order to facilitate automated transformation from
UML to BPEL [GSSO04]. The approach lacks an appropriate UML profile preventing building models
at a high level of abstraction; thus producing overloaded diagrams. Some other extensions, conversely
to UML4SOA, do not cover vital parts of service orchestrations such as compensation handling, e.g.
the UML profile described in [EK07]. Our UML4SOA approach tries to fill this gap providing a UML
profile for service orchestrations.

The OMG also started an effort to standardize a UML profile and metamodel for services (SoaML)
[OMG09a]. The current beta version focus on structural aspects of services, such as service components,
service specifications, service interfaces and contracts for services. We see our family of UML profiles
as a complementary set to the profile SoaML.

With respect to business policies, we have already mentioned that several of the stereotypes intro-
duced here bear some relationships to SoaML ones. For instance, a �wfSpecification� is a �capability�,
which can �use� only (the capabilities offered by) other �workflow�’s and �task�’s. Similarly, a
�taskSpecification� is also a �capability� , whose �contract�’s can only span the space defined by the
�NFDimension�’s indentified via the �dim� dependencies. In either cases, the �serviceInterface� is a
simple SoaML �serviceInterface�, i.e. a plain UML interface. Finally, the �partecipant�’s that imple-
ment these capabilities can be actually invoked only if they fulfill the current contract, as idenfified by
the policies in place. Therefore, from the business policies perspective, UML4SOA could be seen as a
specialization of SoaML, to address the concerns of a large share of the stakeholders, explicitely.

016004 (Sensoria) 19

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

A few words are needed in relation to another widely known standard specification, namely Web
Services Policy [W3C]. In fact, this is a machine-readable language to represent the capabilities and
requirements, the policies, of a Web service. As such, the standard addresses low level issues, related to
the automation of service selection, and will help in the implementation of STPOWLA .

As for non-functional properties, the UML Profile for QoS and Fault Tolerance [OMG08] and UML
Profile for Schedulability and Time [Gro05] were considered during the development of UML4SOA-
NFP. As our profile is general purpose (i.e., not bound to any specific aspect like security or performance),
it can be extended to describe typical patterns for SLAs which is an ongoing work.

What is generally missing from these existing profile approaches is the ability to identify the require-
ments and capabilities of services and then to elaborate on the dynamic changes anticipated for adaptation
or self-management. For the design of service compositions the dynamic composition of services has
largely focused on planning techniques, such as in [PMBT05, MBE03], generally with the specification
of a guiding policy with some goals of service state. Runtime service brokering also plays an important
role in being able to adapt component configurations [MDSR07] between requesters and providers yet
there is little detail on providing analysis of requirements for brokering. Software Architecture Modes
were perhaps first introduced in [HKMU06], in which they identify a mode as an abstraction of a specific
set of services that must interact for the completion of a specific subsystem task. Hirsch’s introduction
to modes included architectural configuration but did not elaborate on component behavioral change as
part of mode adaptation. Consequently, the concept of mode architectures has been extended with be-
havioral adaptation in [KPv09], focusing on modes as behavioral specifications relating to architecture
specification albeit indirectly. We provide a UML profile for service modes.

10 Conclusions

As service-oriented computing continues to gain support in the area of enterprise software development,
approaches for handling SOA artefacts and their integration on a high level of abstraction while keeping
a semantic link to their implementation become imperative. In this paper, we have focused on a UML-
based domain specific modeling language for the specification of service-oriented software. Such a
modeling language is the basis for the definition and use of model transformers to generate code in
executable target SOA languages like BPEL and WSDL, in a model-driven development process.

Our main contribution are a set of UML profiles for modeling of services that comprise modeling
of service orchestration, business policies and non-functional properties of services, service modes for
adaptive service brokering and service deployment. Each profile provides a small set of model elements
that allow the service engineer to produce diagrams which visualize services and their functionality in a
simple fashion.

These are profiles for separate purposes, which share some basic concepts (e.g. service, participant,
etc.). It is the service engineer who decides which profiles to use as they cover different steps of the
development lifecycle, e.g. QoS parameters bound to an SLA could be transformed to the input of Modes
while they can be also used in St-Powla. The policy support profile depends on UML4SOA-NFP, insofar
as it imports NFDimension to characterize the QoS of the services subjected to the policies.

Further details on the profiles and tools discussed in this paper are available on the SENSORIA project
website [SEN].

References

[BHTV05] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel Varró. Style-Based Modeling
and Refinement of Service-Oriented Architectures. Journal of Software and Systems Mod-
eling (SOSYM), 5(2):187–200, 2005.

016004 (Sensoria) 20

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

[EK07] Vina Ermagan and Ingolf Krüger. A UML2 Profile for Service Modeling. In International
Conference on Model Driven Engineering Languages and Systems, volume LNCS 4735 of
IEEE, pages 360–374. Springer-Verlag, 2007.

[FEK+07] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee, David Rosenblum, and Se-
bastian Uchitel. Model Checking Service Compositions under Resource Constraints. In
ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the foundations of Software
Engineering, pages 225–234, New York, NY, USA, 2007. ACM.

[Fos09] Howard Foster. Architecture and Behaviour Analysis for Engineering Service Modes. In
Proceedings of the 2nd Workshop on Principles of Engineering Service Oriented Systems
(PESOS09), Vancouver, Canada, 2009.

[FUMK08] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Leveraging Modes and
UML2 for Service Brokering Specifications. In Proceedings of the 4th Model-Driven Web
Engineering Workshop (MDWE 2008), Toulouse, France, 2008.

[GDV08] László Gönczy, Zsolt Déri, and Dániel Varró. Model Driven Performability Analysis of
Service Configurations with Reliable Messaging. In Proc. of Model Driven Web Engineering
Workshop (MDWE) 2008, 2008.

[GDV09] László Gönczy, Zsolt Déri, and Dániel Varró. Model Transformations for Performability
Analysis of Service Configurations. pages 153–166, Berlin, Heidelberg, 2009. Springer-
Verlag.

[GGK+10] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer, and Dániel Varró. Non-
Functional Properties in the Model-Driven Development of Service-Oriented Systems. Jour-
nal of Software and Systems Modeling, 2010. Accepted for publication.

[GMRMS09] Stephen Gorton, Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini.
StPowla: SOA, Policies and Workflows. In Elisabetta Di Nitto and Matei Ripeanu, editors,
ICSOC’07 Workshops Revised Selected Papers, volume 4907 of Lecture Notes in Computer
Science, pages 351–362. Springer, 2009.

[Gro05] Object Management Group. UML Profile for Schedulability, Performance and Time
Specification, 2005. http://www.omg.org/technology/documents/formal/
schedulability.htm.

[GSSO04] Roy Gronmo, David Skogan, Ida Solheim, and Jon Oldevik. Style-Based Modeling and
Refinement of Service-Oriented Architectures. In Eighth IEEE International Enterprise
Distributed Object Computing Conference (EDOC’04), IEEE, pages 47–57. IEEE, 2004.

[GV+08] László Gönczy, , Dániel Varró, Artur Boronat, Claudio Guidi, Nora Koch, Fabio Massaci,
Philip Mayer, and Andreas Schroeder. Methodologies for MDA and Deployment (second
version). Technical Report Th04.b, SENSORIA Deliverable, 2008.

[GV10] László Gönczy and Dániel Varró. Developing Effective Service Oriented Architectures: Con-
cepts and Applications in Service Level Agreements, Quality of Service and Reliability, chap-
ter Engineering Service Oriented Applications with Reliability and Security Requirements.
IGI Global, 2010. To be published.

[HKMU06] Dan Hirsch, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Modes for Software Archi-
tectures. In Proceedings of EWSA 2006, 3rd European Workshop on Software Architecture,
Lecture Notes in Computer Science. Springer Verlag, 2006.

016004 (Sensoria) 21

http://www.omg.org/technology/documents/formal/schedulability.htm
http://www.omg.org/technology/documents/formal/schedulability.htm

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

[Joh05] Simon Johnston. UML 2.0 Profile for Software Services, available at http://www-
128.ibm.com/developerworks/rational/library/05/419soa. Request For Proposal - AD/02-
01/07, 2005.

[KB07] Nora Koch and Dominik Berndl. Requirements Modelling and Analysis of Selected Scenar-
ios: Automotive CASE Study. Technical Report D8.2a, SENSORIA Deliverable, 2007.

[KMH+07] Nora Koch, Philip Mayer, Reiko Heckel, László Gönczy, and Carlo Montangero. UML for
Service-Oriented Systems. Technical Report D1.4a, SENSORIA deliverable, 2007.

[KPv09] Jan Kofroň, František Plášil, and Ondřej Šerý. Modes in Component Behavior Specifica-
tion via EBP and their application in Product Lines. Information and Software Technology,
51(1):31–41, 2009.

[MBE03] B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid. Composing Web Services on the
Semantic Web. VLDB Journal, pages 333–351, 2003.

[MDSR07] Arun Mukhija, Andrew Dingwall-Smith, and David S. Rosenblum. QoS-Aware Service
Composition in Dino. In ECOWS ’07: Proceedings of the Fifth European Conference on
Web Services, pages 3–12, Halle, Germany, 2007. IEEE Computer Society.

[MFMR05] Ricardo J. Machado, Joao. M. Fernandes, Paula Monteiro, and Helena Rodrigues. Transfor-
mation of UML Models for Service-Oriented Software Architectures. In In Proceedings of
the 12th IEEE International Conference and Workshops on Engineering of Computer-Based
Systems, Washington, DC, USA, pages 173–182, 2005.

[MKS09] Philip Mayer, Nora Koch, and Andreas Schroeder. The UML4SOA Profile. Technical report,
Ludwig-Maximilians-Universität München, July 2009.

[MSK08a] Philip Mayer, Andreas Schroeder, and Nora Koch. A Model-Driven Approach to Service Or-
chestration. In Proceedings of the 2008 IEEE International Conference on Services Comput-
ing (SCC 2008), volume 2, pages 533–536, Los Alamitos, CA, USA, 2008. IEEE Computer
Society.

[MSK08b] Philip Mayer, Andreas Schroeder, and Nora Koch. MDD4SOA: Model-Driven Service Or-
chestration. In The 12th IEEE International EDOC Conference (EDOC 2008), pages 203–
212, Munich, Germany, 2008. IEEE Computer Society.

[OMG08] OMG. UML for Modeling Quality of Service and Fault Tolerance Characteristics and Mech-
anisms, v1.1 , 2008. http://www.omg.org/spec/QFTP/1.1/.

[OMG09a] OMG. Service oriented architecture Modeling Language (SoaML) - Specification for the
UML Profile and Metamodel for Services (UPMS), revised submission. Specification,
Object Management Group, 2009. http://www.omg.org/cgi-bin/doc?ptc/
09-04-01, Last visited: 30.08.2009.

[OMG09b] OMG. Unified Modeling Language: Superstructure, version 2.2. Technical Report
formal/2009-02-02, Object Management Group, 2009.

[PMBT05] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web Services
by Planning at the Knowledge Level. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2005.

[SEN] SENSORIA. Software Engineering for Service-Oriented Overlay Computers.
http://www.sensoria-ist.eu/, last visited 10.11.2009.

016004 (Sensoria) 22

http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/cgi-bin/doc?ptc/09-04-01
http://www.omg.org/cgi-bin/doc?ptc/09-04-01

D1.4.b UML for Service-Oriented Systems (second version) (Draft) January 20, 2010

[W3C] W3C Working Group. Web Services Policy 1.5 - Primer. http://www.w3.org/TR/
ws-policy-primer/. Valid on 22 October 2009.

[XK09] Rong Xie and Nora Koch. Automotive CASE Study: Demonstrator. Technical report,
Cirquent GmbH, 2009.

016004 (Sensoria) 23

	Introduction
	Case Study
	Modeling Structural Aspects of SOAs
	Service Orchestrations
	Metamodel
	Example
	Model-Driven Development Support

	Non-Functional Properties of Services
	Metamodel
	Examples
	Model Driven Development Support

	Business Policies Support
	Metamodel
	Examples

	Service Modes for Adaptive Service Brokering
	Metamodel
	Examples

	Service Deployment
	Metamodel
	Examples

	Related Work
	Conclusions

