ascens®**’

www.ascens-ist.eu

ASCENS

Autonomic Service-Component Ensembles

TR-1202: Science Cloud: Modelling and Imple-

menting the Peer-to-Peer DHT protocol 'Chord’

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex |: 7.6.2010

Author(s): Philipp Zormeier (LMU), Annabelle Klarl (LMU), Christian
KroiB (LMU), Philip Mayer (LMU)

Periodic report:

Periodic covered:

Date of technical report: July 25, 2012
Revision: V1

Classification: [CO]

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154 FEPNJE'G?K‘W
Fax: +49 89 2180 9175
E-mail: wirsing@Imu.de
* X %
Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE, : *;
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI * o
* o *

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

Abstract

The ASCENS project is an EU-funded integrated project within the 7th framework program with the
goal of handling open-ended, highly parallel, massively distributed systems by breaking them down
into self-aware, self-adaptive and self-expressive autonomic components which are grouped into so-
called ensembles.

One of the case studies to evaluate the ASCENS results is the Science Cloud case study which
describes a peer-to-peer voluntary computing cloud for scientific usage which consist of an arbitrary
number of nodes running the science cloud software. The nodes interact to ensure that applications
deployed in the cloud are kept running in case of disappearing nodes, changing load conditions, and
different cloud layouts.

One possible option for implementing communication within a distributed peer-to-peer system
is the Chord protocol which induces an overlay ring-like structure within the cloud to ensure both
resilience and fast access to values in the node-based distributed hash table.

In this document, we describe both the modelling and the implementation of Chord as a test-case
for the usability within the Science Cloud case study. Modelling of Chord is achieved using SCEL
(Service Component Ensemble Language), the primary formal modelling language of ASCENS. The
implementation of Chord is created using the Java programming language and is kept close to the
SCEL model.

ASCENS 2

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

Contents
1 _Intr 10N 5
2__About Chord| 5
2.1 Excluding and including predecessors| 6
22 Leavingnodes|. 7
2.3 Datamanagement| e e e e e 7
3 About SCEL 8
BI UsedSCEL dialectl i 8
3.2 Nodeproperties| e 9
B3 SCELmMACIOS o ot o e 10
@ Modelling Chord in SCEL] 11
4.1 Node lookup procedures| 11
K42 Nodeloins| 15
4.3 Leavingnodes|. 18
4.4 DatalLookup| e 20
4.5 Data Storage|. 21
4.6 Stabilization| Lo 21
M7 MainNode Processl v v v v v v i 23
|5 Implementing Chord| 23
D1 Architecturel e 23
[5.1.1 Corelayer|. 24
[5.1.2 Communication layer|. L 24
[5.1.3 Graphical User Interface|] 25
[5.2° Monitoring the System| 26
6 Conclusion 27
ASCENS 3

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

ASCENS 4

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

1 Introduction

The ASCENS Science Cloud case study [VRA™ 11] realizes a peer-to-peer platform-as-a-service by an
arrangement of autonomic, self-aware service components. A service component, running on a phys-
ical or virtual machine, continually monitors its own status as well as the status of other components
associated to the cloud. Components may also be grouped into service component ensembles based
on certain properties of the individual components or the links between them. The main aim of the
science cloud is ensuring that deployed applications are executed reliably and while keeping to their
SLA, even if indivdual service components fail or disappear.

One option for realizing distributed communication between the individual components of the
Science Cloud is the Chord protocol [SMLNT03]. Chord is a distributed lookup protocol providing
simple ID assignment to both nodes and data and ensures efficient lookups. We have extended the
basic protocol for our purposes with regard to predecessor handling, leaving nodes, and data handling.

In this document, we formalize the basic Chord protocol with SCEL [[GLPT12]], a language for
modelling autonomic service components and their ensembles, and provide an implementation of
Chord in Java as a proof of its practical use.

This document is structured as follows. We first give a short introduction to the Chord protocol in
section 2] followed by a description of SCEL in section 3] Afterwards, we discuss our main findings,
i.e. the modelling of Chord in SCEL (section[d)) and the Java implementation (section[5). We conclude
in section [6l

2 About Chord

The Chord protocol implements a distributed lookup protocol for locating nodes which store a certain
piece of data. Chord thus provides a mapping of some data key to a node which is responsible for this
data. The protocol therefore implements a distributed hash table.

The members of a Chord network are logically arranged in a circle which is described by m-bit
addresses. A node is identified by an address n between 0 and 2" — 1. The address is generated by
hashing its IP address.

Data is then stored at the node to which a key associated to the data item maps (key/value pair).
If a data item with key m is queried along the network, the next node n in clockwise direction called
successor(m) (possibly m) is responsible for locating the data.

To establish communication around the network, the independent nodes have to be aware about
a couple of other nodes. In a so called finger table, each node n stores information about m other
subsequent successors. finger[i].node is successor(n+2'"1) (i € {1, ..., m}). finger[1].node therefore
is the direct successor of n. Though for correct behavior only information about the next successor
is needed, the finger table ensures efficient communication (logarithmic complexity). In addition, the
main procedures assume knowledge of the node’s predecessor.

If any node needs to access data with key m, it looks up the nearest element in its finger table.
This node either is directly responsible for the key or passes it to its own nearest finger.

A joining node initializes its finger table by means of an existing arbitrary node in the network
(which must be known). That node locates all m successors via its own fingers.

After the finger table is set, the new node updates all preceding nodes which might contain it in
their finger tables. This procedure ensures valid lookup functionality.

Note that leaving nodes are not specified by the basic protocol. To react to node failures, concurrent
events and other challenges, further techniques have to be applied. A Chord-based application might,
for example, establish data redundancy and mechanisms that maintain lookup information.

ASCENS 5

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

For our model and implementation of Chord, we had to add some enhancements to the original
Chord protocol. First, we will describe an inconsistency of the protocol observed during implementa-
tion (subsection [2.1). Afterwards we discuss new functionality: Leaving nodes in subsection [2.2] and
data handling in subsection[2.3]

2.1 Excluding and including predecessors

While testing the implementation we noticed an inconsistency in the Chord protocol, which may lead
to invalid finger tables. This situation may occur if a node joins or leaves the network whose id
matches the start id of a finger of a preceding node. We will discuss the joining case here as our
leaving behavior is yet to be defined.

The procedure update_others notifies nodes which might have to update their finger table with the
new node with a call of update_finger_table.

n.update _others()
for (i=1tom)
p = find_predecessor(n — 201);
p.update_finger_table(n,i);

To determine the node that should check its i-th finger table entry, the predecessor of id n —
2" is calculated. This node then eventually updates the entry and passes the message to its direct
predecessor.

n.update_finger_table(s,i)
if (s € [n,finger[i].node))
finger[i].node = s;
p = predecessor;
p.update_finger_table(s,i);

Within find_predecessor, a predecessor of an id is determined excluding the id itself. If the prede-
cessor of id n is required and there actually is a node with id n, the predecessor of that node will be
returned.

n.find_predecessor(id)
n’ =n;
while (id ¢ (n’, n’.successor])
n’ =n’.closest_preceding finger(id)
returnn’;

If n’.successor is matching the given id, the while loop stops and n’ instead of n’.successor is
returned. If this is the case, however, the procedure update_others will skip the node whose finger i is
already (perfectly) pointing to the new node.

To solve this issue, we provide a variation of find_predecessor. This variation simply checks if
n’.successor is a perfect match.

n.find_predecessor_incl(id)
n’ =n;
while (id ¢ (n’, n’.successor])
n’ =n’.closest_preceding_finger(id)
if (id == n’.successor)

ASCENS 6

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

return n’.successor;
returnn’;

This new procedure is called instead of find_predecessor in the join and leave procedures. In all
other cases the original procedure is adequate.

The other node lookup and joining behavior was not modified but enhanced by data management,
which is described below.

We use the stabilize and fix_finger procedure as defined in the Chord paper, the only difference
being that we do not limit the join procedure to setting the successor as proposed there.

2.2 Leaving nodes
We define the following leaving behavior:

n.leave()
finger[1].node.add _data(dataMap);
finger[1].node.predecessor = predecessor;
for (i=1tom)
p = find_predecessor(n — 201);
p.clean _finger(n,i,finger[1].node);

n.clean_finger(s,i,c)
if (finger[i].node ==)
finger[i].node = c;
p = predecessor;
p.clean _finger(s,i,c);

A leaving node updates the predecessor of its successor and afterwards notifies preceding nodes
which might have to update their finger table. This behavior is analog to the behavior in update_others
in join, the only difference being a candidate node being passed along with the message. The candidate
to replace the original finger node is its successor.

2.3 Data management

As mentioned above, we use Chord to implement a map of key ids to data. This can be done by simply
adding local hash maps to the nodes. To transfer keys between the nodes during joins and leaves, these
maps have to offer methods like put, get, remove, extract and merge.

If data at a given key is requested, the successor node of the key is responsible for the data. This
leads to the following procedures:

n.lookup _data(key)
if (key € dataMap.domain())
return dataMap.get(key)
else
n’ = find_successor(key);
return n’.lookup_data(key);

n.store_data(key,data)
if (key € dataMap.domain())
dataMap.put(key,data)
else

ASCENS 7

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

n’ = find_successor(key);
n’.store_data(key,data);

These procedures check if the given id is within the local key space, which is similar to the one
of the data map. In this case, the data is returned or stored. In the other case, the responsible node is
calculated and the procedure is started there.

To maintain the right data assignment during ongoing joins and leaves, we require the following
modifications to join and leave. In join, after the call of update_others, finger[1].node.extract_data(predecessor,n)
is called and the resulting map is the new local data map:

n.extract_data(p,n’)
return dataMap.extract((p,n’]);

The procedure extract is meant to return a map containing all key value pairs within the given
interval and shortens the domain by the interval.

When a node leaves, it first has to transmit its data to its successor. For this reason, the whole
dataMap is sent to the successor node:

n.transmit_data(otherMap)
dataMap.merge(otherMap),

The procedure merge extends the data map’s domain and adds the key-value pairs of the given
map. At the beginning of leave, finger[1].node.transmit_data(dataMap) has to be called.
All procedures in full length will be repeated at the corresponding place in section

3 About SCEL

SCEL (Service Component Ensemble Language) [GLPT12] is a language for modelling autonomic
service components and service component ensembles. SCEL is a formal language and built on top
of solid semantic grounds. SCEL is also a parameterized language, i.e. the first step when using
SCEL is settling on a concrete SCEL dialect by substantiating the variable parts of the language (cf.
[dNFLP11]):

o The language for policies together with an interaction and authorization predicate.

o The language for representing knowledge items and repositories, i.e. handling data within the
language.

o The expression language which is used for producing values and evaluating data.

In the following subsections, we discuss the SCEL dialect used (section , which data (or rather,
knowledge) we store within the nodes (section @]), and a set of macros we use to ease the SCEL
specification (section |3.3).

3.1 Used SCEL dialect

In order to model in SCEL we define a dialect, i.e. concrete instantiations for the three languages
discussed above. We set the stage as follows:

e Our model of the Chord algorithm does not require policies since all logics and constraints are
directly included within the modelled processes. Consequently, no policy language is required.

ASCENS 8

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

e The knowledge repositories of nodes consist of tuples. We use a key-based approach to re-
trieving tuples, i.e. the first element of each tuple contains a key token which is used like an
identifier. The rest of the tuple is an arbitrary number of arguments, which vary based on the
key or the purpose of the tuple. Tuples are added to the repository by a put statement, which
does not overwrite tuples with the same key. A gry statement returns the first found tuple, and
a get statement additionally removes the retrieved tuple of the repository. Querying and getting
tuples is realized by pattern matching. The statements have to consist of a specific key and the
right number of arguments. The other arguments may be certain values or define a pattern to
match tuples. Alternatively, a process can bind data to local variables by inserting wild card-
like expressions, for example !z. These expressions can be extended by patterns in brackets, for
example !z[x > 20]. Only certain values and patterns narrow the space of results.

e FExpressions are mainly used within tuples and can be of arbitrary data types. The tuple keys
are strings, but other values might also be boolean, numeric or of other types. We use Java-
like syntax within curled brackets to symbolize object manipulation. Algebraic expressions are
written in plain mathematical syntax and are wrapped by curled brackets.

All other properties and syntax elements are standard SCEL as explained in [GLPT12].

3.2 Node properties

Every node knows its finger table, the address of its predecessor and the data it is responsible for. This
information is stored in their knowledge repository as follows:

e dataMap - a Map<int,data> object containing all node data.
methods:

put(key,data) - adds the specified key-value pair.

— get(key) - returns the requested value.

— domain() - returns the interval of all assigned keys.

— merge(Map<int,data>) - merges the domains and adds all data of the given map.

— extract(domain) - shortens the domain by the given domain and returns a map containing
lost key-values.

— addAll(Map<int,data> - adds all elements.

o fingers - the finger list.
fields of the fingers:

— start - the expected node position.
The i-th finger has start = n + 2~ mod 2™, n being the nodes identifier.

— node - successor(start).
methods:

— set(int,finger) - sets given finger.

— get(int) - returns an element.

e pred - the node’s predecessor

ASCENS 9

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

3.3 SCEL macros

In order to abbreviate the specification of the SCEL model we define the following three macros.

o Sequential composition
To compose two processes sequentially, we use the following syntax:
P=P; Py
Sequential composition can be realised by synchronization over the knowledge repository. Here
is an example:
P; - Py £ P#[P3] with an empty policy and

P% 2 put(“uniqueldentifier1”, { generateID()})Qself
.get(“uniqueldentifier1”,lid)Qself
.put(“uniqueldentifier2”, id)Qself
Py
.put(“ready” , id)Qself
.nil

P} £ get(“uniqueldentifier2”,\id)@Qself
get(“ready” , id)Qself
Py

Process P; has to end with nil. By writing P;.put(“ready”, id)@Qself .nil, we mean to add the
put action right before P;’s nil.

e Loops
(i : start — end)(P(i), Q) abbreviates

...put(“d”, start)Qself
.For

For £ (Check - P(i) - Increment) + Finally
Check £ get(“i”,!i[|start — i| < |start — end|])

.nil
Increment = put(“i”, {i + (end — start)/|end — start|})Qself
For
Finally = get(“i”, li[|start — i| > |start — end|])Qself
Q

P(i) has to with process nil and Q is a process. This macro simplifies the expression of for
loops. An equivalent Java example would be

for(int i = start;i < end,i + +){
P(i)

}

Q

ASCENS 10

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

As usual, we can use standard comparison operators for checking the loop end condition, i.e.
<, <=, >, and >=, and both increment ++ and decrement —— the loop variable.

e Parallel Processes
For readability we write P;|P;|...|P,, meaning Py [Ps][...[P,]...]] with empty policies.

4 Modelling Chord in SCEL

This section gives a model of Chord using the SCEL language as parameterized in the previous section.
In the following, we assume that value m is known by every node in the network. Please note that
summation is considered modulo 2™ and self represents both the processing node and its identifier.

4.1 Node lookup procedures

The Chord protocol contains the following lookup procedures:

n.find_successor(id)
n’ = find_predecessor_excl(id);
return n’.successor;

n.find_predecessor_excl(id)
n’ =n;
while (id ¢ (n’, n’.successor])
n’ =n’.closest_preceding_finger(id)
return n’;

n.find_predecessor_incl(id)
n’ =n;
while (id ¢ (n’, n’.successor])
n’ =n’.closest_preceding_finger(id)
if (id == n’.successor)
return n’.successor;
returnn’;

n.closest_preceding finger(id)
for (i=m downto 1)
if (finger[i].node € (n,id))
return finger[i].node;
return n;

We now discuss the SCEL model for each of these.

find_successor

Process findSucc waits for successor requests and calculates the response according to the Chord
protocol. As this is the first SCEL process shown, we describe our modelling approach here. Within
this model, procedures, which can be called locally or remotely, are processes that wait for calls.

ASCENS 11

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

Those calls take place via the local knowledge repositories, as well the result return mechanisms. So
this findSucc waits for calls by the blocking get.. statement. A calling process has to put a tuple with
the key “findSuccReq”, its id for returns and the target id as arguments in the knowledge repository of
the systeme running this findSucc process, to trigger calculation. The given parameters are then stored
within the local variables reqNode and targID. In the following procedure find_predecessor is called
by triggering process findPred with an analog pattern. The result is retrieved via the knowledge
repository. The last but one line shows that returning values is indeed handled by putting them in
knowledge repositories. The following process is findSucc itself so the procedure find_successor
remains available.

findSucc £ get(“findSuccReq”,\reqNode, 'targID)Qself
.put(“findPredEzclReq”, self , targID)Qself
.get(“findPredEzclResp” , targID, targPredNode)Qself
.put(“getSuccReq”, self)QtargPredNode
.get(“getSuccResp”, targPredNode, !result Node)Qself
.put(“findSuccResp” , targID, resultNode)QregNode
findSucc

get_successor

We add the process getSucc to access other nodes’ successors. It realizes a getter which encapsulates
finger table access.

getSucc £ get(“getSuccReq”, 'regNode)Qself
qry(“fingerTable” ! fingers)Qself
.put(“getSuccResp”, self ,{fingers.get(1).node})QreqNode
.getSucc

find_predecessor_excl

Procedure find_predecessor_excl contains a while statement, which can be expressed via nondetermin-
istic choices with guards.

findPredExcl £ get(“findPredExclReq”,reqNode, |targID)Qself
.put(“tmpPredNode” , self)Qself
findPredExclWhile(reqNode, targID)

findPredExclWhile(reqNode, targID) = get(“tmpPredNode” , 'tmpPredNode)Qself
.put(“getSuccReq”, self YQtmpPredNode
.(findPredExclWhileBody(reqNode, targID, tmpPredNode)
+
findPredExclResp(reqNode, targID, tmpPredNode))

ASCENS 12

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

The process, that wins the nondeterministic choice, is the one that starts with the matching get state-
ment. The other process at the same time dies.

findPredExclWhileBody(reqNode,
targID, tmpPredNode) £ get(“getSuccResp”, tmpPredNode, tmpPredSuccNode
[targID ¢ (tmpPredNode, tmpPredSuccNode]])Qself
.put(“predFingerReq”, self , targID)QtmpPredNode
.get(“predFingerResp” , targlD, 'tmpPredNode)Qself
.put(“tmpPredNode” , tmpPredNode)Qself
findPredExclWhile(reqNode, targID)

findPredExclResp(reqNode,
targID, tmpPredNode) = get(“getSuccResp” , tmpPredNode, tmpPredSuccNode
[targID € (tmpPredNode, tmpPredSuccNode]])Qself
.put(“findPredEzclResp” , targID, tmpPredNode)QreqNode
findPredExcl

find_predecessor_incl

This procedure is defined analogue to find_predecessor_excl, but with our modification described in

findPredIncl £ get(“findPredInclReq”,reqNode, 'targID)Qself
.put(“tmpPredNode” , self)Qself
findPredInclWhile(reqNode, targID)

findPredInclWhile(reqNode, targID) £ get(“tmpPredNode” , tmpPredNode)Qself
.put(“getSuccReq”, self YQtmpPredNode
.(findPredInclWhileBody(reqNode, targID, tmpPredNode)
+
findPredInclResp(reqNode, targlD, tmpPredNode))

findPredInclWhileBody (reqNode,
targID, tmpPredNode) = get(“getSuccResp” , tmpPredNode, ! tmpPredSuccNode
[targID ¢ (tmpPredNode, tmpPredSuccNode]])Qself
.put(“predFingerReq”, self , targID)QtmpPredNode
.get(“predFingerResp” , targID,tmpPredNode)Qself
.put(“tmpPredNode” , tmpPredNode)Qself
findPredInclWhile(reqNode, targID)

ASCENS 13

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

findPredInclResp(reqNode,
targID, tmpPredNode) £ get(“getSuccResp”, tmpPredNode, tmpPredSuccNode
[targID € (tmpPredNode, tmpPredSuccNode]])Qself
.put(“tmpPredSuccNode” , tmpPredSuccNode)Qself
.(findPredInclResult(reqNode, targID, tmpPredNode)

l’
findPredInclRespResultSucc(reqNode, targID, tmpPredNode))

findPredInclRespResult(reqNode,
targID, tmpPredNode) = get(“tmpPredSuccNode” , \tmpPredSuccNode
[targID! = tmpPredSuccNode])Qself
.put(“findPredInclResp” , targID, tmpPredNode)QreqNode
findPredlIncl

findPredInclResultSucc(reqNode,
targID, tmpPredNode) £ get(“tmpPredSuccNode” , 'tmpPredSuccNode
[targID == tmpPredSuccNode])Qself
.put(“findPredInclResp”, targID, tmpPredSuccNode)QregNode
findPredIncl

closest_preceding_finger
predFinger implements closest_preceding finger. This is the first process that contains the loop
macro.
predFinger = get(“predFingerReq”, reqgNode, targID)@self
.put(“break”, false)Qself
(i : m — 1)(predFingerFor(i, reqNode, targID),
predFingerReturn(reqNode, targID))

Each iteration begins with a check of the break variable. If break is set to true, the result is already
calculated returned.

predFingerFor(i, reqNode,
targID) £ predFingerForBody(i, reqNode, targID)
+
.predFingerForStop

If break is false, the return criterion is checked, which may lead to setting break to true. predFingerForReturn
matches the return criterion, predFingerForContinue continues the loop iteration.

predFingerForBody (i,
reqNode, targID) = qry(“break”, false)Qself
.(predFingerForReturn(i, reqNode, targID)

l’
predFingerForContinue(i, reqNode, targID))

ASCENS 14

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

predFingerForReturn(i, reqNode, targID) £ qry(“fingerTable”,!fingers
[fingers.get(i).node € (self , targID)])@Qself
.put(“break”, true)Qself
.put(“predFingerResp”, targlD,
{fingers.get(i).node})QreqNode

.nil

predFingerForContinue(i, reqNode, targID) £ qry(“fingerTable”,!fingers
[fingers.get(i).node ¢ (self , targID)])Qself
il
predFingerForStop £ qry(“break”, true)Qself
il
predFingerReturn(reqNode, targID) = (predFingerNoReturn
+
predFingerReturnSelf(reqNode, targID))

After the loop it has to be considered, whether self has to be returned or not.

predFingerNoReturn = get(“break”, true)Qself
.predFinger

predFingerReturnSelf(reqNode, targID) = get(“break”, false)Qself
.put(“predFingerResp”, targID, self)QreqNode
.predFinger

4.2 Node Joins

A joining node runs the following procedure:

n.join(n’)
if (n)
init_finger_table(n’);
update others();
dataMap = finger(I].node.extract_data(predecessorn);
else
for (i=1tom)
finger[i].node = n
predecessor = n;

n.init_finger_table(n’)
finger[1].node = n’ .find_successor(finger(1 |.start)
predecessor = finger[1].node.predecessor;
finger[1].node.predecessor = n;
fori=1to1)
if (finger[i + 1].start € [n,finger[i].node))

ASCENS 15

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

finger[i + 1].node = finger[i].node;
else
finger[i + 1].node = n’ .find_successor(finger[i + 1].start);

n.update _others()
for (i=1tom)
p = find_predecessor_incl(n — 271);
p.update_finger_table(n,i);

n.update_finger_table(s,i)
if (s € [n,finger[i].node))
finger[i].node = s;
p = predecessor;
p.update_finger_table(s,i);

We add the extract_data procedure. This procedure transfers all data now belonging to the new
node from the successor node. It is called after update_others().

n.extract_data(p,n’)
return dataMap.extract((p,n’]);

In SCEL, the join procedure is modelled by the process join(helper). Helper is an arbitrary node
already participating in the network and is necessary to initialize the fingers list of the new node.
join(helper) is split into the following tasks:

e initFingerTable - initialize finger list via helper.
e setPred - set predecessors of self and successor.
e updateOthers - update the finger lists of preceding nodes whose fingers could be affected.

o transferKeys - get dataMap parts of successor which are now stored at the new node.
Afterwards, the main node process is started.
join

Join is modelled as follows.

join(helper) £ initFingerTable(helper) - setPred - updateOthers - transferKeys

init_finger_table

Here the whole finger table including the first entry is set. The initialization of the predecessor happens
afterwards. This order does not affect the correctness. In initFingerTable there is a loop setting the
node values of all fingers by calling findSucc at the helper node.

initFingerTable(helper) £ put(“finger Table”, {newList(m)})Qself
(i : 1 — m)(setFinger(i, fingers, helper), nil)

ASCENS 16

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

setFinger(i, helper) £ get(“fingerTable”,!fingers)Qself
put(“findSuccReq”, self, {self + 2°~1})Qhelper
.get(“findSuccResp”, {self + 2°71}, fingerNode)Qself
.put(“fingerTable”, {fingers.set(i, fingerNode) })Qself

.nil

setPred sets the attributes pred and succ and registers the node at the successor as new predecessor.

setPred £ qry(“fingerTable”,!fingers)Qself
.put(“succ”, {fingers.get(1).node})Qself
.get(“succ”, lsucec)Qself
qry(

.put(“pred”, pred)Qself

.put(“pred”, self)Qsucc

13

pred” , !pred)Qsucc

.nil

update_others

updateOthers notifies all preceding nodes, that might have to update their finger table entries. To
determine the procedure callees, it uses the process fingerPredlIncl.

updateOthers £ (i : 1 — m)(updateOther(i), nil)

updateOther(i) £ put(“findPredInclReq”, self , {self — 2°~1})Qself
.get(“findPredInclResp”, {self — 2'71}, targNode)Qself
.put(“updateFinger”, self ,i)QtargNode

.nil

transfer_keys

Process transferKeys retrieves all data from the successor, that is now managed at this node.

transferKeys £ put(“dataMap”, {newMap((pred, self])})@self
.qry(“dataMap” ,!map)Qself
.qry(“fingerTable”,!fingers)Qself
.put(“succ”, {fingers.get(1).node})Qself

.get(“succ”, succ)Qself

.put(“getDataReq”, self ,{map.domain()})Qsucc
.get(“getDataResp”, { fingers.get(1).node},!data)Qself
.put(“dataMap”, {map.addAll(data)})Qself

.nodeProcess

ASCENS 17

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

auxiliary processes

To ensure the correct joining behavior, every node has to run the processes updateFinger and getDataHelper.
updateFinger is executed at nodes which might need to update their finger list.

updateFinger £ get(“updateFinger”,'newlD,i)Qself
.(updateFingerBody(newID, 1)
+
updateFingerEnd(newlID, 1))

updateFingerBody(newlD, i) = get(“fingerTable”,!fingers[newID €
[self , {fingers.get(i).node})])Qself
.put(“fingerTable”,
{fingers.set(i, newID)})Qself
qry(“pred”, !pred)Qself
.put(“updateFinger” , newlD, i)Qpred
.updateFinger

updateFingerEnd(newID, i) = qry(“fingerTable”,fingers[newlD ¢

[self,{fingers.get(i).node})])Qself
.updateFinger

getDataHelper provides functionality for extracting data out of dataMap to distribute it to new nodes.

getDataHelper = get(“getDataReq”, reqNode,
I'mapDomain)Qself
qry(“dataMap” ,'map)Qself
.put(“getDataResp”, self
{map.extract(mapDomain)})QregNode
.getDataHelper

4.3 Leaving nodes

A leaving node executes process leave to update the predecessor node of the successor and transmit
all data. The pseudocode we defined, looks like this.

n.leave()
finger[1].node.transmit_data(dataMap)
finger[1].node.predecessor = predecessor;
for i=1tom)
p = find_predecessor(n — 201);
p.clean_finger(n,i.finger[1].node);

n.clean_finger(s,i,c)
if (finger[i].node ==)

ASCENS 18

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

finger[i].node = c;
p = predecessor;
p.clean finger(s,i,c);

n.transmit_data(otherMap)
dataMap.merge(otherMap);

In the following, we describe the SCEL processes.

leave

Procedure put_data is realized by simply putting the data to the succeeding node. The receiving
process is modelled below. Then the preceding nodes are notified about the leave.

leave £ qry(“fingerTable”,!fingers)Qself

qry(“dataMap” ,'map)Qself
.put(“suce”, { fingers.get(1).node})Qself
.get(“succ”, lsucc)Qself

.put(“predData”, map)Qsucc
qry(“pred”, pred)Qself
.put(“pred”, pred)Qsucc
(i : 1 — m)(cleanUpNotify(i, succ), nil)
cleanUpNotify works similar to updateOthers in the joining case.
cleanUpNotify(i, succ) 2 put(“findPredInclReq”, self , {self — 2°71})@self
.get(“findPredInclResp”, {self — 2°71}, targNode)Qself
.put(“cleanUpFinger”, self , succ, i)QtargNode
il
Every node has to run the process leaveHelper. It simply waits for incoming data and adds it to the
local data map.
leaveHelper £ get(“predData”, \predMap)Qself
.get(“dataMap”,!map)Qself
.put(“dataMap” , {map.merge(predMap)})Qself

JeaveHelper

clean_up_finger

cleanUpFinger is the process receiving the cleanup request. It checks, if the old finger table entry is
set to the leaving node. That is decided via a nondeterministic choice. If an update has to take place,
the call is propageted backwards
cleanUpFinger 2 get(“cleanUpFinger”, leaver, !cand, i) Qself
.(cleanUpFingerBody (leaver, cand, i)
+
cleanUpFingerEnd(leaver, cand, 1))

ASCENS 19

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

cleanUpFingerBody(leaver, cand, i) = get(“fingerTable”,!fingers|leaver ==
{fingers.get(i).node}|)Qself
.put(“fingerTable”,
{fingers.set(i, cand)})Qself
qry(“pred”, !pred)Qself
.put(“cleanUpFinger” , leaver, cand, i)Qpred
.cleanUpFinger

cleanUpFingerEnd(leaver, cand, i) £ qry(“fingerTable”,!fingers[leaver! =

{fingers.get(i).node}|)Qself
.cleanUpFinger

4.4 Data Lookup

Process lookupDataClient(key) is executed for querying the data value stored at key. The node
responsible is identified and then asked for the data. This section is not part of Chord. We define the
following procedure:

n.lookup _data(key)
if (key € dataMap.domain())
return dataMap.get(key)
else
n’ = find_successor(key);
return n’.lookup_data(key);

lookup_data client

This is our lookupDataClient, which determines the responsible node by calling findSucc and then
requests the data.

lookupDataClient(key) £ put(“findSuccReq”, self, key)Qself
.get(“findSuccResp”, key, targNode)Qself
.put(“lookupDataReq”, self , key)QtargNode
.get(“lookupDataResp”, key,data)Qself

.nil

lookup_data server

In order to provide data to the network, every node has to run the process lookupDataServer. It
behaves like a simple getter procedure.

ASCENS 20

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

lookupDataServer = get(“lookupDataReq” ,reqNode, 'key)Qself
.qry(“dataMap”,!map)Qself
.put(“lookupDataResp”, key, {map.get(key)})QregNode

JookupDataServer

4.5 Data Storage

Storing a new key-value pair is achieved through the process storeDataClient(key, data). After
identifying the responsible node, the data is transmitted. This section is not part of Chord either. We
define the following procedure:

n.store_data(key,data)
if (key € dataMap.domain())
dataMap.put(key,data)
else
n’ = find_successor(key);
n’.store_data(key,data);

store_data client

The SCEL model is split up into a server and a client. The client process looks up the target and then
sends the data.

storeDataClient (key, data) = put(“findSuccReq”, self , key)Qself
.get(“findSuccResp”, key, 'targNode)Qself
.put(“storeDataReq”, key, data)@QtargNode

.nil

lookup_data server

Every node has to run a storeDataServer process, waiting for new key-value pairs to arrive.

storeDataServer = get(“storeDataReq”, key, !data)Qself
.qry(“dataMap”,!map)Qself
.put(“dataMap”, {map.put(key, data)})Qself

.storeDataServer

4.6 Stabilization

To react to node failures, the finger tables have to be checked periodically. The processes stabilize
and fix_fingers update the successor and the other fingers.

ASCENS 21

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

n.stabilize()
x = finger[1].node.predecessor;
if (x € (n, successor))
finger[1].node = x;
finger[1].node.notify(self);

n.notify(n’)
if (predecessor is nil or n’ € (predecessor, n))
predecessor =n’;

n.fix_fingers()
i = random index > 1 into finger([];
finger[i].node = find_successor(finger[i].start);

These procedures are expressed in SCEL as follows:

stabilize

A stabilizing node checks if the predecessor of the successor is itself. If not, the new node in between
is the new successor and is notified.

stabilize = qry(“fingerTable”,!fingers)Qself
put(“suce”, {fingers.get(1).node})Qself
get(“succ”, lsucc)Qself

.(newSuccNode(succ) + notifySucc(succ))

newSuccNode(succ) 2 qry(“pred”, x|z € (self, succ)])Qsucc
.get(“fingerTable”,!fingers)Qself
.put(“fingerTable”, {fingers.set(1,x)})Qself
.put(“predNotify”, self)Qx

.stabilize

notifySucc(succ) £ qry(“pred”,\z[z ¢ (self, succ)])@succ
.put(“predNotify”, self)Qsucc

.stabilize

If a node is notified about a potentially new predecessor is realized by predNotify.

predNotify 2 get(“predNotify”, 'newPred)Qself
.(predChange(newPred) + predNoChange(newPred))

predChange(newPred) £ qry(“pred”, pred[pred == nil || newPred € (pred, self)])@self
.put(“pred”, newPred)Qself
.predNotify

ASCENS 22

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

predNoChange(newPred) £ qry(“pred”, !pred[pred! = nil && newPred ¢ (pred, self)])Qself
.predNotify

fix_fingers

Process fixFinger checks if the node value of the finger table entry at given index is correct by calcu-
lating the successor of the start value again.

fixFinger(index) £ get(“fingerTable”,!fingers)Qself
put(“findSuccReq”, {self + 2\i — 1)}, self)Qself
get(“findSuccResp”, {self + 24 — 1)}, lsucc)
.put(“fingerTable”, { fingers.set(index, succ)})Qself

4.7 Main Node Process

This process contains all auxiliary processes to ensure the Chord functionality.
nodeProcess = findSucc | findPredExcl | findPredIncl
| getSucc | predFinger | updateFinger
| getDataHelper | leaveHelper | lookupDataServer

| storeDataServer | cleanUpFinger

Additionally, the following processes are called at some point by external means (timer-based or by
user action).

o storeDataClient(key,data)

lookupDataClient(key)

e leave

join(helper)

stabilize

fixFinger(index)

5 Implementing Chord

When implementing the Chord protocol in Java, we focussed on keeping the program as close as
possible to our SCEL model. In this section we explain the implementation starting with a short
description of the chosen architecture. We finish with a short usage documentation and screenshots.

5.1 Architecture

Chord is implemented in Java using the standard Java API. No external libraries or frameworks are
used to ensure that the code is easily understandable. The basic architecture is three-layered and shown
in figure |1} The classes shown in the layers represent a view into the system, they are supported by
others (see source code for a detailed view). The layers are discussed in the following subsections.

ASCENS 23

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

Graphical User Interface

ChordMNodeView ChordFingeryiew ChordMessageView ChordData\View

Care
Jobs Messages
ChordMode
Chordlob ChordUpdate
om |firgers 1 |prececessor i'_\‘ | ‘{i_\
Finger 1 EhordNodefef Put FindSuccessor ChordMessage | | FingerUpdate
rnade e wee _[:.\

Communication

CommunicatonHandler RecenverThread

Figure 1: Layered Architecture

5.1.1 Core layer

The main part of the implementation is the core, which forms the Chord layer. It contains all the
protocol logic. A node is represented by a ChordNode instance. A ChordNode object has links to its
fingers and its predecessor. To the outside, it provides the procedures put and get, which allow adding
a key value pair to the ring or removing it.

The procedures each node has to execute from time to time are ChordJob objects. Each job is a
thread which is started individually on demand, and runs concurrent to all other jobs.

Communication at this layer is realized through serializable ChordMessage objects. Each mes-
sage type is represented by its own class, which may contain additional information required for the
receiver.

Remote procedure calls are also realized through messages. If a procedure has to be run on another
node, a ChordMessage is used to trigger the required behavior. Procedures with result values can be
accessed via queries.

If a job wants to start a query and awaits remotely calculated answers, it uses ChordQuery objects.
Matching of query responses to waiting jobs happens at this layer. A node is identified by its Chord id
at the core layer and by an ip address and a port number at the communication layer. ChordNodeRef
objects which represent network identification contain these three values.

5.1.2 Communication layer

The layer underneath core is the communication layer. It provides functionality for sending UDP mes-
sages to a given receiver address. The main part in this layer is provided by CommunicationHandlers.

ASCENS 24

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1)

July 25, 2012

The class CommunicationHandler defines the method sendMessage, which serializes a given object
and sends it to a specified address. Incoming messages are received by a dedicated ReceiverThread,

which notifies about new packets via the observer pattern.

5.1.3 Graphical User Interface

The Chord implementation contains a graphical user interface for interacting with the implementation.

[100] 192.168.178.51:9000

@00

key:

data:

get

put

index
pred
0

1
2
3
4
5
6
7

start

101
102
104
108
116
132
164
228

node
34
145
145
145
145
145
145
34
34

received [notifymessage: predecessorcandidateref = 100, super = [message: dest
received [getpredecessorrequest: source = [noderef: id = 34 (192.168.178.51:9(
sent [chordnoderefresponse: targetRef = [noderef: id = 34 (192.168.178.51:900
sent [notifymessage: predecessorcandidateref = 145, super = [message: destinati
received [chordnoderefresponse: targetRef = [noderef: id = 100 (192.168.178.5"
sent [getpredecessorrequest: source = [noderef: id = 100 (192.168.178.51:900(

STABILIZE

received [chordnoderefresponse: targetRef = [noderef: id = 34 (192.168.178.51:
sent [getsuccessorrequest: source = 100, super = [chordgueryrequest: super = [c
sent [oetsuccessorreauest: source = 100. super = [chordauervreauest: super = [c

[66] this is text.
[89] hello

exit

Figure 2: Screenshot of a Chord Node

Figure[2shows the GUI of Chord nodes. The first section with textfields and buttons allows to get

and put data. The string in the key textfield will be hashed to a key.

The table below shows current predecessor and finger nodes of the node. Each finger is displayed
with its start value and the actual node which is addressed here.

The two lists below show all received and sent message as well as some updates (example: *STA-

BILIZE’) and all data that is stored at this node in the form [key] data.

The exit button on the bottom of the screen allows controlled leaves. Pressing it starts the Chord
job leave and then terminates the program.

ASCENS

25

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25, 2012

5.2 Monitoring the System

To be able to figure out what is going inside the Chord network from a global perspective, the Chord
implementation contains an additional monitoring component. Although the main Chord protocol is
strictly peer-to-peer, we add one gloabl component purely for monitoring which receives all updates
sent within the network as well, and is able to display them graphically.

A Chord monitor runs independently on a machine in the network at a certain address and port. It
receives ChordUpdates, which are sent by the nodes at relevant events like joins, leaves, data change-
ment, stabilizes and more.

ChordNode ChordNode

Comm.Handler Comm.Handler Comm.Handler

A monitor is a passive component. It only listens for updates and displays them. If data infor-
mation is incomplete, the monitor does not fetch data on its own. The flow of data in the Chord
implementation is shown in figure[5.2]

An example of the monitor UI in action is shown in figure [5.2] The middle section shows an
image of the logical ring. Here, four rings are participating. Now, node 145 is activated. The node’s
predecessor is shown in blue; its fingers are displayed in yellow to red around the ring. On the right,
the id and stored data (currently none) are displayed.

On the left of the window, a list of incoming ChordUpdates can be viewed. These updates actually
provide all information the monitor has, as stated above.

800 chord monitor
145: finger[4] = 34 idd: 145 -
145: FIXFINGER 4 ! a1,

157: predecessor = 145
145: finger[0] = 157
145: STABILIZE

100: predecessor = 34
34: finger[0] = 100

34: STABILIZE

34: finger[1] = 100

34: FIXFINGER 1

157: finger[2] = 34
145: predecessor = 100
100: finger[0] = 145
157: FIXFINGER 2

100: STABILIZE

34: predecessor = 157
157: finger[0] = 34
157: STABILIZE

100: finger[7] = 34
100: FIXFINGER 7

145: finger[6] = 34
145: FIXFINGER 6

157: predecessor = 145
145: finger[0] = 157
145: STABILIZE

100: predecessor = 34
34: finger[0] = 100

34: STABILIZE

34: finger[3] = 100

34: FIXFINGER 3

157: finger[2] = 34
145: predecessor = 100
100: finger[0] = 145
157: FIXFINGER 2

100: STABILIZE

34: predecessor = 157
157: finger[0] = 34
157: STABILIZE

100: finger[3] = 145
100: FIXFINGER 3

145: finger[2] = 157
145: FIXFINGER 2

157: predecessor = 145

ASCENS 26

TR-1202: Science Cloud: Modelling and Implementing *Chord’ (V1) July 25,2012

6 Conclusion

This document has shown how Chord, a peer-to-peer network lookup protocol, can be modelled in the
SCEL modelling language, and implemented in plain Java.

During this work, we have identified a shortcoming in the Chord protocol as discussed in section[2]
We have furthermore discussed our SCEL dialect and added some macros which might be beneficial
in the future for specifying other service components (section [3).

Our model of the Chord protocol in SCEL can be found in section 4} which also includes some
additional Chord procedures we required for fully expressing a system based on Chord (for example,
for leaving nodes). Our implementation has been discussed in section[5| where we have also described
a monitor for simplifying the visualization of the Chord ring.

References

[dANFLP11] Rocco de Nicola, Gianluigi Ferrari, Michele Loreti, and Roberto Pugliese. D1.1: Lan-
guage Primitives for Coordination, Resource Negotiation, and Task Description. AS-
CENS Deliverable, November 2011.

[GLPT12] Edmond Gjondrekaj, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. Modeling
adaptation with a tuple-based coordination language. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC *12, pages 1522-1527, New York, NY,
USA, 2012. ACM.

[SMLNT03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol
for internet applications. IEEE/ACM Trans. Netw., 11(1):17-32, February 2003.

[VRAT11] Nikola éerbediija, Stephan Reiter, Maximilian Ahrens, José Velasco, Carlo Pinciroli,
Nicklas Hoch, and Bernd Werther. D7.1: First Report on WP7: Requirement Specifi-
cation and Scenario Description of the ASCENS Case Studies. ASCENS Deliverable,
November 2011.

ASCENS 27

	Introduction
	About Chord
	Excluding and including predecessors
	Leaving nodes
	Data management

	About SCEL
	Used SCEL dialect
	Node properties
	SCEL macros

	Modelling Chord in SCEL
	Node lookup procedures
	Node Joins
	Leaving nodes
	Data Lookup
	Data Storage
	Stabilization
	Main Node Process

	Implementing Chord
	Architecture
	Core layer
	Communication layer
	Graphical User Interface

	Monitoring the System

	Conclusion

