
www.ascens-ist.eu

ASCENS
Autonomic Service-Component Ensembles

Technical Report: TR20130300 - The Science
Cloud Case Study
Technical Description of Implementation

Grant agreement number: 257414
Funding Scheme: FET Proactive
Project Type: Integrated Project
Latest version of Annex I: 7.6.2010

Lead contractor for deliverable: LMU
Author(s): Philip Mayer (LMU), José Velasco (Zimory)

Due date of deliverable: March 21, 2013
Actual submission date: March 21th, 2013
Revision: V1
Classification: PU

Project coordinator: Martin Wirsing (LMU)
Tel: +49 89 2180 9154
Fax: +49 89 2180 9175
E-mail: wirsing@lmu.de

Partners: LMU, UNIPI, UDF, Fraunhofer, UJF-Verimag, UNIMORE,
ULB, EPFL, VW, Zimory, UL, IMT, Mobsya, CUNI

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

Executive Summary

This document describes the technical implementation details of the Science Cloud Platform (SCP),
which is a platform-as-a-service cloud providing the ability to execute applications in a robust manner
while keeping to their SLAs.

The cloud consists of individual instances which may join or leave the cloud at will. Thus, the
SCP is an exercise in volunteer computing and has no central coordinator. Individual instances of the
cloud software work together to keep applications running, thus forming ensembles.

This document is a companion document to the general cloud overview given in [MKV12]. In this
document, we discuss the cloud infrastructure in terms of layers; the main scenario in use, thoughs on
application resilience, and the actual implementation of the cloud in terms of the p2p substrate Pastry.

ASCENS 2

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

Contents

1 Introduction 5

2 Cloud Infrastructure 5

3 Main Scenario 6

4 Thoughts On Application Resilience 6

5 Science Cloud Implementation 7
5.1 Basic Behaviour . 7
5.2 Executing Mode . 8
5.3 Initiator/Observer Mode . 9

6 Conclusion 9

ASCENS 3

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

ASCENS 4

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

1 Introduction

The idea of the science cloud is that of a peer-2-peer, voluntary computing based Platform-As-A-
Service (PaaS) cloud. This means we want to

deploy and run user-defined applications on the connected web of machines which form the
science cloud

With regard to the nodes in the cloud, we assume:

• Nodes may come and go with or without warning (voluntary computing / p2p)

• Node load may change based on outside criteria (voluntary computing)

• Nodes have vastly different hardware, which includes CPU speed, available memory and also
additional hardware like specialized graphics processing etc. Also, a node may have different
security levels (voluntary / p2p)

With regard to the applications, we assume that:

• An application has requirements on hardware, i.e. where it can and want to be run (CPU speed,
available memory, other hardware) (cloud computing)

• An application is not a batch task. Rather, it has a user interface which is directly used by clients
in a request-based fashion.

2 Cloud Infrastructure

The cloud infrastructure should provide the following features. We separate this description into three
levels for clarity; this does not mean that the levels can be exchanged independently; in fact, they
heavily depend on one another from an implementation side of view.

• Network Level: First of all, the nodes which form the science cloud need to know one another
(at least partially), be able to route between themselves, and be stable under adverse conditions
(i.e. nodes that are part of the science cloud leave, or new nodes are added). This means we
need network resilience (self-healing), i.e. routing still needs to work under these conditions.

• Data level: When an app is deployed, the code needs (at least in principle) be available to all
nodes which can possibly execute it; furthermore, application data needs to be stored in such
a way that resuming an application, after a node which ran it failed, is possible. We thus need
data storage with data redundancy, not only of immutable data (app code) but also of mutable
data (app data).

• Application level: Finally, apps can only run on some machines (based on app requirements)
so these must be found in the network and instructed to run an app (might be multiple nodes
at once). The apps store their data on the data storage level. If apps need to coordinate, they
can also do that via this level (i.e. a distributed database). If a node with a running instance
goes down, it must be restarted (failover) on another, fitting node. We can call this application
resilience. Furthermore, user requests to apps (request/response based, as in HTTP) must be
routed from the requesting node (user node) to the app node (executing node).

ASCENS 5

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

3 Main Scenario

The main scenario of the science cloud is based on what the cloud is supposed to do, i.e. run, and
continue running in the case of changing nodes and load, applications.

The document [MKV12] has listed three smaller scenarios which we combine here to a general
scenario which describes how the cloud manages adaptation. On top of this basic scenario, other
scenarios may be imagined which improve specific aspects such as how to distribute load based on
particular kinds of data or how to improve response times.

The basic cloud scenario focuses on application resilience, load distribution and energy saving. In
this scenario, we imagine apps being deployed in the cloud which need to be started on an appropriate
node based on its SLA (requirements). The requirements may include things like CPU speed of the
node to be run on, memory requirements, or similar things. Once the app is started, we can imagine
that problems occur, such as that a node is no longer able to execute an app due to high load (in which
case it must move the app somewhere else) or due to a complete node failure (in which case another
node must realize this and take over). Also, a node may realize it is not used anymore and, if this
ability is available due to the use of an IaaS solution, shut down. Finally, if an app is removed by a
user, it must stop executing on the cloud.

4 Thoughts On Application Resilience

The first two levels listed above have been addressed in the literature. This is often done by employing
a structured overlay network and a Distributed Hash Table (DHT), which comes in many variants.
The fundamental idea is storing data in a key-value system. Each node and each piece of data has a
key, and routing and storage takes place based on an idea of nearness between node key and data key.
There is a certain structure to the nodes based on the keys (for example, a ring structure) which allows
defining nearness, and which can be exploited for both routing and redundancy (for example, storing
k redundant copies of some data in the k nodes with keys closest to the data key).

This structure is ideal for network and data resilience, but does not work for application resilience,
since the nodes which store an application (based on key) might not be the ones able to execute it
(due to multiple different hardware requirements, like CPU speed, memory, etc.). Thus, if the node
(hardware) capacity is not in the overlay structure, it needs to be established on another layer on top
of the existing nodes. This can be done by using a two-stage approach.

• Stage 1: for each app, one node is chosen as being responsible for its execution not necessarily
executing the app itself, just being responsible that it is executed (Initiator). This node needs
to be secure against failures, i.e. if it goes down another node needs to take its place. Using a
DHT-like approach, this might be the node storing the app in which the app key is closest to the
node key.

• Stage 2: this initiator node needs to find one or multiple nodes which can execute the app
(Executor). This can be done using a voting- or bidding-like mechanism, for example the Con-
tractNet (CNet) algorithm from the multi-agent domain. A communication channel is used to
request bids for the app (based on app requirements); nodes which can execute the app reply
with a bid. The initiator node selects the best node(s) for execution and continues watching
these nodes (Observer).

The communication channel required for this approach can following a distributed publish/subscribe
mechanism. Note that a communication channel does not mean global awareness. With a proper rout-

ASCENS 6

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

ing system in place, nodes still only need to know a subset of the closest nodes in the cloud. Still, this
approach depends very much on how quickly the communication is re-established after node failures.

5 Science Cloud Implementation

The science cloud platform does not implement the first two levels discussed above (network and data),
but reuses existing work from the literature, namely Pastry [RD01b] (for the structured overlay) and
PAST [RD01a] (for the DHT). For both, an implementation exists [PD13]. In the case of PAST, we
utilize gcPAST, which is a version of PAST which allows changes to already stored data. Tombstones
are used for deleting data.

The third level, i.e. application resilience, follows the ContractNet idea for bidding laid out above
[Fou13]. It uses another Pastry component for communication: The distributed group communication
system SCRIBE [CDKR02] which uses the publish/subscribe mechanism. An implementation for
scribe is available too [PD13].

Below, we sketch the algorithm for application failover. It is a variant of the ContractNET (CNet)
algorithm used in multi-agent systems. This algorithm implements a bidding system: An initiator
sends a request for bids (to perform some task); interested entities respond by bidding for the task;
and the initiator selects one of them to perform the task.

In our case, we use continued application execution instead of tasks, thus we need to address
observation as well; furthermore, we need to address the issue that the initiator itself may fail during
observation. The following diagram shows the behavior of each node. For each application, we
separate this by three states or modes:

• The basic node behavior (which is running on every node, always active)

• The initiator/observer mode (a node may enter this mode for one or multiple applications; basic
behavior is still active)

• The execution mode (a node may enter this mode for one or multiple applications; basic behav-
ior is still active).

It is important to note that a node will ALWAYS show the basic node behavior, and will addition-
ally, optionally, also show multiple initiator/observer and execution modes depending on how many
apps are initiated and executed.

We discuss each of the modes in turn. In the following figures, a question mark denotes an in-
coming network event (request by another node). An exclamation mark at the end of a line denotes an
active operation (network send). A minus (-) denotes an internal action without network activity.

5.1 Basic Behaviour

The basic behavior is apparent on any node in the system. It may run in parallel to the other modes
(which are for one app each).

The behavior is shown in Figure 1. Lets discuss those in clockwise order.

• If we get a request for bids i.e. some initiator is asking for nodes to execute an app we decide
whether we want to bid based on our abilities and load. The bidding request will include the list
of app requirements (CPU speed, memory,) which we can check against ourselves. If so, send
a bid.

ASCENS 7

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

Standard (Basic) Node Mode

app deployed by user-
send app to appropriate initiator!

request for app exec status?
send YES if executing!

initator status activated-
start initator mode-

request for bids?

check if app requirements
match node capability-

no-
yes-

send bid!

ACK for bid received?
start execution mode-

user request for app?
yes-

route request!

No-
find executing nodes!
select best/nearest-

route request!

check if exec node is
known-

Executing Mode (for App #ID)

request by a user?
let app handle request-

send response!

every n seconds-
yes-

no-
inform initator!

stop app-
drop exec mode-

check if requirements &
load ok-

made executor for app #ID-

Initiator / Observer Mode (for App #ID)

lost initiator status?

every n seconds-
positive response?
(app is executed)

negative response/timout-
send request for bids!
start bidding timeout-

request app exec status!

made initiator for app #ID-

bidding timeout complete-
select best node(s) for execution-

send ACKs/NACKs!

Figure 1: SCP Node App Basic Mode

• If we have sent a bid before and we now get an ACK, we can start executing the app i.e. one
instance of the execution mode is started for this app in parallel.

• If our user (i.e. the user on the machine we are running) sends a request to an app in the cloud,
we check whether we already know who executes this app (and/or have a session stored). If so,
directly route the request. Else, find the executing nodes (via the initiator), select the best one
for us, and then route the request.

• If an app is deployed by our own user, deploy it on the DHT (i.e. send to initiator)

• If we get a request asking us whether we execute an app (see observer mode below), we answer
it truthfully

• If we notice that we should be initiator for an app (based on hash key nearness), we start an
instance of the initiator/observer mode for this app in parallel.

5.2 Executing Mode

Executing mode is for one app at a time, though multiple apps may be running. The behavior is shown
in Figure 2. Again, in clockwise order:

• We start this mode when we are made executor (by receiving an ACK for a bid)

• Every n seconds, we check that we still fulfill the requirements of this app, and that we are not
overloaded. If we detect a problem, we inform the initiator and shut down.

• If we receive a user request, we let the running app handle it and return a response.

ASCENS 8

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

Standard (Basic) Node Mode

app deployed by user-
send app to appropriate initiator!

request for app exec status?
send YES if executing!

initator status activated-
start initator mode-

request for bids?

check if app requirements
match node capability-

no-
yes-

send bid!

ACK for bid received?
start execution mode-

user request for app?
yes-

route request!

No-
find executing nodes!
select best/nearest-

route request!

check if exec node is
known-

Executing Mode (for App #ID)

request by a user?
let app handle request-

send response!

every n seconds-
yes-

no-
inform initator!

stop app-
drop exec mode-

check if requirements &
load ok-

made executor for app #ID-

Initiator / Observer Mode (for App #ID)

lost initiator status?

every n seconds-
positive response?
(app is executed)

negative response/timout-
send request for bids!
start bidding timeout-

request app exec status!

made initiator for app #ID-

bidding timeout complete-
select best node(s) for execution-

send ACKs/NACKs!

Figure 2: SCP Node App Executing Mode

5.3 Initiator/Observer Mode

Initiator/Observer mode is for one app at a time, though we might be responsible for multiple apps.
The behavior is shown in Figure 3.

• We are made initiator for an app by detecting that we are the node with the closest key to the
app key. This might happen on the first insert of the app or after neighboring nodes have failed.

• Every n seconds, we check that the app is running in the cloud. This is done by sending a request
for app exec status via SCRIBE. If we do not receive a positive response, we send a request for
bids (along with the app requirements) via SCRIBE, and wait for a determined amount of time

• If this amount of time (the bidding window) has elapsed, we select the best node(s) for execu-
tion. We send those nodes an ACK; all the others receive a NACK

• If we lose initiator status (for example, if the network is restructured) we stop being initiator.

6 Conclusion

This document has described the technical aspects of the science cloud case study of the ASCENS
project. The aim of the case study is to provide a proving ground for ASCENS languages, methods,
and tools in the cloud context.

The scenario has described the basic implementation on top of the p2p substrate Pastry and ac-
companying frameworks.

ASCENS 9

Technical Report: TR20130300 - The Science Cloud Case Study (V1) March 21th, 2013

Standard (Basic) Node Mode

app deployed by user-
send app to appropriate initiator!

request for app exec status?
send YES if executing!

initator status activated-
start initator mode-

request for bids?

check if app requirements
match node capability-

no-
yes-

send bid!

ACK for bid received?
start execution mode-

user request for app?
yes-

route request!

No-
find executing nodes!
select best/nearest-

route request!

check if exec node is
known-

Executing Mode (for App #ID)

request by a user?
let app handle request-

send response!

every n seconds-
yes-

no-
inform initator!

stop app-
drop exec mode-

check if requirements &
load ok-

made executor for app #ID-

Initiator / Observer Mode (for App #ID)

lost initiator status?

every n seconds-
positive response?
(app is executed)

negative response/timout-
send request for bids!
start bidding timeout-

request app exec status!

made initiator for app #ID-

bidding timeout complete-
select best node(s) for execution-

send ACKs/NACKs!

Figure 3: SCP Node App Initiator Mode

References

[CDKR02] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Rowstron. Scribe: A
large-scale and decentralized application-level multicast infrastructure. Selected Areas in
Communications, IEEE Journal on, 20(8):1489–1499, 2002.

[Fou13] Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol Spec-
ification. http://www.fipa.org/specs/fipa00029/SC00029H.html, March 2013.

[MKV12] Philip Mayer, Christian Kropiss, and José Velasco. Technical report tr20129500 - the sci-
ence cloud case study - overview and scenarios. Technical report, Ludwig-Maximilians-
Universität München, 2012.

[PD13] Jeff Hoye Sitaram Iyer Alan Mislove Animesh Nandi Ansley Post Atul Singh Miguel
Castro Manuel Costa Anne-Marie Kermarrec Antony Rowstron Sitaram Iyer Dan Wallach
Y. Charlie Hu Mike Jones Marvin Theimer Alex Wolman Ratul Mahajan Peter Druschel,
Andreas Haeberlen. FreePastry. http://www.freepastry.org/, March 2013.

[RD01a] Antony Rowstron and Peter Druschel. Storage management and caching in past, a large-
scale, persistent peer-to-peer storage utility. In ACM SIGOPS Operating Systems Review,
volume 35, pages 188–201. ACM, 2001.

[RD01b] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware ’01,
pages 329–350, London, UK, UK, 2001. Springer-Verlag.

ASCENS 10

	Introduction
	Cloud Infrastructure
	Main Scenario
	Thoughts On Application Resilience
	Science Cloud Implementation
	Basic Behaviour
	Executing Mode
	Initiator/Observer Mode

	Conclusion

