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Abstract

Today, software applications are usually not written in just one pro-
gramming language. In many cases, a general-purpose language
such as Java is combined with multiple domain-specific languages
(DSLs) for diverse purposes such as system configuration, UI de-
scription, or database querying. The artifacts defined in those dif-
ferent languages reference each other, often by name; in most cases
these references are essential for the functionality of the overall
system. This introduces problems if an artifact is refactored in any
single language, since most current refactoring tools are not aware
of language-external uses of the artifact. What is therefore needed
is extended refactoring support across language boundaries. In this
work, we explore the area of cross-language linking and refactor-
ing, and present an approach and tool which we evaluate in a sys-
tematic fashion using automated renaming and unit testing on an
open-source case study.

Categories and Subject Descriptors D [2]: 6

Keywords multi-language software applications, polyglot pro-
gramming, cross-language, refactoring, automation, DSLs, Java

1. Introduction

Arguably, any non-trivial software application today is a multi-
language software application (MLSA) [2], i.e. an application
which is written using multiple formal (programming) languages.
We shall confine ourselves in this work to the combination of one
general-purpose language (Java) with multiple DSLs. Such a setup
is usually achieved through the use of frameworks which come
equipped with a DSL, and which parse and evaluate the DSL code
at application runtime. In this paper, we use the industrial and
open-source frameworks Spring, Hibernate, and Wicket, which
each come with their own DSL(s).

Using multiple languages in one project follows the “right tool
for the job” metaphor. Expected benefits are reduced amount of
code, thus increased development speed, and (ideally) better read-
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ability and maintainability of domain-specific aspects of the ap-
plication. However, there are downsides as well, the most obvious
being the increased mental workload due to cross-language links
that must be considered in addition to the semantics of each in-
dividual language during development, program understanding ac-
tivities, and in particular, refactoring. In fact, even the existence of
cross-language links may make developers wary of changes.

As we have argued previously [3], we feel that overall the
benefits prevail, and thus that automating discovery, management,
and refactoring of cross-language links is a worthwhile endeavor.

In the following, we first discuss a case study in Section 2. Af-
terwards, we describe our approach to MLSA development automa-
tion, which is done in several phases with the end result of refac-
toring possibilities (Section 3). We discuss how we evaluated our
approach in Section 4 and summarize in Section 5.

2. Case Study

We use the open-source issue tracking system JTrac as our case
study. JTrac is a web application written in Java that uses the frame-
works Spring (a dependency injection framework), Hibernate (an
object-relational mapper with both entity definition and querying
languages), and Wicket (a HTML-based UI framework), which rep-
resent a fairly good spread of DSL use cases. JTrac uses six lan-
guages: Besides Java, these are the Spring DSL, the two languages
HBM and HQL from Hibernate, and the HTML dialect of Wicket
as well as the internal Wicket DSL in Java.

Listings 1 to 4 show examples of cross-language links (Java,
HBM, and Wicket) taken directly from JTrac.

The combination of Java with each of the frameworks separately
already creates three interesting set-ups for investigation. Having
all three inside one application leads to additional linking and
refactoring challenges, since changes may need to be propagated
across more than one language border.

First, the HBM code in listing 1 defines a persistence mapping
for the entity Item and its property summary. On the Java side, this
mapping refers to the class Item and a Java getter and setter method
in listing 2. If the property name in the mapping file is changed, the
getter and setter need to be renamed as well.

Listing 4 shows a Wicket HTML page in which an input field
is tagged with the Wicket ID summary. This identifier is first only
linked to the corresponding form class, which is shown in listing 3.

However, as the TtemForm class uses a bound compound prop-
erty model, the Wicket ID is not only used as a cross-reference
between the HTML input element and the Java-defined text field,
but additionally refers to a property of the Item object given in the
constructor, i.e. we have two additional links from the Wicket ID
definition in Listing 3 to the Java getter and setter methods of Item.
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Listing 1: Hibernate mapping

<class name="Item" table="items">
<property name="summary" column="summary"/>
</class>

Listing 2: Java domain class

public class Item {
public String getSummary () {
return summary;

}
{

public void setSummary (String summary)
this.summary = summary;
}
}

Listing 3: Wicket form class

private class ItemForm extends Form {

public ItemForm(String id, final Item item) {

super (id) ;

model = new BoundCompoundPropertyModel (item) ;
setModel (model) ;

add (new TextField("summary"));

}
Listing 4: Wicket form HTML

<form wicket:id="form">
<input wicket:id="summary"/>
</form>

To sum up, this example shows a total of five cross-language
links across two different frameworks (Wicket and Hibernate) such
that five artifacts are affected by a change in any one of them: As
an example, whenever the wicket:id attribute value of the input
field in Listing 4 is changed, all linked artifacts need to be altered
accordingly: the string literal used as text field id in TtemForm, the
getter and setter in the Item class, and transitively, the Hibernate
mapping defined for the Item class.

3. The XLL Approach

Our approach, which we call “XLL” for cross-language linking,
has the aim of creating awareness and an architecture for supporting
MLSAs within IDEs — specifically, Eclipse — in a comprehensive
approach. We feel that existing implementations (such as the tool
support for Spring, Hibernate, and Wicket) are focused on isolated
solutions (mostly, linking and refactoring between two languages
at a time). There are several reasons why we feel that a framework
approach to MLSA linking and refactoring, where additional lan-
guages “plug in” to a generic refactoring algorithm, is beneficial.

First, as our case study shows, more than two languages may be
affected when changing artifacts in a single language — even when
starting from a DSL, and even if the languages are not directly
linked. This can be supported by a language-agnostic refactoring
propagation algorithm.

Second, we believe that the work on language linking has more
to offer than just refactorings. Before we get to refactorings, there
are linking errors and warnings to consider, and we may even need
to refuse refactoring in case artifacts relevant for cross-language
linking cannot be fully resolved (detailed below).

Third, there is already refactoring support out there, especially
for Java, which can be re-used in a MLSA refactoring solution.
However, we also want to be able to start by refactoring DSLs

and thus have bidirectional refactoring support (contrary to the, e.g.
Eclipse refactoring participant approach).

We focus our work on Java and Java frameworks with DSLs
since examples of these abound, and their interactions are non-
trivial. In our three example frameworks, artifacts are linked be-
tween languages either by name (ID references) or position (due to
a parent/child relationship, or by index in an (argument) list).

The solution approach we use is a three-step process in which
the steps build upon one another.

e Language Models and Discovery. The first step consists of
discovering models from source code, leading to artifacts which
can then be linked based on their position and properties.

e Linking. The second step is a pairwise linking process which
investigates two models, identifying the framework-specific in-
duced links between artifacts.

® Refactoring. Finally, our refactoring algorithm builds on the
links discovered in the previous step. Based on changes to
artifact properties, changes are propagated across languages
until closure is reached.

Each step has its own results and benefits besides allowing the
next step to continue. We detail the three steps in the following
three sections.

3.1 Language Models and Discovery

Our aim is automating the process of linking identifiers in different
languages; i.e. our approach is not based on manual identification
of identifiers (as, e.g., in [4]). Instead, we opt for a model-based
approach, i.e. extracting the code of each individual programming
language into a model corresponding to a meta-model of that lan-
guage, and use those model artifacts for linking (another option
would have been just one meta-model across all languages, as done,
e.g., in [5]). Meta-models and discovery routines are provided by
language adapters for each individual language.

Such a meta-model of a language has been called a semantic
model [1], which is a higher-than-AST representation of a lan-
guage. It describes the concepts of the language — such as, in
Java, the fact that there are TypeDeclarations which contain
MethodDeclarations— and which ideally has all in-language
bindings resolved (such as linking a MethodInvocation to its
MethodDeclaration in Java), but is still language-specific.
The meta-model must also be source code aware, i.e. keep the
source position of each element.

Creating such meta-models requires effort; for our approach, we
require one such model for each language (here: Java, Spring, Hi-
bernate/HBM, Hibernate/HQL, Wicket/HTML and Wicket/API).
For Java, such models already exist (e.g., MoDisco); we have cre-
ated EMF meta-models for the other languages ourselves. The cre-
ation of a meta-model is not trivial, but should be no great effort
for framework developers. There are non-cross-language benefits
to such meta-models too: they can be used for other tasks such as
metrics calculation or visualization.

Once a meta-model has been created, corresponding models
need to be extracted from source code (“model discovery”). Effort
for model discovery is very different depending on the language
format. For example, Spring (in its base form) uses an XML di-
alect for describing beans and their properties. Such code is easy
to read and extract. However, things are different when we discuss
frameworks such as Hibernate and Wicket. Here, some of the rele-
vant code of the DSL is fragmented and distributed in strings within
Java code, and furthermore embedded in API calls. The identifiers
present may be called dynamic identifiers since they are created
within the control and data flow of Java.



It is, in general, not possible to find and/or resolve all identifiers
in such a context. However, since Hibernate and Wicket are cer-
tainly much-used real-life frameworks, we cannot just ignore such
identifiers either. Our approach to handling dynamic identifiers is
similar to that of Tatlock et al. [6] in that we perform a static anal-
ysis of MoDisco Java models in order to retrieve possible values of
argument expressions in specific framework method calls.

The capabilities of our implementation for finding dynamic
identifiers correspond to an interprocedural flow-sensitive analysis
over the domain of method and object environments, i.e. local vari-
able and object field bindings to either object environments, strings,
or custom entities. In terms of dataflow analysis, our static analysis
approach uses standard transfer functions for application code (cor-
responding to the semantics of Java), and custom transfer functions
for all library method calls (identity function for irrelevant calls
and transfer functions performing environment updates and custom
object manipulation for relevant framework calls).

From well-defined starting points such as all constructors inside
WicketPage subclasses in a Wicket project, we perform a single
pass over a block of statements following method invocations.
Loops are handled by performing a single pass of the loop body,
and recursive methods by skipping recursive method calls, such that
our approach will miss dynamic links fabricated through looping or
recursive program code. In the context of cross-language linking,
however, this is no severe limitation, as every link must point to a
corresponding static name in another language, and thus fabrication
of names is not encouraged in any of the frameworks.

In both Hibernate and Wicket, the representation of the object
trees created is an over-approximation of the parent-child relation-
ships actual code executions can create. Note also that in case iden-
tifiers are passed in from the outside, we may know that an iden-
tifier was used, but not which one — this information is highly
relevant for creating refactoring warnings (see below).

Although our approach to dynamic identifier resolution is sim-
ilar, our work differs from Tatlock et al. in other parts. First, their
work focuses on Java and JPA queries, where it goes beyond what
we offer (in particular, type checking of parameters). However, the
type checking concepts such as query completeness and output cor-
rectness are specific to queries, as is the summarizing as regular
expressions. The approach thus cannot be trivially transferred to
other DSLs. Our approach differs in that it encompasses three very
different frameworks and DSLs. We aim at a comprehensive, inte-
grative approach with support for plugging in DSLs, bi-directional
refactoring, and multi-language linking and refactoring support.

3.2 Linking

Having extracted the source code from each individual language
into an easily accessible model, we can now proceed to linking
identifiers from different languages. In [3] we have shown that
describing algorithms for linking identifiers between languages
is not trivial due to the freedom frameworks give to developers.
Separating this step into its own dedicated phase, different from
both model discovery before and refactoring afterwards, has proven
to be very beneficial for us since it clarifies and precisely defines
the linking problem as such.

In our approach, a linker creates links between two languages at
a time, for example Java and Hibernate HBM (see Listings 1 and 2).
The task of the linker is thus to investigate the input models based
on the rules given by the framework looking for artifacts which
reference one another. In the example, this would mean linking
the HBM class artifact with the name Item in the first listing to
the class Ttem in the second listing (considering fully qualified
names, etc.). Other examples include linking constructor arguments
by index to method parameters, Wicket HTML identifiers to Java
strings (considering parent/child relationships), and so on.

All of the languages we have looked at have a strong hierarchi-
cal structure. In Spring, beans contain properties and constructor ar-
guments. In Hibernate, classes have IDs, properties, collections; in
Wicket, pages have components which may be nested. This struc-
ture is important for linking as well, since nested artifacts may only
be linked in the context of their relevant parents.

Linking may also fail. That is, the linker code must include
mechanisms for identifying if and where an artifact has no corre-
sponding element on the other side of the language gulf. This may
then yield warnings or errors which can be presented to the user —
a benefit of linking, even without considering refactorings. For re-
solved (successful) links, the benefit is enabling visual annotation
and allowing navigation right in the IDE.

A linker is only ever responsible for linking two languages at a
time. However, one language may be linked in multiple directions
with multiple linkers, thus we can later propagate changes through
the linked artifacts without requiring linkers between all languages.

Again, writing such linkers means effort. Of course, individual
framework code already contains algorithms for these links, but
they may or may not be readily accessible or usable in this con-
text. A deep knowledge of the framework involved is certainly a
requirement for writing a linker.

3.3 Refactoring

One goal of the XLL framework identified above was creating
a generic framework for refactoring across language boundaries.
Based on the links identified in the previous section, there is actu-
ally not a lot more required for adding this functionality. As pointed
out already, we restrict ourselves to rename refactorings: We only
consider links based on names (identical or transformed).

To enable refactorings, we need to be aware of the artifact
properties whose change may lead to cross-language refactor-
ing; this information is implicit in the algorithm required for
linking in the previous step. An example would be the informa-
tion that WicketElement .name is linked to MethodDec—
laration.propertyName (where propertyName is the
bean name of the property, i.e. without the get- or set- prefix).

Given this information, we know which changes to propagate
through each link. Thus, we can design a generic refactoring algo-
rithm in the XLL framework which, given a single original prop-
erty change from the user, can traverse all links from artifact prop-
erty to artifact property until a transitive closure of changes has
been reached. This leads to a number of artifact property changes
in a number of languages which then need to be transferred — by
language-specific refactoring routines — to actual text edits.

The latter task (along with forwarding a refactoring invoked by
the user in the first place) falls again to the language adapters. Each
language adapter is handed the artifacts and properties which need
to change after the XLL algorithm has been run, and will invoke
language-local refactorings. For example, if the name of a Java
ClassDeclaration was changed, the Java language adapter
will invoke the Rename Type refactoring which may lead to many
text edits, a compilation unit rename, etc.

An example of a refactoring propagation has been given in Sec-
tion 2, where renaming a Wicket identifier leads to renaming Java
methods, which in turn leads to renaming properties in Hibernate.

A refactoring may not always be possible: There may be condi-
tions in which we need to warn the user about possible side-effects,
or prevent him from executing a refactoring. As an example, the
JTrac project contains a HQL query in which the name of a property
is injected and is thus unknown to the model discoverer (" SELECT
from Item i where i." + getName() + "..."). In
this case, model discovery must store information about the non-
resolvability of some property of Item. In refactoring, we must
then flag all properties of class Item as potentially problematic,



and thus warn the user about possible problems (as, e.g., the Java
rename refactoring does in case of parsing errors).

Again, implementing refactoring support in each language re-
quires effort, which however is in this case less than in the previous
two steps. Identifying which artifact properties are linked is a by-
product of creating the linker; the only thing left is plugging into
and invoking pre-existing language-specific refactorings. This ob-
viously only holds if the refactorings exist in the first place, which
is not the case in most DSLs, where they have yet to be created.
However, since many DSLs are (in themselves) quite simple, this
is less of an effort than in languages such as Java.

4. Implementation and Evaluation

Our implementation of the XLL approach' covers all three of the
above steps for the three frameworks discussed. All subsequent
numbers are taken from the JTrac case study.

A key concern for us was how to validate if the model discov-
ery, linking process, and the refactorings we carry out are actually
correct. In the case of discovery and linking, we had to manually in-
spect each artifact to make sure none are missing, and all are either
reported as errors or linked correctly. With regard to refactoring, we
have been able to automate validation with the same approach as in
“normal” refactorings: By using unit tests. For each language pair-
ing, tests were created which covered both languages under test,
succeeding if cross-language links were correct, failing if not.

We used the following experimental setup which was run on all
identified links in all languages within JTrac.

1. All tests were run on the unchanged original code of the case
study. The tests were expected to pass.

2. Only the artifact on the left-hand side of the link was renamed.
Then, the tests were run again and were expected to fail. The
change was then undone.

3. Only the artifact on the right-hand side of the link was renamed.
The tests were run and were again expected to fail. The change
was undone.

4. Finally, the multi-language refactoring algorithm was run on the
link. The resulting changes were then executed in all languages,
i.e. all relevant artifacts renamed. The tests were run again and
were expected to pass. The change was again undone.

The result from the tests are shown in table 1. The column
L shows the total amount of links found in the system; all of
which were refactored. As mentioned above, we can warn the
user if a refactoring might fail due to missing identifiers; thus,
the next two columns show the number of refactorings run despite
warnings. Of those, some succeeded (i.e., the tests passed) due to
the overapproximating nature of the warnings (W/O), and some
actually lead to test failures (W/F). There were no test failures for
links for which no warning was given.

The last two columns show the mean value of the number of
artifact changes (@A) and resulting text changes (@T) in each link.

As can be seen, the number of successfully executed refactor-
ings is rather high (around 90%). In 45% of cases, more than two
languages were involved, with a maximum of five (since the Spring
artifacts were disjunct from all others). As said above, in no case
did the tests fail without warning — however, there were a number
of refactorings (around 27%) for which warnings were given which
were in fact unnecessary. In each case, the reason are unknown (that
is not fully resolvable) identifiers, which is a limitation of the model
discovery routines.

'www.xllsrc.net

Table 1: Refactoring Results

Source Target ‘ L ‘ W/O‘ W/F ‘ OA ‘ aT
Spring and Java

Bean Class/Method| 34 0 0 21 | 55
Property Method/Field| 70 | O 0 22 | 24
Hibernate/HBM and Java

Entity Class 13 0 0 72 | 77.6
Property Method/Field | 258 | 78 98 87 | 11.3
Hibernate/HQL and Hibernate/HBM

Ent. Ref. Entity 68 |0 0 244 | 127
Prop. Ref. | Property 370 | 295 | 8 81.5] 48.8
Wicket-API and Wicket-HTML

Class Page 46 0 0 2.0 | 6.7
Widget Element 489 | 10 0 5.8 | 33
Wicket-API and Java

Element | Method [ 199 [ 35 [ 17 [ 114] 162

We conclude that for frameworks making use of static identi-
fiers (Spring, Hibernate/HBM), the approach chosen leads to full
refactoring coverage. For frameworks with dynamic identifiers (Hi-
bernate/HQL, Wicket/HTML, Wicket/API), we run into the usual
analysis problems but are, at least for the case study and the chosen
frameworks, able to identify unknown identifiers and warn the user.

5. Summary

This paper has shown an investigation into cross-language linking
and refactoring between Java and DSLs used by Java frameworks;
in particular, the frameworks Spring, Hibernate, and Wicket. We
believe that support for developers in this area leads to better code
understanding, less errors, and better maintainability of software.

We feel that multi-language linking and refactoring has not yet
received the attention it deserves. The number of programming
languages is already rather high, and with the advent of language
workbenches will rise even more. Furthermore, there will always
be legacy languages to be integrated.

As a long-term objective, we plan to investigate guidelines for
how to best deal with cross-language links, which includes how to
write frameworks which let developers reap the benefits of DSLs
while still being amenable to analysis and refactoring.
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