
Getting Ready Web Engineering Methods for the Semantic Web.
Putting Ontologies into Practice.

Victoria Torres1, Joan Fons1, Oscar Asensi2 y Vicente Pelechano1

1Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n
46022 Valencia

{vtorres, jjfons, pele}@dsic.upv.es

2Departamento de Lenguajes y Sistemas Informáticos.
Universidad de Alicante.

Campus de San Vicente del Raspeig.
Apartado 99. 03080 Alicante. España.

oasensi@dlsi.ua.es

Abstract. Current Web Engineering methods develop "closed" web applications from conceptual models.
This fact makes difficult the integration and the interoperability of different web applications. In this
context it is necessary to establish a technological framework where the application data and functionality
could be represented and shared between different web applications. Semantic web languages provide an
appropriate framework to achieve these non-functional requirements. Ontologies are proliferating to enable
interoperability between Internet-connected applications. Web Engineering methods should be prepared to
face up this new challenge. A first attempt in this community is based on the transformation of conceptual
schemas into ontologies. This strategy does not take into account navigational and presentation models.
This work takes advantage from all these models (navigational and presentation) enriching the web
implementations with all the knowledge gathered during the modeling and design process. Our approach
provides different ontologies as a basis to enable a more fruitful interchange of knowledge between web
applications. We provide a semantic representation of web applications that enables not just to merely
access to static information. We also provide a navigational ontology that can be queried through the use of
a semantic query language.

Keywords. Web Engineering; Conceptual modeling, Semantic Web, Ontologies, UML.

1. Introduction

From a methodological point of view, the most outstanding approaches (OOHDM [11], WebML [1], OOH [4],
WSDM [2], UWE [5], etc.) focus their efforts on defining web applications from conceptual models that allow
them to systematically obtain closed implementations. These approaches provide abstraction mechanisms that
make it easy to conceptualize and develop the web applications allowing the analyst to specify hypermedial
and functional requirements. The mechanisms for hypermedia modeling allow the analyst (1) to define web
pages as conceptual schema views and (2) to interconnect these views to define the navigational structure of
web applications.

Web engineering methodologies end up with closed software applications. This fact makes difficult to
integrate different web systems that should desirable to be cooperating somehow. Then, it is necessary to
establish a framework where the application domain schema, data and functionality could be represented and
shared between all these different systems. In this context, the semantic web languages provide an appropriate
framework to make all this information available to any web system.

It is well known that the Semantic web is supposed to be the next web generation [12]. But until this new
generation could be considered as a fact, more research and work has to be done in this area. If ontologies
proliferate and consolidate to enable unprecedented interoperability between Internet-connected devices web
engineering community has to be prepared to face up this new challenge and not to fall behind.

Transforming models produced during the Web development process into a semantic web language is a first
attempt to get ready for the next web generation. With this work done, at least we will be able to share
knowledge between a set of web applications developed for the web environment. Usually, those approaches
taken by web engineering researchers (SHDM [6]) are based only on the conceptual models, not taking into
account other models developed during the web engineering process. The proposal introduced in this work is
based on the idea of making advantage from all models (including navigational and presentation model)
specified during the web development process.

The main contribution of this work is to enrich the web implementations with all the knowledge gathered
during the modeling and design process, providing different ontologies as a basis to enable a more fruitful
interchange between systems. Once we have a semantic representation of web applications we will be able not
just to merely access to static information but as a next step to automatically locate, select, employ, compose
and monitor Web-based services.

The rest of the paper is structured as follows: section 2 shows how the web is evolving and how web
engineering methodologies have to adapt in order to deal with this new situation using semantic web languages
as the key element. Section 3 briefly presents the navigational concepts of a web application by means of a
metamodel. Then, it is presented the transformation of this metamodel into a specific semantic web language.
An example for querying some navigational properties is also shown. Finally, section 4 gives some
conclusions and presents further work.

2. The role of the Semantic Web in Web-Engineering Methods. The
Ontology way

As the Web is evolving into a new generation, the kind of applications developed for this environment has to
be adequate to this change. This indeed means methodologies developed to create web applications have to
face this change in some way. Nowadays web application designers are entrusted to build distributed and
interoperable systems. To do this in a more accurate way it is necessary to provide a semantic description
about all data and functionality that is accessible through the web.

It has been suggested that there exists a classic chicken and egg situation with the Semantic Web; i.e. without
applications using semantics no one will build semantic content and conversely without content no one will
build applications. Just like the original appearance of Web sites, early adopters of the new technology
benefited and were better prepared for when the Internet medium matured. Early adopters of semantic web
technologies can benefit today while at the same time preparing for the future. If web methodologies make an
effort to deal with the Semantic Web, they will both contribute to the development of the semantic web
generation and will be prepared to attend any semantic web consumer.

Nowadays, our web applications cannot be completely closed as they were built until now. It is very important
to provide in a structured and schematic way the data and functionality that our systems are dealing with.
Moreover, to ensure that consumers are doing a proper use of this data and functionality it is necessary to
provide some semantics associated to all these information. It is essential when we are thinking that our
applications will be integrated in a more complex system, made up of different and existing applications.

Web application methodologies are fairly ready to share all its data and functionality because they work based
on conceptual models that gather all the domain information about the system intended to build [10]. All they
have to do is defining a strategy pot “put in practice” the gathered concepts at conceptual level introducing
them at implementation level using the semantic web concepts.

The research community is doing a great effort developing languages and technology to contribute in the
development of the Semantic Web. As result languages as RDF, RDF-S, DAML+OIL or OWL has been
developed in order to represent semantic information about arbitrary resources. These languages usually
provide mechanisms for describing groups of related resources and the relationships between these resources.
These languages are designed to be used by applications that need to process the content of information instead
of just presenting information to humans.

In particular, the OWL Web Ontology Language (OWL [8]) has more expressive power than earlier W3C
languages. It adds more vocabulary for describing properties and classes (among others, relations between
classes, cardinality, equality, richer typing of properties, characteristics of properties and enumerated classes).
It enables the creation of ontologies for any domain and the instantiation of these ontologies in the description
of specific Web sites. This language (1) can be used to formalize a domain by defining classes and properties
of those classes, (2) define individuals and assert properties about them, and (3) reason about these classes and
individuals to the degree permitted by the formal semantics of the OWL language.

Analyzing the models produced in web engineering it is almost commonly agreed the necessity of at least three
models. These models are: the conceptual1, the navigational and the presentation model. The Conceptual
Model is aimed to describe the domain of the system being developed. This means, describing the concepts and
the relationships existing between all of them. The Navigational Model specifies the navigation semantics
associated to the system users. Web sites and portals are used today to provide different views of an
enterprise’s data and processes, getting the right data to the right user at the right time. This idea encourages us
to say that navigational ontologies could help data consumers to access the right data and to place the content
in the right place. Finally, the Presentation Model is aimed to organize the views defined for each kind of user
in a specific fashion.

At this point we should ask ourselves which of these models are interesting to get transformed into these
semantic web languages. Depending on what kind of information we want to be made available it is interesting
to transform some of them.

It is quite clear that the conceptual model should be published in order to provide consumers the concepts our
system is about. In fact, this is the first step followed by all these web developers that want to provide semantic
knowledge of their web sites. Then, no one should doubt about the importance of this model.

Regarding to the navigational model we initially could doubt about the importance of mapping this
information into semantic web languages. But we think this model can help data consumers in the way of
making clear issues such as “to who is suitable this information (what kind of user)” or “which would be the
most interesting way to access some specific data”.

The presentation model can be seen as a proposal made by the designer (who is supposed to have a deep
knowledge in the system domain) where it is specified some presentation requirements (based on predefined
patterns such as layout, information paging, ordering, etc.) of web applications to obtain the final web
interface.

Making all these semantics available, web application methodologies will be able to produce artefacts not just
as isolated systems, instead as set of data structured accessible and understandable by others.

As it is said previously in this section, web-engineering methodologies are based on models that gather all
different requirements collected during the initial development phases. These models can be quite easily

1 called Conceptual Schema in the Information Systems Modeling Area

mapped to semantic web languages because these kinds of languages have enough expressiveness to
characterise the elements and constraints modelled in the web-engineering models.

OWL provides elements to represent classes, properties, instances of classes and relationships between these
classes. Relationship properties such as cardinality constraints can also be represented in OWL through
property constraints (see in section 3 some of these transformations). Then, this kind of information can be
directly transformed into OWL.

However, there exists some information that cannot be mapped so easily. This is the case of complex datatypes
or constraints defined in a language such as OCL. Complex datatypes again have to be artificially transformed
into classes providing them the same importance degree as a real class. Constraints usually give important
information that has to be considered when manipulating the class diagram. At this moment, this information
only could be included in OWL as a property defined as a string.

Next two sections show in detail a study about the kind of knowledge that can be extracted from the
conceptual, navigational and presentation models.

Extracted Knowledge from Conceptual Models
The conceptual model describes the conventional application necessities through the use of OO models.
Specifically, class diagrams are designed to represent the static part of the real world that is intended to
automate. Usually, this diagram is a model composed mainly by classes and relationships. So, the class
diagram provides the ontology that describes the content of the system in a formal shared representation of a
domain. The dynamic behaviour of the system is represented by the dynamic and functional models. They
provide primitives to represent operations, event pre and post conditions, transactions, triggers, etc.

Extracted Knowledge from Navigational Models
Current Web Engineering approaches (OOHDM [11], OOH [4], WSDM [2], UWE [5], etc.) extend classical
Software Engineering methods by introducing some kind of navigational model to specify the navigational
characteristics of web applications. This model defines the navigational view of the system and it is related to a
group of users. Usually, navigational descriptions are represented by graphs specifying the connected views
over the data and functionality defined in the structural and behavioural model. Nodes of these graphs
represent system views and those nodes can be related by means of navigational links. Also, when it is
necessary, access structures (such as indexes, guided tours, data search mechanisms, etc.) can be defined to
speed up the information exploration.

This model captures some knowledge that would be very interesting to share with other applications:

 Which is the most suitable way to access some data? Which sequence of navigational links and
navigational nodes can be followed to access some data and functionality? It is important to remark
that this information cannot be obtained from the class diagram, because in this diagram we do not
explicit the best way of traversing the structural relationships for each specific user. Some
methodologies argue that navigational links has not always to be related to structural relationships
from the class diagram. So, in those cases, the importance of the extracted knowledge from this model
is clearer.

 Which is the most suitable element (anchor) to access some data? When representing a resource, in

terms of the domain knowledge or static personalization, it is useful to know which property has
enough semantics to represent the resource itself.

 In which navigational nodes is correct (semantically speaking) to present some data? Navigational
nodes gather related information that has sense to be available all together. At the same time, some
data can be suitable in different navigational nodes. These nodes include related data that should be
presented together from the analyst or system designer point of view.

 Which are the most appropriate ways to distribute/present data and functionality to each kind of use?

The navigational nodes give this information for each kind of user. Usually, the distribution of the
data and functionality for each kind of users depends on the system specific requirements (who can
see some properties and who can execute some functionality).

 Which is the most appropriate view of the conceptual schema to be presented to each kind of user?

Navigational nodes give this information distributing data and functionality in a different way to each
kind of user.

 Which access structures and searching mechanisms are defined to browse the huge amount of data?

Search mechanisms or access structures (such as indexes) are required to access huge amount of data
based on some data properties.

Extracted Knowledge from Presentation Models
The presentation model captures the abstract requirements of data presentation. For instance, this model could
provide information such as the most appropriate information arrangement, some properties ordering criteria or
whether data is provided gradually or all at once.

Although all three models provide interesting information for very different issues during systems
interoperability, in this work we focus just on the navigational model, which adds some value to data and
functionality consumers that is not usually taken into account.

3. From Navigational Models to Ontologies

From the software engineering field, the natural way of describing concepts and properties has commonly been
done by using models with a precise semantics. Moreover, meta-models have been used to build specific
models within a domain of interest. In these terms, the OOWS [3] web engineering method has developed a
navigational metamodel that describes the navigational primitives (terms, concepts, relationships) which define
a navigational domain. This precise semantics can be described in any ontological language, commonly
represented in UML[13] (conceptual schemas) and in a web environment using a semantic web language [10].

It would be desirable to have a public navigational ontology that could be extended by other ontologies in
order to provide additional definitions. So, this lack encouraged us to made available the OOWS navigational
metamodel as a navigational ontology accessible to anyone.

Metamodeling Navigational properties
Metamodeling has been a very popular way to define the concepts of specific domain ontologies and
unambiguously establish the relationships between those concepts. The UML[13] is the most used metamodel
notation in the Object Orientation field of research.
This section introduces a Navigational Metamodel that takes into account the navigational properties of web
applications following the Web Engineering principles [7]. This metamodel represents the concepts of the

OOWS approach [ER2003], an Object Oriented method that use conceptual models as basis to develop web
applications.
The navigational model of a web application is defined by a set of navigational maps. Each navigational map
structures the navigational view of the system for a specific kind of user. A navigational map is made up of a
set of navigational nodes (called navigational contexts) and navigational links. A navigational context
represents a view over the class diagram. Navigational link define valid node attainability inside the
navigational map (graph).
A navigational context is made up of a set of navigational classes and navigational relationships. A
navigational class represents a view over a set of attributes and operations of a class from the class diagram. A
navigational relationship defines a requirement for retrieving some related data using a structural relationship
(association-aggregation-composition or specialization-generalization) at the class diagram.

User

especialized_user *

especializing_user

0..1name
Nav_Map

belongs_to_user

1has_maps

*

reachability={E,S}
name

Nav_Node

Nav_ContextNav_Subsystem

is_contextual
AIU

filter
Nav_Class

Nav_Relationship

Context_RelContext_Dep_Rel

CDM:Class

CDM:Attribute

CDM:Operation

Nav_Attribute

Nav_Operation

has_nodes *
belongs_to_map

1

has_nodes

*

appears_in_subsystem

*

has_aius 1..*

appears_in_context *

has_managerclass
1

belongs_to_aiu

1

Manager_Nav_Class Complementary_Nav_Class

has_complementaryclasses *
belongs_to_aiu 1

has_attributes

*

belongs_to_navclass

1

has_operations
*

belongs_to_navclass
1

CDM:Relationship

CDM:Class

*
1

*

1

*
1*

1

*
1

is_source_in_relationship

*

source_class

1

is_target_in_relationship

*target_class

1
has_navrelationships *

belongs_to_aiu

1

is_link_attribute_in_contextrel*

link_attribute

1

*

target_context

1

is_contextual
Service_Link

reachable_using_servicelink

*

target_context

1

defined_over_operation

1

service_link
0..

1

OOWS: SearchMechanisms

defined_in_aius

1

has_sm

*

Figure 1 - Portion of the OOWS Metamodel

Navigational properties representation in OWL
Domain schemas or ontologies can be expressed as sets of triples using the classes and properties defined in
the semantic web languages (RDF-S or OWL). One thing to take into account when mapping from object-
oriented models (i.e. UML) to OWL is that OWL properties are first-class objects and are not defined within
the context of a particular class. So, it is necessary to provide mapping mechanisms to avoid conflicting range
declarations when the same property is used to represent a field in two different classes. This can be solved by
prefixing each property name with the name of the class to which belongs.

Figure 2 shows part of the OWL representation of the navigational metamodel.

...
 <!-- Class Navigational Context -->
 <owl:Class rdf:ID="Nav_Context">
 <rdfs:label xml:lang="en">Navigational context</rdfs:label>
 <rdfs:label xml:lang="es">Contexto navegacional</rdfs:label>

 <rdfs:subclassOf rdf:resource="#Nav_Node" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_aius"/>
 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- Navigational Context properties -->
 ...
 <owl:ObjectProperty rdf:ID="has_aius">
 <rdfs:domain rdf:resource="#Nav_Context"/>
 <rdfs:range rdf:resource="#AIU"/>
 </owl:ObjectProperty>

 <!-- Class AIU -->
 <owl:Class rdf:ID="AIU">
 <rdfs:label xml:lang="en">Abstract Interaction Unit</rdfs:label>
 <rdfs:label xml:lang="es">Unidad de interacion abstracta</rdfs:label>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_manager_nav_class"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:ObjectProperty rdf:ID="has_manager_class">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#AIU"/>
 <rdfs:range rdf:resource="#Manager_Nav_Class"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_complementary_class">
 <rdfs:domain rdf:resource="#AIU"/>
 <rdfs:range rdf:resource="#Complementary_Nav_Class"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="has_nav_relationships">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 <rdfs:domain rdf:resource="#AIU"/>
 <rdfs:range rdf:resource="#Nav_Relationship"/>
 </owl:ObjectProperty>

 <!-- Class Navigational Class -->
 <owl:Class rdf:ID="Nav_Class">
 <rdfs:label xml:lang="en">Navigational class</rdfs:label>
 <rdfs:label xml:lang="es">Clase navegacional</rdfs:label>
 </owl:Class>

 <!-- Navigational Class properties -->
 ...
 <owl:ObjectProperty rdf:ID="is_source_in_relationship">
 <rdfs:domain rdf:resource="#Nav_Class"/>
 <rdfs:range rdf:resource="#Nav_Relationship"/>
 </owl:ObjectProperty>

 <!-- Class Manager Navigational Class -->
 <owl:Class rdf:ID="Manager_Nav_Class">
 <rdfs:label xml:lang="en">Manager navigational class</rdfs:label>
 <rdfs:label xml:lang="es">Clase navegacional directora</rdfs:label>
 <rdfs:subclassOf rdf:resource="#Nav_Class" />
 </owl:Class>

 <!-- Manager Class properties -->
 <owl:ObjectProperty rdf:ID="Manager_Nav_class.belongs_to_aiu">
 <owl:inverseOf rdf:resource="#has_manager_class" />
 </owl:ObjectProperty>

 <!-- Class Navigational Relationship -->
 <owl:Class rdf:ID="Nav_Relationship">

 <rdfs:label xml:lang="en">Navigational relationship</rdfs:label>
 <rdfs:label xml:lang="es">Relacion navegacional</rdfs:label>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#related_to_structural_relationship"/>
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <!-- Navigational Relationship properties -->
 <owl:ObjectProperty rdf:ID="target_class">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="#Nav_Relationship"/>
 <rdfs:range rdf:resource="#Complementary_Nav_Class"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="source_class">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="#Nav_Relationship"/>
 <rdfs:range rdf:resource="#Nav_Class"/>
 </owl:ObjectProperty>
 ...

 <!-- Class Context Relationship -->
 <owl:Class rdf:ID="Context_Rel">
 <rdfs:label xml:lang="en">Context relationship</rdfs:label>
 <rdfs:label xml:lang="es">Relacion de contexto</rdfs:label>
 <rdfs:subclassOf rdf:resource="#Nav_Relationship" />
 </owl:Class>

 <!-- Context Relationship properties -->
 <owl:ObjectProperty rdf:ID="target_context">
 <rdf:type rdf:resource="&owl;FunctionalProperty" />
 <rdfs:domain rdf:resource="#Context_Rel"/>
 <rdfs:range rdf:resource="#Nav_Context"/>
 </owl:ObjectProperty>
 ...

 </rdf:RDF>

Figure 2 - Part of OOWS Metamodel representation in OWL

Once we have the navigational metamodel represented into a semantic web language we can instantiate it to
define the adequate navigability for each kind of user. Next section shows an example about the sort of
questions that can be queried to the navigational metamodel.

Extracting Navigational Knowledge
In this section we introduce a research group web site as an example to show how the ontology can be queried
through the use of a semantic query language. For this purpose we use the OWL-QL query language which is
intended to be a candidate standard language and protocol for query-answering dialogs among Semantic Web
computational agents. As it is not the objective of this work to give the details of this semantic query language,
more information about this project and the syntax overview is available at [9].

Figure 3 shows a portion of the specification of the navigational properties related to the Member kind of users
for the web application of the example. The navigational capabiblities for this user are represented in a
Navigational Map on the left side of the figure. This map defines node (context) accessibility. On the right side
of the figure, it is shown the detailed description for the Members context. This context shows the partial view
over the class diagram that Member users will have when he navigates to this node.

<< context >>
Members

+modify_personal_data()

-name
-surname
-isDoctor
-web
-photo
-email

«view»
Member

-phones
-status

«view»
WorkOn

-name
-acronym

«view»
ResearchGroup/ Leader /

[Groups]

E

INDEX: by_Group
PROPERTY: ResearchGroup.name
RESULTS:
LINK-ATTRIBUTE: name, surname

Results View

-name
-address
-web
-city
-state
-country

«view»
Entity

ResearchGroup.name

FILTER: by_Surname
CONDITION: surname LIKE param
RESULTS:
LINK-ATTRIBUTE: name, surname

-name
-surname
-email

«view»
Member

-status

«view»
WorkOn

not hasGone

Figure 3 - Research Group Web Site Member Navigational Map and Members context

Now, we show how those conceptual navigational properties could be represented in the OWL semantic web
language.

...
<nm:User rdf:ID="Member">
 ...
</nm:User>

<nm:Nav_Map rdf:ID="Nav_Map_Member">
 <nm:belongs_to_user="#Member"/>
 ...
</nm:Nav_Map>

<nm:Nav_Context rdf:ID="Groups">
 <nm:belongs_to_map="#Nav_Map_Member"/>
 ...
</nm:Nav_Context>

<nm:Nav_Context rdf:ID="Members">
 <nm:belongs_to_map=”#Nav_Map_Member”/>
 <nm:has_aius rdf:resource="#aiu_member"/>
 ...
</nm:Nav_Context>

<nm:AIU rdf:ID="aiu_member">
 <nm:has_managerclass rdf:resource="#Member"/>
 <nm:appears_in_context rdf:resource="#Members"/>
 ...
</nm:AIU>

<nm:Manager_Nav_Class rdf:ID="Member">
 <nm:Manager_Nav_Class.belongs_to_aiu rdf:resource="#aiu_member"/>
 ...
</nm:Manager_Nav_Class>

<nm:Context_Rel rdf:ID="Context_Rel11">
 <nm:source_class rdf:resource="#Member"/>
 <nm:target_class rdf:resource="#RGroup"/>
 <nm:target_context rdf:resource="#Groups"/>
 ...

</nm:Context_Rel>

<nm:Nav_Context rdf:ID="Activity">
 <nm:belongs_to_map="#Nav_Map_Member"/>
 <nm:has_aius rdf:resource="#aiu_activity"/>
 ...
</nm:Nav_Context>

<nm:AIU rdf:ID="aiu_member">
 <nm:has_managerclass rdf:resource="#Activity"/>
 <nm:appears_in_context rdf:resource="#Activities"/>
 ...
</nm:AIU>

<nm:Manager_Nav_Class rdf:ID="Activity">
 <nm:Manager_Nav_Class.belongs_to_aiu rdf:resource="#aiu_activity"/>
 ...
</nm:Manager_Nav_Class>

<nm:Context_Rel rdf:ID="Context_Rel21">
 <nm:source_class rdf:resource="#Activity"/>
 <nm:target_class rdf:resource="#RGroup"/>
 <nm:target_context rdf:resource="#Groups"/>
 ...
</nm:Context_Rel>
 ...

Figure 4 – Semantic representation of a piece of web application

As we said in section 2, with the navigational ontology we want to provide extra information about web
applications. For instance, it could be interesting to some kind of user to know which nodes (contents) have to
be traversed to get a specific piece of information.

Taking as example the knowledge presented in the previous figure we can think about the following question:
From which nodes an Member user has to navigate to reach the content of the research group”? Figure 5
shows the query pattern that represents this question.

 Query Pattern:{(target_context ?c_rel ?t) (Nav_Context.name ?t Group)
 (source_class ?c_rel ?n_class)(belongs_to_aiu ?n_class ?aiu)
 (appears_in_context ?aiu ?n_context)
 (belongs_to_map ?n_context ?n_map)
 (belongs_to_user ?n_map ?user)
 (User.name ?user Member)}
 Must-Bind Variables List: (?n_context)

Figure 5 – Example of a semantic query

The previous figure shows the query formulated in OWL-QL. Although this query can be translated into an
XML syntax [9], we rather prefer to present the query just as OWL-QL to clarify the example.

4. Conclusions and Further Work

In this work we have argued that web engineering methodologies have to adapt to provide applications that
deal with the new scenarios that are appearing in the next web generation. To achieve this goal, web
engineering methodologies should enrich their implementations reusing the knowledge gathered in its own
models. Making this knowledge available to others facilitate the interoperability between distributed and

heterogeneous web systems. We have studied in what way these models are useful to provide the required
interoperability mentioned above.

It is also studied how the developments done in the semantic web can help to achieve this new challenge and
which languages seem to be suitable to represent this knowledge. Finally, it is presented a semantic web
representation of the navigational metamodel and how a navigational schema can be queried trough the use of
a semantic web query language.

As ontologies deal with consensus it would be interesting to associate different navigational ontologies or
establish a web site ontology and then extend it with the peculiarities of each method. Web engineering
methodologies will also have to change to provide web service definition to complete the interoperability
scenario. In this direction a collaborative effort made by researchers at several organizations have end up in the
OWL-S language. Then, users and software agents will be enabled to automatically discover, invoke, compose
and monitor Web resources offering services under specified constraints.

5. References
[1] Ceri S., Fraternali P., Bongio, “A. Web Modeling Language (WebML): a Modeling Language for Designing Web

Sites”. In WWW9, Vol. 33 (1-6), pp 137-157. Computer Networks, 2000.
[2] De Troyer O. and Leune C. “WSDM: A user-centered design method for Web sites”. In Proc. of the 7th International

World Wide Web Conference, 1998.
[3] Fons J., Pelechado V., Albert M. and Pastor O. “Development of Web Applications from Web Enhanced Conceptual

Schemas”. Proc. Of the International Conference on Conceptual Modelling, 22nd Edition, ER'03, pp 232-245. Chicago,
EE.UU, 13 - 16 October 2003..

[4] Gómez J., Cachero C., and Pastor O. “Extending a Conceptual Modeling Approach to Web Application Design”. Proc.
Conference on Advanced Information Systems Engineering, CAiSE’00, Springer- Verlag, LNCS 1789, pp. 79-93, 2000.

[5] Koch, N. and Wirsing, M. “Software Engineering for Adaptive Hypermedia Applications”. In: 3rd Workshop on
Adaptive Hypertext and Hypermedia, 2001.

[6] Lima F. and Schwabe D. "Exploring Semantic Web Modeling Approaches for Web Application Design" 2nd
International Workshop on Web Oriented Software Technology (IWWOST’02)

[7] Muruguesan, S. and Desphande, Y., “Web Engineering. Software Engineering and Web Application Development”.
Springer LNCS - Hot Topics, 2001.

[8] Web Ontology Language Overview, W3C Recommendation 10 February 2004 , http://www.w3c.org/TR/owl-features/
[9] A proposing OWL query language (OWL-QL).Knowledge Systems Laboratory Stanford University,

http://ksl.stanford.edu/projects/owl-ql/
[10] Pastor, O., Fons, J., Torres, V. and Pelechano, V. “Conceptual Modeling versus Semantic Web: the two sides of the

same coin? www2004. workshop in semantic web.
[11] Schwabe D. and Rossi G., "An Object Oriented Approach to Web-Based Application Design", Theory and Practice of

Object Systems 4(4), 1998. Wiley and Sons, New York, ISSN 1074-3224.
[12] Tim Berners-Lee, James Hendler and Ora Lassila, “The Semantic Web”, Scientific American Journal, May 2001
[13] Object Management Group, “Unified Modling Language (UML). Specification Version 1.4 draft”.

http://www.omg.org, February 2001

