

MDA applied: From Sequence Diagrams to Web
Service Choreography

Bernhard Bauer1, Jörg P. Müller2

1 Programming of Distributed Systems,
Institute of Computer Science, University of Augsburg,

D-86135 Augsburg, Germany
bernhard.bauer@informatik.uni-augsburg.de

2 Siemens AG Corporate Technology,
Intelligent Autonomous Systems,

Otto-Hahn-Ring 6, D-81739 München, Germany
joerg.p.mueller@siemens.com

Abstract. Web Services and Web Service composition languages for Web Service chore-
ography are becoming more and more important in the area for inter-enterprise application and
process integration. A huge amount of work has been done in the area of business process
while web service composition languages have been the subject of intense research efforts
recently. However the aspects of modeling these software systems have not been studied in
detail, in contrast to the definition of business processes where well-known techniques exist.
The model-driven architecture (MDA) approach of the Object Management Group is a good
starting point for the development of Web Services and Web Service choreography. In this
paper we show how platform independent models specified by UML 2 sequence diagrams can
be automatically transformed in a Web Service composition language representation. We will
start by introducing the notion of Web Services, Web Service compositions languages, and as
well as MDA. After setting the global context of our work, we show theoretically and by a
small case study how UML 2 sequence diagrams can be refined to Web service choreography.

1 Introduction

Over the past few years, enterprises are currently in a thorough transformation proc-
ess as they encounter the necessity to react to challenges such as globalization, unsta-
ble varying demand, and mass customization. A most important factor to maintaining
competitiveness is the ability of an enterprise to describe, standardize, and adapt the
way it reacts to certain types of business events, and how it interacts as well as its
procedures for interaction with suppliers, partners, competitors, and customers. To-
day, virtually all larger enterprises describe these procedures and interactions in terms
of business processes, and invest huge efforts to describe and standardize these proc-
esses.

 Web Services are the key technology for Enterprise Application Integration (EAI)
and Inter Enterprise Integration. IBM defines Web Services as [1]:

“Web services are self-contained, self-describing, modular applications that can
be published, located, and invoked across the Web.”

Web Services are seen as a promising technique to cope with this problem of access-
ing applications across the Internet in a standardized way, i.e. accessing software
modules via XML interfaces. Thus Web Services (see e.g. [2]) allow e.g. the access
of functionality over the Internet, to cope with a complete intra- and inter-corporate
integration of heterogeneous systems (i.e. EAI; see e.g. [3] for details) based on
XML, and supporting software re-usability.

A further interesting aspect of viewing Web Services is that, after they are de-
ployed as components or services in the Internet, it is possible to combine them to
added-value Web Services offering more functionality than the original ones,. This
process is called called Web Service Choreography or - composition depending on
the point of view of the description. Thus Web Service choreography deals to some
extent with business processes. Looking at Web Services in the context of business
integration, i.e. inter-enterprise integration (B2B integration), the Web Service stan-
dards can be applied to automate the processes between different enterprises, by al-
lowing a company e.g., to access directly services offered by a supplier. However the
interoperation of the different Web Services has to be modeled and defined. For this
purpose a variety of Business Process languages for Web Services are under devel-
opment including, BPEL4WS [4], BPML [10], XPDL [7] and the process description
facilities of ebXML [9], called ebXML Business Process Specification Schema [8]. In
this paper we focus on BPEL4WS which currently seems to be the business process
language in the Web Service area.with the highest momentum

The trend towards process-centered modeling and operation of enterprises brings
new opportunities for software technologies that support the monitoring, manage-
ment, and optimization of processes. To live up to its potential, it requires software
technologies to relate to business processes as well as service choreography, to un-
derstand them and to hook into them where required.

Based on OMG’s model-driven approach, our objective is to demonstrate a map-
ping of platform independent models based on UML 2 sequence diagrams [13] (trig-
gered by e.g. [16]) to a platform dependent model based on the Business Process
Execution Language for Web Services (BPEL4WS).

This paper can be seen as part of a series of papers dealing with software engineer-
ing starting from business processes and transforming them into web services chore-
ography, see e.g.[20, 19].

The structure of the paper is as follows: In Section 2, we set the technological
background and provide the conceptual architecture of our work. Section 3 contains
the main technical part of the paper dealing with the automated transformation of the
UML 2 sequence diagrams to BPEL4WS. We conclude in Section 4 with some dis-
cussion of future research opportunities.

2 Setting the Context

In this section, we set the context of our work, starting with a brief overview on MDA
and Web Services. After this we describe the overall methodology defining the rela-
tionship between web services, business processes, and MDA.

2.1 Model-driven architecture

The Model Driven Architecture (MDA) (for details see [11, 12]; this section is based
on [12]) is a framework for software development driven by the Object Management
Group (OMG). Key to MDA is the importance of models in the software develop-
ment process. Within MDA the software development process is driven by the activ-
ity of modeling the software system. The MDA development process does not look
very different from a traditional lifecycle, containing the same phases (requirements,
analysis, low-level design, coding, testing, and deployment). One of the major differ-
ences lies in the nature of the artifacts that are created during the development proc-
ess. The artifacts are formal models, i.e. models that can be understood by computers.
The following four models are at the core of the MDA:

• Computational Independent Model (CIM): This model describes the busi-
ness logic and therefore defines business processes and workflows in detail.
This model has to be annoted to transform it into a platform independent
model.

• Platform Independent Model (PIM): This model is defined at a high level
of abstraction; it is independent of any implementation technology. It de-
scribes a software system that supports some business. Within a PIM, the sys-
tem is modeled from the viewpoint of how it best supports the business.
Whether a system will be implemented on a mainframe with a relational data-
base, on an agent platform or on an EJB application server plays no role in a
PIM.

• Platform Specific Model (PSM): In the next step, the PIM is transformed
into one or more PSMs. It is tailored to specify a system in terms of the im-
plementation constructs available in one specific implementation technology,
e.g. Web Services. A PIM is transformed into one or more PSMs. For each
specific technology platform a separate PSM is generated. Most of the systems
today span several technologies; therefore it is common to have many PSMs
with one PIM.

• Code: The final step in the development is the transformation of each PSM to
code. Because a PSM fits its technology rather closely, this transformation is
relatively straightforward.

2.2 Web Services

Describing software architecture in a service-oriented fashion, while being increas-
ingly popular, is not a new idea; it is what CORBA has been about more than a dec-
ade ago. Recently, the concept of web services has given new momentum to service-
oriented architecture. Web services are self-contained, self-describing, modular appli-
cations that can be published, located, and invoked across the Web using existing
web protocols and infrastructure. The core web service standards are the Web Service
Definition Language (WSDL), Simple Object Access Protocol (SOAP), and Univer-
sal Description, Discovery and Integration (UDDI). The combination of relative sim-

plicity, platform independence, and leveraging of HTTP positions web services to
become an important architecture for wide-scale distributed computing [17].

2.2.1 Web service definition

WSDL is an XML based specification for describing what a program module does
(interface description), what the result of the module’s activity is, and how to com-
municate with it. A WSDL document resides at a URL location, e.g. at a UDDI, and
is linked to the module, which itself may reside at any location. Web Services ex-
change information through SOAP messages. SOAP is a protocol for Remote Proce-
dure Call / Remote Method Invocation over HTTP. SOAP uses XML to define the
message format and how variables and parameters required by the program are sent to
it to invoke its methods. The program in turn, sends the results of its process back to
the request originator in another SOAP message. Because HTTP is one of the trans-
port mechanisms used by SOAP, a Web Service method call can be made to and from
any Web enabled computer anywhere in the world.

2.2.2 Web Service Choreography

According to [18], web service choreography describes the specification of the inter-
action (i.e., ordering of messages) among a collection of services from the perspective
of one service or a collection thereof. Web service choreography allows applications
to combine existing web services in order to obtain more elaborated value-added web
services. Note that choreography deals with the definition of these interactions, not
with their execution.

At the moment, several standards are under development for the definition of lan-
guages for Web Service composition or Web Service Choreography. E.g. IBM and
Microsoft have combined their respective Web Service centered process languages
(Web Services Flow Language (WSFL) and XLANG)) into the Business Process
Execution Language for Web Services (BPEL4WS [4]). The Business Process Man-
agement Initiative (BPMI [6]) has published BPML [10]. The Workflow Manage-
ment Coalition (WfMC) proposed another standard called XPDL [14]. ebXML1 [9]
has the goal to provide an open XML based infrastructure enabling the use of elec-
tronic business information in an interoperable, secure and consistent manner, in
particular from a workflow and business process perspective. The ebXML Business
Process Specification Schema [8] provides a standard framework by which business
systems may be configured to support execution of business collaborations consisting
of business transactions.

Exemplarily we will have a closer look at BPEL4WS. It can be observed that most
Web Service composition languages are fairly similar as far as the constructs for
defining processes are concerned. The main difference among them is grounded in
how modeling the context of protocols is represented and how they deal with transac-

1 ebXML was originally not developed with the focus on Web Services and Web Service

Composition, but is more or less based on the same motivating ideas.

tions. These aspects, however, are beyond the scope of this paper. In this paper, we
shall consider BPEL4WS in more detail.

Figure 1. Overview of model-driven development methodology for Web Ser-
vice enabled business processes

2.3 Conceptual Methodology

Figure 1 (an updated version of Figure 3 of our position paper presented in [19])
illustrates the top-down development process starting with a semantic business proc-
ess specification using and extending UML 2.0 activity diagrams. This specification
is refined into two models:

• a static model, which is essentially the service model in our conceptual method-
ology, even though enhanced with metadata, such as the description of pre- and
post-conditions for service invocation, and with exception definitions;

• a dynamic model, which is essentially the service choreography oriented layer in
the conceptual methodology.

Each of these two models is described by a platform independent model and one or
more platform specific models. For the computational independent model we propose

Static model
(service model)

Dynamic model
(service choreography model)

Semantic Business Process
Specification

Semantic
Activity/Service

Interface Definition

Semantic Service
Choreography

Definition

FIPA
interaction
protocols

Web Service
Interface
Definition
(WSDL)

PIM
PSM

transformed

UML 2 Activity
Diagrams

UML 2
Sequence
Diagrams

Web Service
Process

Choreography
(BPEL4WS)

BPML

transformed
FIPA

Service
Ontology

CIM

to use Activity Diagrams as provided by UML 2.0 to model business processes, since
an activity diagrams depicts behavior using control and data-flow model. In particu-
lar, it describes activities and flows in different details. We propose the usage of
UML 2.0 for the platform independent model both for service definition and service
choreography definition, namely sequence diagrams for the latter one, describing an
interaction by focusing on the sequence of messages that are exchanged between
business partners, along with their corresponding event occurrences on their lifelines.
In addition, we had provided exemplary mappings to Platform Specific Models, using
WSDL to specify the services/activities and using BPEL4WS for the service choreog-
raphy.

In this paper we will focus on the mapping of UML 2 Sequence Diagrams to
BPEL4WS as a part of the development process. Readers interested in the other parts
are referred to [19, 20].

3 From Sequence Diagrams to BPEL4WS

This section is structured as follows. First we introduce UML 2 sequence diagrams by
a small application example. Then give a short overview on BPEL4WS before we
define an informal inductive mapping from the constructs of sequence diagrams to
BPEL4WS

3.1 Application example

To illustrate our approach, we introduce an application example taken from the FIPA
interaction specifications, namely the FIPA Iterated Contract Net protocol [15]. Here
we define a complex negotiation between two parties which can also be seen as a
pattern of interaction which could be instantiated for specific purposes, similar to pre-
defined sub-processes e.g. for automated SCM. The Customer (Initiator) first orders
an item via the message cfp(call for proposals). The Order Acquisition agent (Partici-
pant) has two choices: either (1) accepts the order because the price and delay match
the production planning and the cost (via the message propose) or (2) refuses the
order and proposes to negotiate (via the message refuse). The Customer can then
refuse the proposal from the Order Acquisition agent and ends the interaction (via the
message reject-proposal) or makes a counter-proposal. This negotiation continues as
long as the Customer decides to negotiate the requirements. Then, she can finish the
interaction (depicted by the alternative Final iteration) and two choices are offered to
her: either rejects the proposal via the message reject-proposal or accepts the pro-
posal via the message accept-proposal. In this latter case, the Order Acquisition agent
fills the order and informs the Customer that her order is delivered. In case of failure
in the production, the Order Acquisition informs the Customer via the message fail-
ure.

In Figure 2 we define the main elements of the UML2 sequence diagrams by this
example. In the following we will have a closer look at BPEL4WS.

Figure 2: FIPA Iterated Contract Net Protocol

interaction
Lifeline

message

end of message flow

alternative
constraint

Continuation ("goto")

time constraint

3.2 BPEL4WS

The business processes use the following components of BPEL4WS (following [4]):

• Service Linking, Partners and Service References: The relationship of a business
process with a partner is typically peer-to-peer, requiring a two-way dependency
at the service level. The notion of service links is used to directly model peer-to-
peer partner relationships. Service links define the relationship with a partner by
the message and port types used in the interactions in both directions. However,
the actual partner service may be dynamically determined within the process.

• Messages properties: The data in a message consists conceptually of two parts:
application data and protocol-relevant data, where the protocols can be business
protocols or infrastructure protocols providing higher quality of service, like secu-
rity and transaction. The business protocol data is usually found embedded in the
application-visible message parts, whereas the infrastructure protocols almost al-
ways add implicit extra parts to the message types to represent protocol headers
that are separate from application data. Business processes might need to gain ac-
cess to and manipulate both kinds of protocol-relevant data. The notion of mes-
sage properties is defined as a general way of naming and representing distin-
guished data elements within a message, whether in application-visible data or in
message context. Message properties are defined in a sufficiently general way to
cover message context consisting of implicit parts, but the use focuses on proper-
ties embedded in application-visible data that is used in the definition of business
protocols and abstract business processes. A property definition creates a globally
unique name and associates it with an XML Schema type. The intent is to create a
name that has greater significance than the type itself.

• Data handling: Business processes model stateful interactions. The state involved
consists of messages received and sent as well as other relevant data such as time-
out values. The maintenance of the state of a business process requires the use of
state variables, which are called containers. Furthermore, the data from the state
needs to be extracted and combined in interesting ways to control the behavior of
the process, which requires data expressions. Finally, state update requires the no-
tion of assignment. BPEL4WS provides these features for XML data types and
WSDL message types. In BPEL4WS, Data handling is performed by using the
following features:

• Expressions: BPEL4WS uses several types of expressions: Boolean-valued
expressions used for transition conditions, join conditions, while conditions,
and switch cases; deadline-valued expressions used with the "until" attribute of
onAlarm and wait; duration-valued expressions used for "for" attribute of
onAlarm and wait; general expressions based on XPath 1.0 used in assign-
ments. Moreover, BPEL4WS provides an extensible mechanism for the lan-
guage used in these expressions. The language is specified by the expres-
sionLanguage attribute of the process element.

• Containers: Containers provide the means for holding messages that constitute
the state of a business process. Containers can hold messages, either received
or temporary defined, that act as "temporary variables" for computation and
are never exchanged with partners. Containers can be specified as input or
output containers for invoke, receive, and reply activities. At the beginning of
a process all containers are not initialized. Containers can be initialized by a
variety of means including assignment and receiving a message. Containers
can be partially initialized with property assignment or when some but not all
parts in the message type of the container are assigned values.

• Assignments: Copying data from one container to another is a common task
within a business process. The assign activity can be used to copy data from
one container to another, as well as to construct and insert new data using ex-
pressions.

• Activities: BPEL4WS distinguishes between two types of activities: basic and
structured activities.

• basic activities: The receive construct allows the business process to do a
blocking wait for a matching message to arrive. The reply construct allows
the business process to send a message in reply to a message that was received
through a receive. The combination of a receive and a reply forms a
request-response operation on the WSDL portType for the process. The in-
voke construct allows the business process to invoke a one-way or request-
response operation on a portType offered by a partner. The assign con-
struct can be used to update the values of containers with new data. An as-
sign construct can contain any number of elementary assignments. The
throw construct generates a fault from inside the business process. The
terminate construct allows to immediately terminate a business process.
The wait construct allows to wait for a given time period or until a certain
time has passed. Exactly one of the expiration criteria must be specified. The
empty construct enables insertion of "no-op" instructions into business proc-
esses. This is useful for synchronization of parallel activities, for instance.

• structured activities: The sequence construct allows one to define a collec-
tion of activities to be performed sequentially. The switch construct allows
selecting exactly one branch of execution from a set of choices. The while
construct allows one to indicate that an activity is to be repeated until a certain
success criteria has been met. The pick construct allows blocking and wait-
ing for exactly a suitable message to arrive or for a time-out alarm to go off.
When one of these triggers occurs, the associated activity is executed and the
pick completes. The flow construct allows specifying one or more activities
to be executed in parallel. Links can be used within parallel activities to define
arbitrary control structures. The scope construct allows defining a nested ac-
tivity with its own associated fault and compensation handlers. The compen-
sate construct is used to invoke compensation on an inner scope that has al-
ready completed its execution normally. This construct can be invoked only
from within a fault handler or another compensation handler.

In the remainder of this section, we describe the transformation of UML 2 Sequence
Diagrams to the Web service choreography language BPEL4WS.

3.3 Mapping

As a next step we will now go into the details of UML 2 sequence diagrams and de-
fine informally2 by induction the mapping of sequence diagram elements to
BPEL2WS, i.e. a mapping
 transform: Sequence Diagram Element → BPEL4WS

A sequence diagram defines an interaction denoted as . Thus a complete
sequence diagram is transformed into a process definition of BPEL4WS:

transform () = <process name = “EventOccurence” >

 transform(inner_part())
 </process>

where inner_part delivers the sub-diagram defined in the overall sequence diagram.

Lifelines are a modeling element that represents an individual participant in an inter-
action. A lifeline represents only one interacting entity. They are transformed by the
following rule:

transform (…) = <partners>
 <partner name = “Lifeline”
 serviceLinkType = “…”
 partnerRole = “…”
 myRole = “…”
 </partner>
 …
 </partners>

Note, that the serviceLinkType, partnerRole as well as myRole are not specified in
the sequence diagram, but have to be defined in a e.g. class diagram defining the role
of a participant and the interface (serviceLinkType) as well as the partner role.
Messages are translated as follows

• Synchronous messages:

Transform() = <receive partner = receiver()
 portType = "…"

2 Note that, a formal definition of the mapping can be based on the MOF/XMI for data ex-

change of models; however for the sake of readability we use the graphical notation of the
elements instead.

 operation = "operation"
 inputContainer = "operationInC"
 outputContainer = "operationOutC"
 </receive>

where receiver calculates the name of the right-hand-side lifeline name
and operationInC and operationOutC are automatically generated
tokens for the input and output container of the operation.

• Asynchronous messages:

Transform() = <receive partner = receiver()
 portType = "…"
 operation = "operation"
 inputContainer = "operationInC"
 </receive>

where receiver calculates the name of the right-hand-side lifeline name
and operationInC is an automatically generated token for the input con-
tainer of the operation. An output container is not specified since no result is
transported back to the sender.

• Reply messages:
Transform() = <reply partner = receiver()

 portType = "…"
 operation = "operation"
 container = "operationC"
 </reply>

where receiver calculates the name of the left-hand-side lifeline name
and operationC is an automatically generated token for the container of
the operation.

• Lost and found messages are specified as usual messages with the exception
of applying the wait-construct.

• Co-regions are constructed with the flow-construct and the messages of the
co-region are transformed in the usual way.

One of the newest aspect of UML 2 sequence diagrams is the possibility to define
combined fragements, as shown in our application example with the alternatives,

depicted as . UML 2 distinguishes between:
• alt – at most one of the operands will execute, this can be transformed us-

ing the switch-construct

transform () =
<switch>

<case condition="bool-expr">
 transform(operand_1)
</case>
…
<otherwise>?
 transform(operand_n+1)
</otherwise>

</switch>

in this case the alternatives in the sequence diagram have to be annoted with
specific conditions for each case (as in our application example in one case).

• opt – either the (sole) operand happens or nothing happens, this is modeled
similar to the alt-operator, where we have two cases, one case is the trans-
formed operand and the other one is the distinguished no-operation of
BPEL4WS.

• loop – repeated a number of times, transformed using the while-construct
<while condition="myConstraint">
 transform(operand_loop)
</while>

where myConstraint is the translated constraint of the sequence diagram.
• par – parallel merge between the behaviors of the operands, this can easily

be transformed with the flow-construct.
<flow>
 transform(operand_1)
 …
 transform(operand_n)
</flow>

• seq – weak sequencing depending on lifelines and operands and strict –
strict sequencing not depending on lifelines and operands can be modeled
with

<sequence>
transform(operand_1)
…
transform(operand_n)

</sequence>

• critical – critical region, this is handled by the transaction mechanism of
BPEL4WS.

• assert – assertions are translated into boolean expressions which are evalu-
ated during run-time.

• ignore – message types are not shown within fragment; consider – messages
considered within fragment; and interaction reference – a reference to an-
other interaction, can be seen as abbreviations and need not be transformed.

• neg – invalid traces, have not been transformed.

Another novelty is the usage of continuations which can be seen as conditional "goto"
statements. These continuation can be mapped to BPEL4WS by applying while-loops
and a boolean global variable stating if the jump has to performed or not. The while-
statement has to be placed at the maximal comprehensive block of the operands
where the jump is performed.

4 Conclusions and Outlook

The main contribution of this paper is that it elaborates the relationship between the
platform independent model of service choreography and its mapping to BPEL4WS a
specific business process execution language. The work is part of a larger project
depicted in Figure 1. The informal definition of a mapping between the two represen-
tation shows that such a step can be automated. However additional information con-

cerning the Web Services has to be at hand. This can be the WSDL definition of the
Web Service interfaces specified with UML class diagrams as used e.g. by [21].
The next steps are

• Definition of a formal mapping between both representations;
• Looking at a inverse mapping to allow reverse engineering;
• Taking the "other" aspects of BPEL4WS into consideration, i.e. model-

ling of the context of the Web Service choreography;
• Integration with the mapping from the computational independent model

to the platform specific model, and
• Integration into a development tool.

In summary, there is still some way to go to achieve the vision of business-process
aware Web Services that can understand semantically enhanced business process
definitions, which can help in the design of business processes, that can select appro-
priate business processes for execution, monitor distributed business process execu-
tion, recognize and fix problems in a collaborative manner. We hope that with this
paper, we succeeded in setting a starting point and defining an approach that will help
researchers and practitioners to ultimately build such technology based on existing
standards for service-oriented computing, business process management, and soft-
ware architecture.

5 References

1. IBM (2003) ‘Web Service Tutorial’, 10 June,
http://www-106.ibm.com/developerworks/web/library/w-ovr/?dwzone=ibm

2. WebServices (2003) 10 June, http://www.webservices.org
3. Sun (2002) ‘Powering the Collaborative Enterprise Sun ONE and Java

Technology in the Extended Supply Chain’, 10 June,
http://www.sun.com/products-n-solutions/automotive/docs/sunarc.pdf

4. IBM (2003) ‘BPEL4WS’, 10 June, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

5. IBM (2003)‘ WSCI’, 10 June,
http://wwws.sun.com/software/xml/developers/wsci/

6. BPMI (2003), 10 June, http://www.bpmi.org/
7. WFMC (2003) ‘XPDL’, 10 June, http://www.wfmc.org/standards/docs.htm
8. ebXML (2003) ‘Business Process Specification Schema’, 10 June,

http://www.ebxml.org/specs/ebBPSS.pdf
9. ebXML (2003) ‘Enabling global electronic markets’, 10 June,

http://www.ebxml.org
10. BPMI (2003) ‘BPML’, 10 June, http://www.bpmi.org/

11. Model Driven Architecture homepage. The Object Management Group
(OMG). http://www.omg.org/mda/

12. Kleppe M., Warmer J., Bast W. MDA Explained – The Model Driven Archi-
tecture: Practice and Promise, Addison Wesley, 2003

13. UML Homepage. The Object Management Group. http://www.omg.org/uml/
14. WFMC (2003) ‘XPDL’, 10 June, http://www.wfmc.org/standards/docs.htm
15. FIPA (2003), FIPA specifications, 10 June,

http://www.fipa.org/specs/fipa00030/
16. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying

Multiagent Software Systems, International Journal on Software Engineer-
ing and Knowledge Engineering (IJSEKE), Vol. 11, No. 3, pp.1-24, 2001
Engineering, 2001.

17. Fuchs, I. (2002) ‘Web Services and Business Process Management Plat-
forms – Understanding Their Relationship and Defining an Implementation
Approach’, http://www.ebpml.org/ihf.doc

18. W3C Web Services glossary. http://www.w3.org/TR/ws-gloss/
19. Müller, J.P., Bauer, B., Friese, Th.: Programming software agents as design-

ing executable business processes: a model-driven perspective, in Proceed-
ing PROMAS 03, 2004.

20. Bauer, B., Marc-Philippe Huget: Modelling Web Service Composition with
(Agent) UML, Special Issue of Journal of Web Engineering, 2003

21. Armstrong, Ch. (2002) ‘Modelling Web Services with UML’, Talk given at
the OMG Web Services Workshop 2002.

