
Designing Multi-Device Interactive Services through
Multiple Abstraction Levels

Fabio Paternò, Carmen Santoro

{fabio.paterno, carmen.santoro}@isti.cnr.it
ISTI-CNR

Via G.Moruzzi 1
Pisa, Italy

ABSTRACT
The purpose of this paper is to provide an introduction to
the work done in our group on methods and tools for
supporting design and development of multi-device
interactive services. One important result of this work is the
TERESA tool. This is a tool for model-based design of
multi-device interfaces. It considers three levels of
abstractions (task model, abstract user interface and
concrete user interface). For each of them a specific
language has been defined and used. In addition, since the
lowest abstract level (the concrete interface) is platform-
dependent, there are different variants for each platform
considered.

Keywords
Multi-device services, XML user interface languages,
tools.

INTRODUCTION
With the advent of the wireless Internet and the rapidly
expanding market of smart devices, designing interactive
applications supporting multiple platforms has become a
difficult issue. The main problem is that many assumptions
that have been held up to now about classical stationary
desktop systems are being challenged when moving
towards nomadic applications, which are applications that
can be accessed through multiple devices from different
locations. Consequently, one fundamental issue is how to
support software designers and developers in building such
applications. In particular, there is a need for novel
methods and tools able to support development of
interactive software systems that adapt to different targets
while implementing usability design criteria.
Model-based approaches [5] could represent a feasible
solution for addressing such issues: the basic idea is to
identify useful abstractions highlighting the main aspects
that should be considered when designing effective
interactive applications. Our approach extends previous
work in the model-based design area in order to support
development of nomadic applications through logical
descriptions and associated transformations.
By platform we mean a class of systems that share the same
characteristics in terms of interaction resources. Examples
of platforms are the graphical desktop, PDAs, mobile

phones and vocal systems. Their range varies from small
devices such as interactive watches to very large flat
displays. While we think that designers should be aware of
the potential platforms (not devices) early on in the design
process, so they can identify the tasks suitable for each, our
method allows developers to avoid dealing with a plethora
of low-level details, because the last transformation (from
concrete to implementation) is automatic. In addition, the
same languages are used to describe tasks and abstract
interfaces for all platforms; only the language for
describing concrete user interfaces is to some extent
platform-dependent.
To support this approach, the TERESA (Transformation
Environment for inteRactivE Systems representAtions) tool
[3] has been designed and developed providing general
solutions that can be tailored to specific cases. This tool
supports transformations in a top-down manner, providing
the possibility of obtaining interfaces for different types of
devices from logical descriptions. It differs from other
approaches such as UIML [1], which mainly consider low-
level models. XIML [7] has similar goals but there is no
publicly available tool supporting it.
Some usability criteria are incorporated into the tool
transformations from task to user interface. This means that
the tool is able to provide suggestions for selecting the
most appropriate interaction techniques and ways to
compose them. Such transformations guarantee a consistent
design because the same design criteria are applied in
similar situations. In addition, most of the functionality of
the CTTE task modelling tool has now been integrated into
TERESA, so that designers can use just one tool and not
lose time switching between two different tools.

THE METHOD
Our method for model-based design is composed of a
number of steps that allow designers to start with an overall
envisioned task model of a nomadic application and then
derive concrete and effective user interfaces for multiple
devices:
• High-level task modelling of a multi-context

application. In this phase designers develop a single

model that addresses the possible contexts of use and
the various roles involved and also identify all the
objects that have to be manipulated to perform tasks
and the relationships among such objects. Such models
are specified using the ConcurTaskTrees (CTT)
notation [5], which also allows designers to indicate
the platforms suitable to support each task.

• Developing the system task model for the different
platforms considered. Here designers have to filter the
task model according to the target platform and, if
necessary, further refine the task model, depending on
the specific device considered, thus, obtaining the
system task model for the platform considered.

• From system task model to abstract user interface.
Here the goal is to obtain an abstract description of the
user interface composed of a set of presentations that
are identified through an analysis of the task
relationships. Each presentation is structured by means
of interactors composed of various operators.

• User interface generation. In this phase we have the
generation of the user interface. This phase is
completely platform-dependent and has to consider the
specific properties of the target device.

The advantage of this approach is that it is able to address
all the possible relations between tasks and platforms. In
general, when a multi-platform application is considered, it
is important to understand what type of tasks can actually
be performed in each available platform. We have
identified a number of possibilities:

• The same task can be performed on multiple platforms
in the same manner. There may be only some changes
in attributes of the user interface objects from platform
to platform. For example, a login is often performed in
almost the same manner through different platforms.

• Same task on multiple platforms but with different user
interface objects. An example of this case can be a
selection task. One platform can support a graphical
selection whereas another one can be able to support
only a selection among textual links.

• Same task on multiple platforms but with different
domain objects. This means that during the
performance of the same task different sets of domain
objects are presented.

• Same task on multiple platforms but with different task
decomposition. This means that the task is sub-divided
differently, with different sets of sub-tasks, depending
on the platform.

• Same task on multiple platforms but with different
temporal constraints. In this case the difference is in the
temporal relationships among the subtasks. For
example, vocal interfaces tend to serialize interactions

that can be performed concurrently on graphical
interfaces.

• Dependencies among tasks performed on different
platforms. An example of this can be found in
applications where the users can reserve their flight
reservation through a desktop system, and this enables
the possibility of getting real-time information
regarding the flight through a mobile phone.

TOOL SUPPORT
TERESA is intended to provide a complete semi-automatic
environment supporting a number of transformations useful
for designers to build and analyse their design at different
abstraction levels and consequently generate the user
interface for various types of platforms.
A number of main requirements have driven the design and
development of TERESA:
• Mixed initiative; we want a tool able to support different

levels of automation ranging from completely automatic
solutions to highly interactive solutions where designers
can tailor or even radically change the solutions proposed
by the tool.

• Model-based, the variety of platforms increasingly
available can be better handled through some abstractions
that allow designers to have a logical view of the
activities to support.

• XML-based, each abstraction level considered can be
described through an XML-based language.

• Top-down, this approach is an example of forward
engineering. So, designers first have to create more
logical descriptions, and then move on to more concrete
representations until the final interface is obtained.

• Different entry-points, our approach aims to be
comprehensive and to support various possibilities,
including also when different set of tasks can be
performed on different platforms. However, there can be
cases where only a part of it needs to be supported and,
for example, designers want to start with a logical
interface description and not with a task model.

• Web-oriented, we decided that Web applications should
be our first target. However, the approach can be easily
extended to other environments (such as Java
applications, Microsoft environments, …) by just
modifying only the last transformation (from concrete
interface to final interface).

The TERESA tool offers a number of transformations and
provide designers with an integrated environment for
generating XHTML interfaces for desktop, mobile phones
and VoiceXML user interfaces. With the TERESA tool, at
each abstraction level the designer is in the position of
modifying the representations while the tool keeps
maintaining forward and backward the relationships with

the other levels. For example, it maintains links between
abstract interaction objects and the corresponding tasks in
the task model so that designers can immediately identify
their relations. This results in a great advantage for
designers in maintaining a unique overall picture of the
system, with an increased consistence among the user
interfaces generated for the different devices and
consequent improved usability for end-users.

Figure 1: The TERESA tool.

The first transformation supported allows designers to
obtain the abstract user interface corresponding to the
initial task model. The abstract user interface is defined in
terms of presentations. In each presentation there are
interactors [6] and composition operators indicating how to
put together such interactors. Once the elements of the
abstract user interface have been identified, each interactor
has to be mapped into interaction techniques supported by
the particular device configuration considered
(characterised by the modalities supported, the screen size,
…), and also the abstract operators have to be appropriately
implemented by highlighting their logical meaning: a
typical example is the set of techniques for conveying
grouping relationships in visual interfaces by using
presentation patterns like proximity, similarity and
continuity. However, different techniques for grouping
elements are used in case of vocal interfaces, such as using
a specific sound to delimit a set of elements.
The logical descriptions and the transformations defined in
the method presented can also be used at run-time to
support migratory interfaces: interfaces able to dynamically
move from one device to another while preserving
interaction continuity and adapting to the features of the
new device [2].
The tool has provided a good opportunity to clarify various
issues associated with the linkage between different models
and the associated transformations, which must be fully
understood in order to achieve real solutions and for which

previous work in the area provided rather vague solutions.
While the current TERESA version supports the design and
development of graphical and vocal interfaces for various
platforms (currently through the generation of XHTML,
XHTML Mobile Profile and VoiceXML, though other
languages are planned), further work will be dedicated to
supporting a broader set of modalities and their
combinations.

CONCLUSIONS
The TERESA environment supports design and
development of multi-platform user interfaces through a
number of transformations that can be performed either
automatically or through interactions with the designer.
To this end, a number of XML languages that capture the
relevant information at different abstraction levels are used.
Such languages are introduced in this paper along with a
discussion of how they are used in the environment. The
tool can be freely downloaded at
http://giove.cnuce.cnr.it/teresa.html.
Future work will be dedicated to supporting a broader set
of modalities and their combinations

ACKNOWLEDGMENTS
We gratefully acknowledge support from the EU IST
CAMELEON project (http://giove.cnuce.cnr.it/
cameleon.html) and the EU SIMILAR NoE
(www.similar.cc).

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.,

Williams, S., Shuster, J. UIML: An Appliance-
Independent XML User Interface Language,
Proceedings of the 8th WWW conference, 1999.

2. R. Bandelloni, F. Paternò, Flexible Interface Migration,
Proceedings ACM IUI 2004, pp.148-157, Funchal,
ACM Press, 2004.

3. G. Mori, F. Paternò, C. Santoro, Design and
Development of Multi-Device User Interfaces through
Multiple Logical Descriptions, accepted for publication
on IEEE Transactions on Software Engineering, 2004.

4. Mullet, K., Sano, D., Designing Visual Interfaces.
Prentice Hall, 1995.

5. Paternò, F., Model-Based Design and Evaluation of
Interactive Application. Springer Verlag, ISBN 1-
85233-155-0, 1999.

6. Paternò, F., Leonardi, A. A Semantics-based Approach
to the Design and Implementation of Interaction
Objects, Computer Graphics Forum, Blackwell
Publisher, Vol.13, N.3, pp.195-204, 1994.

7. Puerta, A., Eisenstein, XIML: A Common
Representation for Interaction Data, Proceedings ACM
IUI’01, pp.214-215.

