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Abstract. In this paper an extension of a behavioural subset of UML
statecharts for mobile computations is proposed. We study collections
of UML objects whose behaviour is given by statecharts. Each object
resides in a given place, and a collection of such places forms a network.
Objects are aware of the localities of other objects, i.e. the logical names
of the places where the latter reside, but not of the physical name of such
places. In addition to their usual capabilities, such as sending messages
etc., objects can move between places and create and destroy places,
which may result in a deep reconfiguration of the network. A formal
semantics is presented for this mobility extension which builds upon a
core semantics definition of statecharts without mobility which we have
used successfully in several contexts in the past years. An example of
a model of a network service which exploits mobility for resource usage
balance is provided using the proposed extension of UML statecharts.

1 Introduction

Mobility plays a major role in the programming of nowadays network-based ser-
vices. The Unified Modelling Language (UML) is the de facto standard graphical
modelling language for object-oriented software and systems [17]. It has been
specifically designed for visualising, specifying, constructing, and documenting
several aspects of—or views on—systems. In this paper we focus on a behavioural
subset of UML statecharts (UMLSCs) and in particular on a powerful extension
of this notation in order to deal with a notion of mobility which is sometimes
referred to as mobile computation and requires computing elements to be able
to migrate from one node to another within a network [4], as opposed to mobile
computing, where the focus is instead on dynamic communication structures. We
address mobile computing in the context of UMLSCs in a companion paper [12].

In this paper we assume that a system is modelled as a dynamic collection
of (cooperating, autonomous) objects. In order to express mobile computations
we assume that each object is located at exactly one network node, or place as
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we shall call it in the sequel. A network is a collection of places. Note that for
simplicity a network has a flat hierarchy similar to the approach used in KLAIM
[5], that is, places cannot contain places.

The attributes of an object may contain values of basic datatypes, like integer,
boolean e.t.c., references to other objects, and references to network nodes. The
behaviour of an object is given by a UMLSC. Objects can move among places
and objects and places can be created or destroyed.

Objects are not aware of the physical names of places; they make reference
only to logical names, also called localities, which play the same role as symbolic
addresses in the Internet. Consequently, each place is also equipped with an al-
location environment which maps localities to the physical names of places. The
architecture of the network is dynamic and is implicitly defined by the informa-
tion encapsulated in the allocation environments of all the places belonging to
the network; such information collectively defines the set of places each place is
“in touch with”. The choice of objects being unaware of place physical names
has been inspired by the work on KLAIM [5].

Example. Consider a simplified model of a resource based compute server. De-
pending on the resources needed for a computation, the computation should be
performed at different network places or being split among different network
places. Figure 1 shows the class diagram using the stereotype �mobile� intro-
duced in [2] to indicate classes whose objects can move between places.

«signal» result(Result)

«signal» start()

Configurator

Client

Task

complexity() : int

1

1

1 *

*

1

«mobile»

Agent

tmp : Result
l1, l2 : Locality

Server

request(Client,Task)«signal»

1
*

«signal» start()
«signal» compute()
«signal» done()

perform(Task) : Result
«signal» step2()

performPart2(Task,Result) : Result
performPart1(Task) : Result

«signal» stop()

l1, l2 : Locality l1, l2 : Locality

Fig. 1. Class diagram for a simple compute server

The behaviour of the configurator, server, and agents is given by the stat-
echarts in Figs. 2, 3, and 4. The configurator first creates two network places
where the computation should take place (cf. Fig. 2). During the creation of
the network places also two new localities are created that refer to these places
and which are stored in attributes l1 and l2. The configurator then exports the
place where the configurator is located (given by variable atLoc) to the newly
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created places, i.e. the locality home at the new places refers to the place of the
configurator. Next, the server is created and initialised with the two localities l1
and l2.

When the server receives a request by a client to perform a task, an agent is
created to fulfil the request (cf. Fig. 3). The agent moves to the different network
places depending on the complexity of the computation task (cf. Fig. 4). In case
of a simple task, the agent stays at the place of the server, computes the result of
the task, and sends the result back to client. In case of a more complex task, the
agent first moves to the place referred to by l1, performs the computation there,
and then sends the result back to the client who stayed at the place referred to
by locality home. In the most complex case, the agent first performs part of the
computation at the place referred to by locality l1 and then the second part of
the computation at locality l2 before sending the result to the client at locality
home. After the agent has done its work he destroys itself.

not configured

configured

Configurator

start / l1 := new_pl(); xpt(atLoc,home,l1);

l2 := new_pl(); xpt(atLoc,home,l2);

server := new_ob(Server,[l1:=l1,l2:=l2])

stop / del_ob(server); del_pl(l1); del_pl(l2); del_pl()

Fig. 2. Statechart for class Configurator of Fig. 1

ready

Server

request(c,t) / agent := new_ob(Agent,[client:=c,task:=t,l1:=l1,l2:=l2]);
agent.start

Fig. 3. Statechart for class Server of Fig. 1

In the present paper, we propose a formal operational semantics for the mo-
bility extension of UMLSCs briefly discussed above. The operational semantics
is built upon previous work of Latella et al. on formalising the semantics of
UMLSCs [11, 6], which in turn was inspired by the work of Mikk [16] on Harel
statecharts.

Several other proposals for formal semantics of UMLSCs can be found in the
literature, e.g. [19, 3, 14, 13, 18]. None of these approaches deals with mobility;
we refer to [6] for a comparison with our previous work. An approach similar
to ours is [10] in which ambients [4] are added to Interacting State Machines
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ready

simple task

done

complex task 1 complex task 2

step 2

Agent

tmp := performPart1(task);

tmp := performPart2(task,tmp);

start[task.complexity=3] / computestart[task.complexity=1] / compute

done / del_ob()

compute / mv_obj(l1);

step2 / mv_obj(l2);

compute / tmp := performTask(task);

tmp := perform(task);
client@home.result(tmp);
done

compute / mv_ob(l1);

done
client.result(tmp);

step2

done
client@home.result(tmp);

start[task.complexity=2] / compute

Fig. 4. Statechart for class Agent of Fig. 1

(ISMs). The differences are that this approach is not intended to model UMLSCs
and therefore does not deal directly with features of UMLSCs, like composite
states and concurrent substates, and that ISMs have a hierarchical structure
of places while our place structure is flat. Another approach is [8] where UML
state machines with mobility are translated to MTLA formulas [15] to study
refinement of state machines.

Several proposals for extending the UML with mobility and/or agent notions
are present in the literature, e.g. [2, 9, 7, 1]. In [2] a proposal for extending UML
activity diagrams with mobility notions is presented while in [9] mobility in UML
sequence diagrams is addressed. In [7] an extension of UML in order to describe
agent interaction is proposed which does not address mobility explicitly. Mobile
agents in UML are the focus of [1]. All the above mentioned proposals deal with
notational extensions of UML performed mainly by means of UML extension
mechanisms (stereotypes, tagged-values, etc.) and do not address issues of formal
semantics. We are not aware of any proposal for a formal semantics of objects,
object management, mobility and network configuration in the context of UML
statecharts.

The paper is organised as follows: Section 2 briefly addresses the general
framework of our approach, including our modelling assumptions and an informal
introduction of the basic notions of hierarchical automata for UMLSCs. Section 3
describes the kind of actions which can label UMLSCs transitions and the notion
of network specification. The formal semantics is given in Sect. 4 and conclusions
are drawn in Sect. 5. Finally, for the interested reader, the appendix contains
the formal semantics of hierarchical automata.
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2 Basic Framework

In this section we set the basic framework of our work. In particular we present
a brief description of the modelling assumptions on which we base our approach
and an informal introduction to the basic notions of the computational frame-
work of hierarchical automata, which we use as an abstract syntax for the defi-
nition of UMLSCs semantics. All technical details on hierarchical automata for
UMLSCs can be found in [11, 6] and in the appendix.

2.1 Object Model

In this paper we assume that a system is modelled as a dynamic collection
of (cooperating, autonomous) objects and that the behaviour of each object is
specified by a UMLSC (more than one single object may have its behaviour
specified by the same UMLSC). More precisely, we assume that a networked
system is specified by a static collection {SC1, . . . , SCc} of UMLSCs. In order to
express mobile computations, we explicitly model network nodes, or places as we
shall call them in the sequel, and we define a network as a collection of places.
The set of places of a network may dynamically change during the evolution of
the network.

Each place has a set of objects residing therein and is uniquely identified
within the network by its physical name. A physical name can be thought of
as an IP address in the context of the Internet. The objects residing within a
place are uniquely identified by their object names within that place. The set of
objects residing in a given place may dynamically change during the evolution
of the network.

Objects cannot directly refer to the places’ physical names; instead, they
use logical names, called localities, which are mapped to physical names by the
allocation environment of the place where the object resides. In addition, each
object may have a private allocation environment. The network structure is not
given explicitly, but implicitly by the information encapsulated in the allocation
environments, which defines the set of places a place is “in touch with”.

The above assumptions are quite realistic and rather common in networked
systems, in particular unawareness of physical names of places. In this choice
we have been inspired by the work on KLAIM [5] of which our model also
shares the flat structure of places. Other proposals, like for instance [4], assume
a hierarchical structure. We choose a flat structure for the sake of simplicity.

2.2 Hierarchical Automata

As briefly mentioned in Sect. 2.1, in our approach, a networked system is specified
by a finite collection of UMLSCs {SC1, . . . , SCc}. We use hierarchical automata
(HAs) [16] as an abstract syntax for UMLSCs. HAs for UMLSCs have been in-
troduced in previous work of co-authors of the present paper ([11, 6]). In this
section we recall, informally, only the main notions which are necessary for the
understanding of the paper. The reader interested in the detailed formal defi-
nitions concerning UMLSCs, like the definition of the behavioural semantics, is
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referred to the appendix. Such definition is essentially an orthogonal extension
of the original formalisation of UMLSCs semantics of [11, 6], where mobility was
not addressed.

Informally, a HA is composed of a collection of simple sequential automata
related by a refinement function which imposes on the HA the hierarchical state
nesting-structure of the associated statechart. Inter-level transitions are encoded
by means of proper annotations in transition labels.

The operational semantics of HAs, which we shall define later on in the
present paper, makes use of what we call the Core Semantics of HAs. The Core

Semantics of a HA H characterises the relation H :: C (ev,β)/(Ac,ξ)−→L C′ with
the following intended meaning: whenever the current state configuration of H
is C, its current variables/values binding is store β, and event ev is fed to H’s
state-machine, the transitions in L may fire bringing H to configuration C′;
Ac is the sequence of actions to be executed—actually an interleaving of the
action sequences labelling the transitions in L—and ξ records the binding of the
parameters occurring in the triggers of such transitions with the corresponding
values in ev.

Thus the role of the Core Semantics is the characterisation of the set of transi-
tions to be fired, their related actions, and the resulting configuration. All issues
of (action) ordering, concurrency, and non-determinism within single statecharts
are dealt with by the Core Semantics. Although essential for the definition of
the formal semantics, all the above issues are technically quite orthogonal to
mobility and dynamic network/object management.

Another issue which deserves to be briefly addressed here is the way in which
we deal with the so called input-queue of UMLSCs, i.e. their “external environ-
ment”. In the standard definition of UML statecharts semantics [17], a scheduler
is in charge of selecting an event from the input-queue of an object, feeding it
into the associated state-machine, and letting such a machine produce a STEP
transition. Such a STEP transition corresponds to the firing of a maximal set
of enabled non-conflicting transitions of the statechart associated to the object,
provided that certain transition priority constraints are not violated. After such
transitions are fired and when the execution of all the actions labelling them is
completed, the STEP itself is completed and the scheduler can choose another
event from a queue and start the next cycle. While in classical statecharts the
external environment is modelled by a set, in the definition of UML statecharts,
the nature of the input-queue of a statechart is not specified; in particular, the
management policy of such a queue is not defined. In our overall approach to
UMLSCs semantics definition, we choose not to fix any particular semantics,
such as set, or multi-set or FIFO-queue etc., but to model the input queue in
a policy-independent way, freely using a notion of abstract data types. In the
following we assume that for set D, ΘD denotes the class of all structures of a
certain kind (like FIFO queues, or multi-sets, or sets) over D and we assume
to have basic operations for manipulating such structures. In particular, in the
present paper, we let Add d D denote the structure obtained inserting element
d in structure D and the predicate (Sel D d D′) state that D′ is the structure



40 D. Latella et al.

resulting from selecting d from D; of course, the selection policy depends on the
choice for the particular semantics. We assume that if D is the empty structure,
denoted by 〈〉, then (Sel D d D′) yields FALSE for all d and D′. We shall often
speak of the input queue, or simply queue, by that meaning a structure in ΘD,
abstracting from the particular choice for the semantics of ΘD.

We shall refer to the set {H1, . . . , Hc} of HAs associated to SC1, . . . , SCc.
ConfH will denote the set of all state configurations of HA H and we shall assume
that for every set {H1, . . . , Hc} of HAs, there exists a distinguished element Cerr
such that Cerr �∈ ⋃c

j=1 ConfHj
.

3 Action Language and Network Specifications

In this section we introduce the syntax and informal semantics of HAs transition
actions and triggers. Moreover, we formalise the notion of network specification.

3.1 Actions

The action side of transition t, i.e. AC t, is an action, and its abstract syntax is
shown in Fig. 5. In our extension we will deal with place physical names, place
logical names, object names, method names, and with variables1; moreover, pa-
rameters may occur in method activations. Consequently proper countable, mu-
tually disjoint sets—ZP ,ZL,ZO,ZM , Var, and Par, respectively—are introduced
for them. Moreover we assume that object names form a ZP -indexed family of
disjoint sets.

Ac ::= var := exp | obj@loc1.meth(exp) | mv ob(obj@loc1, loc2) | mv cl(obj@loc1, loc2)
| var := new ob(H0, C0, β0, E0)@loc1 | var := new cl(H0, C0, β0, E0)@loc1

| del ob(obj@loc1) | var := new pl() | del pl(loc) | xpt(loc1, loc2, loc3) | Ac; Ac

where var ∈ Var, exp ∈ Var ∪ Par ∪ ZL, obj ∈ Var ∪ Par, loc, loci ∈ Var ∪ Par ∪ ZL

for i ∈ {1, 2, 3}, meth ∈ ZM , and Var (variable identifiers) including self and atLoc,
Par (parameter identifiers), ZL (place logical names—i.e. localities) including here, and
ZM (method names) are countable, mutually disjoint sets.

Fig. 5. Abstract syntax of actions

In the following we informally describe the meaning of the various actions,
together with simple static semantics constraints. The formal definition of the
action semantics will be addressed later on in the paper while we refrain from
giving a formal definition of the static semantics since the static semantics is not
very relevant for the purpose of the present paper. Consequently we assume that
all variables used in a statechart are declared in the associated object definition
and that all actions are type-correct.

1 We will use “variable” and “attribute” as synonym in this paper.
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By var := exp, variable var is assigned the value of exp in the current
store of the object where the action is executed. Only attribute names of the
current object are allowed as variables; i.e. variables can not refer to attributes
of different objects. Of course different objects (or even HAs) can use the same
variable name which will be bound to possibly different values by different local
stores. Reserved, read-only, variables self and atLoc are always bound to the name
of the object in the store of that object, and, similarly, the reserved locality here
is always bound to the physical place name in the allocation environment of that
place.

Action obj@loc1.meth(exp) sends an asynchronous message meth with (op-
tional parameter-)value exp to object obj residing in (the place referred to by)
locality loc1; the following short-hands are provided: obj.meth(exp) is used in-
stead of obj@atLoc.meth(exp) and meth(exp) instead of self.meth(exp).

Action mv ob(obj@loc1, loc2) makes object obj migrate from locality loc1 to
locality loc2—notice that the moved object can also be the object executing the
action, in which case the short-hand mv ob(loc2) can be used.

Action var := new ob(H0, C0, β0, E0)@loc1 creates a new object the behaviour
of which is determined by the HA referred to by H0. The name of the newly
created object will be bound to var in the store of the object executing the ac-
tion, i.e. the creator. The initial configuration C0 must belong to ConfH0 ; for the
specification of the initial store β0 we use the notation [var1 := exp1, . . . , varn :=
expn], where exp1, . . . expn ∈ Var∪Par∪ZL, and var1, . . . , varn ∈ Var\{self, atLoc}
are attribute names of the created object.2 The initial configuration, store, and
input-queue C0, β0, E0 are optional. If absent, the initial configuration indicated
in the definition of the HA referred to by H0 is used for C0 while E0 is empty
and β0 binds only self to the name of the created object and atLoc to the local-
ity where it resides. The newly created object will (initially) reside in locality
loc1. If loc is atLoc or here, the short-hand var := new ob(H0, C0, β0, E0) can be
used.

The references of an object to localities are normally resolved via the al-
location environment of the place where the object resides when the action is
executed which uses such references. Moreover, a closure-like version of object
creation (new cl) and moving (mv cl) actions is provided; the allocation envi-
ronment of the place where the creator resides will be inherited by the cre-
ated object as its private allocation environment; similarly, the allocation en-
vironment of the place where the moved object was residing will be inherited
by the moved object and extended with its private allocation environment, if
any.

By del ob(obj@loc1) an object kills object obj residing in locality loc1—notice
that the object destroyed can also be the object executing the action, in which
case the shorthand del ob() can be used.

2 Notice that in the specification of β0 the creator object will access attributes of the
created object (i.e. var1, . . . , varn); this is the only exception to the local variables
rule mentioned above.
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An object can create a new place by means of var := new pl(). Variable
identifier var will be bound—in the store of the current object—to the new
locality, which in turn will be bound—in the current allocation environment—to
the physical name of the newly created object.

Similarly place loc1 is destroyed by executing del pl(loc1); the place will be
removed from the network and all the information it contains (objects residing
therein as well as the allocation environment) is lost. The short-hand del pl()
destroys the place where the executing object resides.

By xpt(loc1, loc2, loc3) locality loc2 can be exported to the place referred to by
locality loc3 and get bound, in its allocation environment, to the place physical
name which loc1 is bound to in the allocation environment of the residence place
of the executing object.

Finally, the sequential composition of action(s) Ac1 with action(s) Ac2 is
denoted by Ac1; Ac2

3.2 Triggers

The trigger EV t of transition t must be a method name (meth ∈ ZM ) or a
method name with one parameter (meth(x) with x ∈ Par). The trigger has the
usual pattern-matching semantics; the parameter is bound to the input value
when the transition is selected for being fired. It is worth pointing out here that
the UML requires the scope of a parameter to be confined to the single transition
where it occurs as part of the trigger. The restriction to just one parameter is
made only for the sake of notational simplicity.

3.3 Transition Labels and Network Specifications

The concrete syntax for the complete label of a transition t, at the UMLSC level,
will be EV t [G t]/AC t, where the guard [G t] is optional. The treatment of all
optional parts of actions as well as short-hands is assumed to be dealt with at
the static analysis level. We can now formally define network specifications:

Definition 1 (Network Specification). A network specification is composed
of a set {H1, . . . , Hc} of HAs and an initialisation command (INIT Ac) where
Ac is a (possibly compound) action, as specified in Fig 5.

An example of a network specification is given by the statecharts for Configu-
rator, Server, and Agent of Figs. 2, 3, and 4 from the example in the introduction.
The initialisation actions in this example are:

INIT(l := new pl(); c := new ob(Configurator)@l; c.start).

4 Network Semantics

The operational semantics associates a transition system to a network specifica-
tion. The states of such a transition system correspond to distinct states of the
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network. In this section we define the semantics formally. We start with the for-
mal definition of stores and allocation environments. Then we define Network-
(resp. Place-,Object-) States and the transition relation. The definition of the
latter makes use of a function for the semantic interpretation of the actions la-
beling statechart transitions; the remainder of the present section is devoted to
the formal definition of such a function.3

Definition 2 (Stores). A store β is a function β : Var ∪ Par → ZL ∪ ZO ∪
{unbound}, where unbound �∈ ZL ∪ ZO is a distinguished value.

As usual β x = unbound means that x is not bound by β to any value.
The empty store, unit store and store extension operators ([ ], [x �→ n], and �
respectively) are defined in the usual way:

[ ] x
∆= unbound,

for all x ∈ Var ∪ Par

[x �→ n] x′ ∆= if x = x′then n else unbound,
for all x, x′ ∈ Var ∪ Par, n ∈ ZL ∪ ZO

(β1 � β2) x
∆= if β2 x �= unbound then β2 x else β1 x,

for all stores β1, β2, x ∈ Var ∪ Par

Allocation environments map localities to place physical names:

Definition 3 (Allocation Environments). An allocation environment γ is a
function γ : ZL ∪ {unbound} → ZP ∪ {unbound}. We require that γ unbound =
unbound for every allocation environment γ.

As for stores, we will let [ ], respectively [l �→ p], denote the empty, respec-
tively unit, allocation environment, and γ1 � γ2 denote the extension of γ1
with γ2, with a little bit of overloading in the notation. For each object, re-
served read-only variables self, atLoc ∈ Var will be bound respectively to the
name of the object and to the distinguished element here ∈ ZL, in its current
store. Similarly, for each place, here will be bound to the place physical name
in its current allocation environment. Finally hereafter ∈ ZP is a distinguished
place name conventionally used in the definition of the semantics of object/place
destruction.

The operational semantics defines how a network may evolve as a consequence
of firing transitions of the statecharts associated to the objects residing in the

3 In the following we shall freely use a functional-like notation in our definitions where
currying will be often used in function application, i.e. f a1 a2 . . . an will be used in-
stead of f(a1, a2, . . . , an) and function application will be considered left-associative;
for function f : X → Y and Z ⊆ X, f Z

∆= {y ∈ Y | ∃x ∈ Z. y = fx}, dom f
and rng f denote the domain and range of f and f|Z is the restriction of f to Z; in
particular, f \ z stands for f|(dom f)\{z}; for distinct x1, . . . , xn, f [y1/x1, . . . , yn/xn]
is the function which on xj yields yj and on any other x′ �∈ {x1, . . . , xn} yields f x′.
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places of the network itself. We remind here that, in our approach, the primitive
computational elements are the objects and that their behaviour is specified by
statecharts. The evolution of objects is modelled by their internal state together
with their “physical” position in the network. More specifically, at each stage of
the global computation, each object resides in a specific place of the network and
its internal state is composed by its current configuration—drawn from those of
the statechart specifying its behaviour, its current local store —where the current
values of its attributes (variables) are maintained, the current value of its input
queue, and the current private allocation environment.

The evolution of the network can thus be modelled by means of a transition
system where each state corresponds to a network state and each transition
corresponds to a change of network state operated by firing the transitions of a
STEP of the statechart of an object. In order to make the above notions more
precise we need the definition below, where E ∈ ΘZM ∪(ZM ×(ZL∪ZO)), i.e. the
elements of input queues are method invocations, with possibly one parameter.
For (m, n) ∈ ZM × (ZL ∪ ZO), we use the more common, “constructor-like”,
syntax m(n).

Definition 4 (Network, Place and Object States). A network state N is
a finite set of place states. A place state P of a network state N is a triple
(p, γ, µ) ∈ N where p ∈ ZP \ {hereafter} is the physical name for P , and is
required to be unique net-wide; γ is the allocation environment of P and µ is the
finite set of object states of P . An object state O of place state P = (p, γ, µ) of
network state N models the state of an object and is a 6-tuple (o, H, λ, C, β, E)
where o ∈ Zp

O is the name of the object and is required to be unique network-wide;
H is the reference to the HA which specifies the behaviour of o and λ (respectively
C, β, E) is the current private allocation environment (respectively configuration,
store, input queue) of o.

It is worth pointing out here that as an obvious consequence of place name
uniqueness within a network state N the latter can be used and manipulated as
a (finite domain) function on ZP such that p ∈ dom N and N p = (γ, µ) if, and
only if (p, γ, µ) ∈ N . Similarly, also µ can be used and manipulated as a (finite
domain) function on Zp

O with o ∈ dom µ and µ o = (H, λ, C, β, E) if, and only if
(o, H, λ, C, β, E) ∈ µ. In the sequel, we assume {unbound, hereafter}∩ (dom N) =
∅ for all network states N and unbound �∈ (dom µ) for all place states (p, γ, µ).

The operational semantics associates a transition system (S, −→, S0) to a
network specification. S is the set of states of such transition system, which
are network states, defined as above. A distinguished network state corresponds
to the initial state S0. Conventionally, such a state consists of the single place
(init pl, [ ], {(init o, INITHA, [ ], {1}, [ ], 〈init ev〉)}) where INITHA is a conventional
HA composed of a single state—1— which is source and target of a single tran-
sition labelled by init ev/as where as is the argument of the INIT initialisation
command.4 The transition relation −→ is defined by means of a logical deduc-

4 It is assumed that init o and init ev do not occur in any network specification.
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tion system, and the definition is given in two stages: the Top Rule and the Core
Semantics. The Top Rule is shown in Fig. 6 and in turn uses the Core Semantics,
which has been introduced in Sect. 2. The Top Rule stipulates that in order for
the network to evolve from network state N to state N ′ there must exist an
object o (2nd premise) in a place p of the current network state (1st premise),
the statechart of which—H—can perform a STEP from the (non-error) config-
uration (3rd premise) C to C′ (5th premise) when event ev is selected from its
input queue (5th premise). The STEP transition generated by the Core Seman-
tics is labelled by the set L of the HA transitions which are fired in the STEP,
the pair (ev, β), where β is the current store of o, and the pair (Ac, ξ) where
Ac is a sequence of actions—the actions of the transitions in L—and ξ is the
set of bindings of the parameters occurring in the triggers of such transitions to
the input event ev. Ac is a symbolic representation of transition actions; thus we
need to interpret them. This is achieved by means of the interpretation func-
tion N which actually computes the new network state N ′ (6th premise). N ′ is
computed by applying N [[Ac]] to a network state which is the same as N except
that the new configuration C′ and the remaining input queue E ′ are recorded for
object o. Notice that the store of o is not updated (yet) since the new store will
be (part of) the result of the execution of Ac.

(p, γ, µ) ∈ N
(o, H, λ, C, β, E) ∈ µ
C �= Cerr
Sel E ev E ′

H :: C (ev,β)/(Ac,ξ)−→L C′

N ′ = N [[Ac]] (N [(γ, µ[(H, λ, C′, β, E ′]/o)/p], p) o ξ

N −→ N ′

Fig. 6. Transition relation definition (top rule)

In the following we define the action interpretation function N . Actually N
simply returns the first element of the pair resulting from the application of
function I to the same arguments.

N [[Ac]] (N, p) o ξ
∆= N ′ where (N ′, p′) = I[[Ac]] (N, p) o ξ

The definition of I uses the following auxiliary functions.

ERR N p o
∆= N [(γ, µ[(nil, [], Cerr, [], 〈〉)/o])/p],

for all net. states N, p ∈ dom N, o ∈ ZO

ERR N p o is the network state which differs from N only because the erratic
object state (o, nil, [], Cerr, [], 〈〉) is present in place state p.

Function V is defined in the usual way.
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V[[exp]] β
∆= if exp ∈ Var ∪ Par

then β exp
else exp,
for all stores β,

exp ∈ Var ∪ Par ∪ ZL

new ZP
∆= a fresh new place physical name p ∈

ZP \ {init pl, hereafter} different from any
place physical name already generated.

new ZL
∆= a fresh new locality name l ∈ ZL \ {here}

different from any locality textually
occurring in the network specification
or already generated.

new Zp
O

∆= a fresh new object name o ∈ Zp
O \ {init o}

textually different from any object name
occurring in the network specification
or already generated.

For action Ac, I[[Ac]] is a function which takes a pair (N, p)—where N is a
network state and p ∈ ZP —an object name o ∈ ZO and a parameter binding ξ.
I[[Ac]] (N, p) o ξ is a pair (N ′, p′) where N ′ is the network state resulting from
the execution of the actions Ac and p′ ∈ ZP . I[[Ac]] is defined by induction on
the structure of Ac. In all cases it is first of all required that p ∈ dom N , i.e.
∃γ, µ. (γ, µ) = N p and that o is not erratic, with o ∈ dom µ.

In the following, we list all cases of the definition, together with a short
informal explanation, when necessary.

I[[var := exp]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , n
exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
n = V[[exp]] (β � ξ), n �= unbound
then N [(γ, µ[(H, λ, C, β[n/var], E)/o])/p], p)
else (ERR N p o, p)

Access to an uninitialised variable exp (i.e. V[[exp]] (β � ξ) = unbound) in
an assignment action var := exp brings o to the erratic state, otherwise var is
bound in the store to the value n of exp. Notice that expressions are evaluated—
using function V—in the current store temporarily extended with the parameter
bindings.

I[[obj@loc.meth(exp)]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l, o′, p′, γ′, µ′, H ′, λ′, C′, β′, E ′, m, n
exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
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o′ = V[[obj]] (β � ξ), l = V[[loc]] (β � ξ), p′ = (γ � λ) l,
(γ′, µ′) = N p′, (H ′, λ′, C′, β′, E ′) = µ′ o′,
n = V[[exp]] (β � ξ)
then (N [(γ′, µ′[(H ′, λ′, C′, β′, Add meth(n) E ′)/o′])/p′], p)
else (ERR N p o, p)

In the execution of sending an asynchronous call meth(exp) to object obj@loc,
performed by object o residing in place p of N , it is required that locality
V[[loc]] (β � ξ) = l is bound, in the local allocation environment γ (possibly
extended with the private allocation environment of o if any) to the physical
name p′ of a place where an object named V[[obj]] (β �ξ) = o′ exists. In this case,
meth(V[[exp]] (β � ξ)) is added in the input queue of o′; otherwise o ends up in
the erratic state.

I[[mv ob(obj@loc1, loc2)]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l1, l2, p1, p2, γ1, γ2, µ1, µ2, o
′, p′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
l1 = V[[loc1]] (β � ξ), p1 = (γ � λ) l1, (γ1, µ1) = N p1,
l2 = V[[loc2]] (β � ξ), p2 = (γ � λ) l2, (γ2, µ2) = N p2,
o′ = V[[obj]] (β � ξ), o′ ∈ (dom µ1),
p′ = if p = p1 , o = o′ then p2 else p
then (N [(γ1, µ1 \ o′)/p1, (γ2, µ2[µ1 o′/o′])/p2], p′)
else (ERR N p o, p)

I[[mv cl(obj@loc1, loc2)]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l1, l2, p1, p2, γ1, γ2, µ1, µ2, µ
′
2o

′, p′,
H ′, λ′, C′, β′, E ′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
l1 = V[[loc1]] (β � ξ), p1 = (γ � λ) l1, (γ1, µ1) = N p1,
l2 = V[[loc2]] (β � ξ), p2 = (γ � λ) l2, (γ2, µ2) = N p2,
o′ = V[[obj]](β � ξ), o′ ∈ (dom µ1),
(H ′, λ′, C′, β′, E ′) = µ′ o′,
µ′

2 = µ2[(H ′, γ1 � λ′, C′, β′, E ′)/o′]
then (N [(γ1, µ1 \ o′)/p1, (γ2, µ

′
2)/p2], p′)

else (ERR N p o, p)

The successful execution of mv ob(obj@loc1, loc2) requires that the object
denoted by obj resides in the place p1 referred to by loc1 and that there is no
object with the same name in the place p2 referred to by loc2. If this is the
case, this object is removed from the residence place p1 and added to the set of
objects of p2, i.e. is moved from p1 to p2. In the case of mv cl, furthermore the
current allocation environment γ1 of p1 is added to the (possibly empty) private
allocation environment of the object. Notice that actions mv ob and mv cl can
be applied also by o to itself, when obj evaluates to o and loc1 refers to p. In this
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case the residence place of o changes to the value of loc2. We keep track of the
residence of o as it results from the execution of Ac in the second element of the
result of I[[Ac]] (N, p) o ξ. The reader is invited to check how this information is
dealt with in the definition of I[[Ac1; Ac2]].

I[[var := new ob(H0, C0, β0, E0)@loc]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l, o′, p′, γ′, µ′O, O′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr
l = V[[loc]] (β � ξ), p′ = (γ � λ) l, (γ′, µ′) = N p′,
o′ = new Zp′

O ,
O = (H, λ, C, β[o′/var], E),
O′ = (H0, [], C0, β0[o′/self, here/atLoc], E0)
then if p = p′

then (N [(γ, µ[O/o, O′/o′])/p], p)
else (N [(γ, µ[O/o])/p, (γ′, µ[O′/o′])/p′], p)

else (ERR N p o, p)

I[[var := new cl(H0, C0, β0, E0)@loc]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l, o′, p′, γ′, µ′, O, O′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
l = V[[loc]] (β � ξ), p′ = (γ � λ) l, (γ′, µ′) = N p′,
o′ = new Zp′

O ,
O = (H, λ, C, β[o′/var], E),
O′ = (H0, γ, C0, β0[o′/self, here/atLoc], E0)
then if p = p′

then (N [(γ, µ[O/o, O′/o′])/p], p)
else (N [(γ, µ[O/o])/p, (γ′, µ[O′/o′])/p′], p)

else (ERR N p o, p)

The creation new ob of a new object in an existing place referred to by loc
requires the modification of the store of the creator object o in order to bind
variable var to the name o′ of the newly created object. Moreover the new
object is placed in the place referred to by loc. Notice that the initial store of
the new object binds atLoc to here and self to o′. In the case of new cl, the private
allocation environment of the newly created object is initialised to the allocation
environment of the place where the creator resides.

I[[del ob(obj@loc)]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l1, p1, γ1, µ1, o
′, p′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
l1 = V[[loc]] (β � ξ), p1 = (γ � λ) l1, (γ1, µ1) = N p1,
o′ = V[[obj]] (β � ξ),
p′ = if p = p1, o = o′ then hereafter else p
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then (N [(γ, µ[(H, λ, C, β \ obj, E)/o])/p, (γ1, µ1 \ o′)/p1], p′)
else (ERR N p o, p)

An existing object obj residing in a place referred to by loc is destroyed by
executing del ob(obj@loc). The result will be that the object will be removed
from the set of objects of loc and variable obj will be unbound after del ob
will have been executed. Notice that if obj@loc is exactly the object which is
executing the action then its residence place changes to hereafter (we remind
the reader that hereafter ∈ (dom N) for no network state N). Notice moreover
that the semantics is undefined if action del ob occurs in Ac but not as its last
element.

I[[var := new pl()]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , O, l, p′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr,
l = new ZL, p′ = new ZP ,
O = (H, λ, C, β[l/var], E)
then (N [(γ[p′/l], µ[O/o])/p, ([here �→ p′], ∅)/p′], p)
else (ERR N p o, p)

The successful execution of var := new pl() creates a new place where here
is bound to its physical name by its (otherwise empty) allocation environment.
Moreover, a new locality is bound to such physical name in the allocation en-
vironment of the place where the executing object resides and such locality is
bound to variable var in the store of the object.

I[[del pl(loc)]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l, p′, p′′

exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr
l = V[[loc]] (β � ξ), p′′ = (γ � λ),
p′ = if p = p′′ then hereafter else p
then ((N [(γ \ l, µ[(H, λ, C, β \ loc, E)/o])/p]) \ p′′, p′)
else (ERR N p o, p)

The interpretation of place destruction (del pl) should be clear to the reader;
the only exception is when the object executing it destroys the place where it
resides. Notice that the semantics is undefined if action del pl occurs in Ac but
not as its last element.

I[[xpt(loc1, loc2, loc3]] (N, p) o ξ
∆=

if γ, µ, H, λ, C, β, E , l1, l2, l3, p1, p3, γ3, µ3
exist such that
(γ, µ) = N p, (H, λ, C, β, E) = µ o, C �= Cerr
l1 = V[[loc1]] (β � ξ), p1 = (γ � λ) l1,
l2 = V[[loc2]] (β � ξ),
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l3 = V[[loc3]] (β � ξ), p3 = (γ � λ) l3,
(γ3, µ3) = N p3, l2 �∈ dom γ3
then (N [(γ3[p1/l2], µ3)/p3], p)
else (ERR N p o, p)

I[[Ac1; Ac2]] (N, p) o ξ
∆=

I[[Ac2]] (I[[Ac1]] (N, p) o ξ) o ξ

The semantics of xpt and sequentialization is self-explanatory.

5 Conclusions

In this paper, UML statecharts have been extended with a notion of mobility.
In particular mobile computation, where computational units migrate from one
node to another within a network has been considered, as opposed to mobile
computing, which addresses dynamic communication structures [12].

A formal operational semantics for the extended notation has been provided
which covers all major aspects of UML statecharts—like state hierarchy, inter-
level transitions, a parametric treatment of transition priority and input queue,
intra- and inter- statechart concurrency, and run-to-completion. Furthermore, it
includes dynamic object management, i.e. object creation and object destruction,
for objects (the behaviour of which is) specified by statecharts; finally notions
specific to dynamic network management are addressed: network places, network
architecture management, and mobility (i.e. object migration).

An example of a model of a network service which exploits mobility for re-
source usage balance has been provided using our mobile extension of UMLSCs.

We are not aware of any proposal in the literature which combines all the
above mentioned issues in a single formal framework which is moreover com-
pletely compatible and consistent with other “views” and extensions of UML
statecharts, like testing theories, stochastic behaviour modelling, and analysis
and LTL/BTL model-checking.5

The space of network places is flat, which is similar to that of KLAIM [5].
Other proposals, like for instance [4, 10], assume a hierarchical structure for
the place space. We chose a flat approach mainly for the sake of simplicity. A
hierarchical place structure would open the way toward mobility of places and,
since mobility is part of computation and objects are the computational units,
this would bring to the blurring of the conceptual difference between objects
and places. In addition, the conceptual difference between physical names and
localities would need to be revisited. We leave all the above issues for further
study.

The impact of our extension on the UML meta model—e.g. what additional
meta classes are needed and whether these can be introduced by stereotypes or
not—is also left for future study.

5 Papers describing the above mentioned issues can be found at: http://fmt.isti.cnr.it.
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Another issue for further study is the integration of the mobile computing
approach proposed in [12] with the mobile computation one proposed in the
present paper, as well as the interplay between mobile computing and mobile
computation in a framework where also place mobility is considered, as briefly
mentioned above. Finally, we are interested in developing useful theories for the
extension we proposed in the present paper, like, e.g. access control and security,
in a similar way as in [5].
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A Hierarchical Automata

In this section we informally recall some basic notions related to UMLSCs. They
are treated in depth in [11, 6]. We use hierarchical automata (HAs) [16] as the
abstract syntax for UMLSCs. HAs are composed of simple sequential automata
related by a refinement function. In [11] an algorithm for mapping a UMLSC to
a HA is given. Here we just recall the main ingredients of this mapping, by means
of a simple example. Consider the UMLSC of Fig. 7 (). Its HA is shown top on
the bottom of the figure. Roughly speaking, each OR-state of the UMLSC is
mapped into a sequential automaton of the HA while basic and AND-states are
mapped into states of the sequential automaton corresponding to the OR-state
immediately containing them. Moreover, a refinement function maps each state
in the HA corresponding to an AND-state into the set of the sequential automata
corresponding to its component OR-states. In our example (Fig. 7, bottom), OR-
states s0, s4, s5 and s7 are mapped to sequential automata A0, A1, A2 and A3,
while state s1 of A0, corresponding to AND-state s1 of our UMLSC, is refined
into {A1, A2}. Non-interlevel transitions are represented in the obvious way: for
instance transition t8 of the HA represents the transition from state s8 to state
s9 of the UMLSC. The labels of transitions are collected in Table 1; for example
the trigger of t8, namely EV t8, is e2 while its associated action, namely AC t8
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Fig. 7. A UMLSC and its HA

Table 1. Transition labels for the HA of Fig. 7

t SR t EV t AC t TD t

t1 {s6} r1 a1 ∅
t2 ∅ a1 r2 {s6, s8}
t3 ∅ e1 ε ∅
t4 {s8} r2 a2 ∅
t5 ∅ a2 e1 {s6, s9}
t6 ∅ e1 f1 {s10}
t7 ∅ f1 r1 ∅
t8 ∅ e2 e1 ∅
t9 ∅ f2 ε ∅
t10 ∅ e2 e2 ∅
t11 {s10} e2 e2 ∅

consists in e1. Label e2 can model the activation of a method of an object the
behaviour of which is modeled by the statechart and, respectively, e1 can be the
invocation of a method, which takes place if and when t8 is fired.

An interlevel transition is represented as a transition t departing from (the
HA state corresponding to) its highest source and pointing to (the HA state
corresponding to) its highest target. The set of the other sources, resp., targets,
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are recorded in the source restriction—SR t, resp. target determinator TD t,
of t. So, for instance, SR t1 = {s6} means that a necessary condition for t1
to be enabled is that the current state configuration contains not only s1 (the
source of t1), but also s6. Similarly, when firing t2 the new state configuration
will contain s6 and s8, besides s1. Finally, each transition has a guard G t, not
shown in this example.

Transitions originating from the same state are said to be in conflict. The
notion of conflict between transitions is to be extended in order to deal with
state hierarchy and a priority notion between conflicting transition is defined.
When transitions t and t′ are in conflict we write t#t′. Intuitively transitions
coming from deeper states have higher priority. For the purposes of the present
paper it is sufficient to say that priorities form a partial order. We let πt denote
the priority of transition t and πt � πt′ mean that t has lower priority than (the
same priority as) t′.

In the sequel we will be concerned only with HAs. In particular, for a given
network specification, we shall make reference to the set {H1, . . . , Hc} of the
HAs associated to the UMLSCs SC1, . . . , SCc used in the specification.

A.1 Basic Definitions

The first notion we need to define is that of (sequential) automaton:6

Definition 5 (Sequential Automata). A sequential automaton A is a 4-tuple
(σA, s0

A, λA, δA) where σA is a finite set of states with s0
A ∈ σA the initial state

6 In the following we shall freely use a functional-like notation in our definitions where:
(i) currying will often be used in function application, i.e. f a1 a2 . . . an will be
used instead of f(a1, a2, . . . , an) and function application will be considered left-
associative; (ii) for function f : X → Y and Z ⊆ X, f Z

∆= {y ∈ Y | ∃x ∈
Z. y = fx}, dom f and rng f denote the domain and range of f and f|Z is the
restriction of f to Z; in particular, f\z stands for f|(dom f)\{z}; for distinct x1, . . . , xn,
f [y1/x1, . . . , yn/xn] is the function which on xj yields yj and on any other x′ �∈
{x1, . . . , xn} yields f x′; for functions f and g such that for all x ∈ (dom f ∩
dom g) f x = g x holds we will often let f ∪ g denote the function which yields f x
if x ∈ dom f and g x if x ∈ dom g and we extend the notation to n functions in
the obvious way. By ∃1x. P x we mean “there exists a unique x such that P x”.
Finally, for set D, we let D∗ denote the set of finite sequences over D. The empty
sequence will be denoted by ε and, for d ∈ D, with a bit of overloading, we will often
use d also for the unit sequence containing only d; the concatenation of sequence x
with sequence y will be indicated by xy. For sequences x, y and z we let predicate
mrg x y z hold if, and only if z is a non-deterministic merge (or interleaving) of x and
y, that is z is a permutation of xy such that the occurrence order in x (respectively
y) of the elements of x (respectively y) is preserved in z; a possible definition for
mrg is mrg x y z

∆= ∃w ∈ (D × {1, 2})∗. pr1 w = z ∧ pr1 (only 1 w) =
x ∧ pr1 (only 2 w) = y where pr1 ε

∆= ε, pr1 (e, j)l ∆= e(pr1 l), only j ε
∆= ε, and

only j (e, j′)l ∆= (if j = j′ then (e, j) else ε)(only j l); the extension of mrg to n
sequences, mrgn

j=1 xj z, is defined in the obvious way.
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λA is a finite set of transition labels and δA ⊆ σA × λA × σA is the transition
relation.

We assume that all transitions are uniquely identifiable. This can be easily
achieved by just assigning them arbitrary unique names, as we shall do through-
out this paper. For sequential automaton A let functions SRC, TGT : δA → σA

be defined as SRC(s, l, s′) = s and TGT (s, l, s′) = s′.
HAs are defined as follows:

Definition 6 (Hierarchical Automata). A HA H is a 3-tuple (F, E, ρ) where
F is a finite set of sequential automata with mutually disjoint sets of states,
i.e. ∀A1, A2 ∈ F. σA1 ∩ σA2 = ∅ and E is a finite set of transition labels; the
refinement function ρ :

⋃
A∈F σA → 2F imposes a tree structure to F , i.e. (i)

there exists a unique root automaton Aroot ∈ F such that Aroot �∈ ⋃
rng ρ, (ii)

every non-root automaton has exactly one ancestor state:
⋃

rng ρ = F \{Aroot}
and ∀A ∈ F \ {Aroot}. ∃1s ∈ ⋃

A′∈F\{A} σA′ . A ∈ (ρ s) and (iii) there are no
cycles: ∀S ⊆ ⋃

A∈F σA. ∃s ∈ S. S ∩ ⋃
A∈ρs σA = ∅.

We say that a state s for which ρ s = ∅ holds is a basic state. Every sequential
automaton A ∈ F characterises a HA in its turn: intuitively, such a HA is
composed by all those sequential automata which lay below A, including A
itself, and has a refinement function ρA which is a restriction of ρ:

Definition 7. For A ∈ F the automata and states under A are defined respec-
tively as
A A

∆= {A} ∪ (
⋃

A′∈
(⋃

s∈σA
(ρAs)

)(A A′)), S A
∆=

⋃
A′∈A A σA′

The definition of sub-hierarchical automaton follows:

Definition 8 (Sub-hierarchical Automata). For A ∈ F , (FA, E, ρA), where
FA

∆= (A A), and ρA
∆= ρ|(S A), is the HA characterised by A.

In the sequel for A ∈ F we shall refer to A both as a sequential automaton
and as the sub-hierarchical automaton of H it characterises, the role being clear
from the context. H will be identified with Aroot. Sequential automata will be
considered a degenerate case of HAs. A central role in UMLSCs is played by
(state) configurations, defined as follows:

Definition 9 (Configurations). A configuration of HA H = (F, E, ρ) is a set
C ⊆ (S H) such that (i) ∃1s ∈ σAroot

. s ∈ C and (ii) ∀s, A. s ∈ C ∧ A ∈ ρ s ⇒
∃1s

′ ∈ σA. s′ ∈ C
A configuration is a global state of a HA, composed of local states of com-

ponent sequential automata. For A ∈ F the set of all configurations of A is
denoted by ConfA. Moreover we will assume that for every set {H1, . . . , Hc} of
HAs, there exists a distinguished element Cerr such that Cerr �∈ ⋃c

j=1 ConfHj
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Progress rule

t ∈ LEA C β ev
� ∃t′ ∈ T ∪ EA C β ev. πt � πt′

A ↑ T :: C (ev,β)/(AC t,bnd ev (EV t))−→ {t} DST t

Stuttering Rule

{s} = C ∩ σA

ρA s = ∅
∀t ∈ LEA C β ev. ∃t′ ∈ T. πt � πt′

A ↑ T :: C (ev,β)/(ε,[ ])−→∅ {s}
Composition Rule

{s} = C ∩ σA

ρA s = {A1, . . . , An} �= ∅(∧n

j=1 Aj ↑ T ∪ LEA C β ev :: C (ev,β)/(Acj ,ξj)−→Lj Cj

)

mrgn
j=1Acj Ac ∧ ξ =

⋃n

j=1 ξj ∧ L =
⋃n

j=1 Lj

L = ∅ ⇒ (∀t ∈ LEA C β ev. ∃t′ ∈ T. πt � πt′)

A ↑ T :: C (ev,β)/(Ac,ξ)−→L {s} ∪ ⋃n

j=1 Cj

Fig. 8. Rules of the Core Semantics

A.2 Core Semantics Definition

The Core Semantics definition is given in Fig. 8
As mentioned before, the Core Semantics definition is very similar to the

one we have used in previous work of ours. Here we give a very brief descrip-
tion with emphasis on those aspects relevant for the purposes of the present
paper and we refer the reader interested in more details to [11, 6]. Intuitively,

A ↑ T :: C (ev,β)/(Ac,ξ)−→L C′ models labelled transitions of the HA A, and L
is the set containing the transitions of the sequential automata of A which are

selected to fire. We call
(ev,β)/(Ac,ξ)−→L the STEP-transition relation in order to

avoid confusion with transitions of sequential automata. When confusion may
arise, we call the latter sequential transitions. T is a set of sequential transitions.
It represents a constraint on each of the transitions fired in the step, namely
that it must not be the case that there is a transition in T with a higher priority.

So, informally, A ↑ T :: C (ev,β)/(Ac,ξ)−→L C′ should be read as (an object the
behaviour of which is specified by HA) “A, on configuration C, provided with
input event (i.e. method call) ev and the store of which is β can perform L
moving to configuration C′, when required to perform transitions with priorities
not smaller than any in T ; Ac is the sequence of actions to be executed as re-
sult of firing the transitions in L and ξ binds the value carried by ev, if any,
to proper parameters occurring in the triggers of transitions in L”. Set T will
be used to record the transitions a certain automaton can do when considering
its sub-automata. More specifically, for sequential automaton A, T will accumu-
late all transitions which are enabled in the ancestors of A. The Core Semantics
definition makes use of the auxiliary functions defined in Fig. 9. LEA C β ev



Mobile UML Statecharts with Localities 57

is the set of all the enabled local transitions of A in C, β, with ev7. Similarly,
the set of all enabled transitions of A—considered as an HA, i.e. including the
transitions of descendants of A—in C, β, with ev, is EA C β ev.

LEA C β ev
∆=

{t ∈ δA | {(SRC t)} ∪ (SR t) ⊆ C,
match ev (EV t),
(C, β 
 (bnd ev (EV t)), ev) |= (G t)}

for all HAs H = (F, E, ρ), A ∈ F, C ∈ ConfH ,
stores β, input events ev

EA C β ev
∆=⋃

A′∈(A A) LEA′ C β ev

where:

bnd m m′ ∆=
[ ]

bnd m(n) m′(x) ∆=
if match m(n) m′(x) then [x 
→ n] else [ ]
for all n ∈ ZL ∪ ZO, m, m′ ∈ ZM , x ∈ Par

match m m′ ∆=
(m = m′)

match m(n) m′(x) ∆=
(m = m′), Type[[n]]H = Type[[x]]H
for all n ∈ ZL ∪ ZO, m, m′ ∈ ZM , x ∈ Par

Type[[exp]]H
∆= the type of expression exp in the context

of (the variables/constants declaration
of the class associated to) HA H.

Fig. 9. Auxiliary functions for the Core Semantics

In the Core Semantics, the Progress Rule establishes that if there is a tran-
sition t of A enabled by event ev in the current configuration C and store β and
the priority of such a transition is ”high enough” then the transition fires and a
new configuration is reached accordingly. The action to be (eventually) executed
is AC t and the parameter binding is generated in the obvious way by means
of function bnd. The Composition Rule stipulates how automaton A delegates
the execution of transitions to its sub-automata (3rd premise) and these tran-
sitions are propagated upward. Notice that for all v, i, j, ξi v �= unbound and

7 (C, β, ev) |= g means that guard g is true for configuration C, store β and input
event ev. Its formalisation is immaterial for the purposes of the present paper. The
definition of Type[[e]]H is part of UML static semantics and here we assume it given.
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ξj v �= unbound implies ξi v = ξj v = ev. Moreover, different orderings of actions
due to different interleavings of the firing of the transitions in L are captured
by means of predicate mrg (4th premise). Finally, if there is no transition of
A enabled with ”high enough” priority and moreover no sub-automata exist to
which the execution of transitions can be delegated, then A has to ”stutter”,
as enforced by the Stuttering Rule. Notice that stuttering of sub-automata is
propagated upwards by the Composition Rule only if no local transition can be
fired either (last premise of Composition Rule). In the operational semantics

definition of Fig. 6, the simplified notation H :: C (ev,β)/(Ac,ξ)−→L C′ has been

used which stands for H ↑ ∅ :: C (ev,β)/(Ac,ξ)−→L C′.
The following theorem links our semantics to the general requirements set by

the official semantics of UML:

Theorem 1. Given HA H = (F, E, ρ) for all A ∈ F, ev ∈ E, T, L, C, β,Ac the

following holds: A ↑ T :: C (ev,β)/(Ac,ξ)−→L C′ for some C′, ξ iff L is a maximal set,
under set inclusion, which satisfies all the following properties: (i) L is conflict-
free, i.e. ∀t, t′ ∈ L. ¬t#t′; (ii) all transitions in L are enabled, i.e. L ⊆ EA C β ev
; (iii) there is no transition outside L which is enabled and which has higher
priority than a transition in L, i.e. ∀t ∈ L. � ∃t′ ∈ EA C β ev. πt � πt′; and (iv)
all transitions in L respect T , i.e. ∀t ∈ L. � ∃t′ ∈ T. πt � πt′.

Proof. The proof can be carried out in a similar way as for the main theorem of
[6], by structural induction for the direct implication and by derivation induction
for the reverse implication. �
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