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Abstract. In this paper we investigate formally the relationship be-
tween the notion of abstract datatypes in an arbitrary institution, found
in algebraic specification languages like Clear, ASL, and CASL; and the
notion of schemata from the model-oriented specification language Z.
To this end the institution S of the logic underlying Z is defined, and
a translation of Z-schemata to abstract datatypes over S is given. The
notion of a schema is internal to the logic of Z, and thus specification
techniques of Z relying on the notion of a schema can only be applied
in the context of Z. By translating Z-schemata to abstract datatypes,
these specification techniques can be transformed to specification tech-
niques using abstract datatypes. Since the notion of abstract datatypes
is institution independent, this results in a separation of these specifica-
tion techniques from the specification language Z and allows them to be
applied in the context of other, e.g. algebraic, specification languages.

1 Introduction

As already noted by Spivey [12], schema-types, as used in the model-oriented
specification language Z, are closely related to many-sorted signatures, and
schemata are related to the notion of abstract datatypes found in algebraic
specification languages.

Z is a model-oriented specification language based on set-theory. In the
model-oriented approach to the specification of software systems, specifications
are explicit system models constructed out of either abstract or concrete primi-
tives. This is in contrast to the approach used with algebraic or property-oriented
specification languages like CASL [10], which identifies the interface of a soft-
ware module, consisting of sorts and functions, and states the properties of the
interface components using first-order formulas.

Specifications written in Z are structured using schemata and operations on
schemata. A schema denotes a set of bindings of the form {(x1, v1), . . . , (xn, vn)}.
Operations on schemata include restriction of the elements of a schema to those
satisfying a formula; logical operations like negation, conjunction, disjunction,
and quantification; and renaming and hiding of the components of a schema.
Schemata, and thus the structuring mechanism of Z, are elements of the logic
? This research has been partially supported by ESPRIT working group 29432 (CoFI

WG).



used by Z. This, on one hand, has the advantage of using Z again to reason about
the structure of a specification, but, on the other hand, has the disadvantage
that development methods and theoretical results referring to the structure of
specifications cannot be easily transfered to other specification languages based
on different logics.

In contrast, the structuring primitives of property-oriented specification lan-
guages can be formulated independent from the logic underlying the particular
specification language. This is done by using the notion of an institution intro-
duced by Goguen and Burstall [6] to formalize the informal notion of a logical
system. The building blocks of specifications are abstract datatypes, which con-
sist of an interface and a class of possible implementations of that interface.
Operations on abstract datatypes are the restriction of the implementations to
those satisfying a set of formulas; the union of abstract datatypes; and hid-
ing, adding and renaming of interface components. What exactly constitutes the
components of an interface and how they are interpreted in implementations de-
pends on the institution underlying the specification language. For example, in
the institution of equational logic the components of an interface are sorts and
operations. The implementations interpret the sorts as sets and the operations
as functions on these sets.

The goal of this paper is to formalize the relationship between schemata and
abstract datatypes, and to show a correspondence between the operations on ab-
stract datatypes and operations on schemata. This relationship can be used to
transfer results and methods from Z to property-oriented specification languages
and vice versa. For example, the Z-style for the specification of sequential sys-
tems can be transfered to property-oriented specification languages [2]. Further,
the correspondence between operations on abstract datatypes and operations on
schema suggests new operations on abstract datatypes like negation and disjunc-
tion.

However, we cannot compare schemata with abstract datatypes in an arbi-
trary institution; instead, we have to define first an institution S which formalizes
the notion of the set-theory used in Z, and then compare schemata with abstract
datatypes in this institution. The definition of the institution S has the further
advantage that it can be used to define a variant of the specification language
CASL, CASL-S, based on set-theory instead of order-sorted partial first-order
logic. This is possible because the semantics of most of CASL is largely indepen-
dent from a particular institution (cf. Mossakowski [9]).

2 Institutions and Abstract Datatypes

The notion of institutions attempts to formalize the informal notion of a logical
system, and was developed by Goguen and Burstall [6] as a means to define the
semantics of the specification language Clear [4] independent from a particular
logic.

Definition 1 (Institution). An institution I = 〈SignI ,StrI ,SenI , |=I〉 con-
sists of
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– a category of signatures SignI ,
– a functor StrI : Sign

op
I → Cat assigning to each signature Σ the category of

Σ-structures and to each signature morphism σ : Σ → Σ′ the reduct functor
|σ : StrI(Σ′)→ StrI(Σ),

– a functor SenI : SignI → Set assigning to each signature Σ the set of
Σ-formulas and to each signature morphism σ : Σ → Σ′ a translation σ of
Σ-formulas to Σ′-formulas, and

– a family of satisfaction relations |=IΣ ⊆ StrI(Σ)× SenI(Σ) for Σ ∈ SignI
indicating whether a Σ-formula ϕ is valid in a Σ-structure m, written m |=IΣ
ϕ or for short m |=I ϕ,

such that the satisfaction condition holds: for all signature morphisms σ : Σ →
Σ′, formulas ϕ ∈ SenI(Σ), and structures m′ ∈ StrI(Σ′) we have

m′|σ |=I ϕ if and only if m′ |=I σ(ϕ)

We may write M |=I ϕ for a class of Σ-structures M and a Σ-formula ϕ instead
of ∀m ∈ M : m |=I ϕ, and similar for m |=I Φ and M |=I Φ for a set of
Σ-formulas Φ and a Σ-structure m.

Traditionally, an abstract datatype (Σ,M) is a specification of a datatype in a
software system. The signature Σ defines the external interface as a collection of
sort and function symbols, and M is a class of Σ-algebras considered admissible
implementations of that datatype. In the context of an arbitrary institution I
an abstract datatype is a pair (Σ,M) where Σ is an element of SignI and M is
a full subcategory of StrI(Σ).

The basic operations on abstract datatypes are IΦ (impose), Dσ (derive), Tσ
(translate), and + (union) (cf. Sannella and Wirsing [11]):

Impose allows to impose additional requirements on an abstract datatype.
The semantics of an expression IΦ(Σ,M) is the abstract datatype (Σ,M ′) where
M ′ consists of all Σ-structures m in M satisfying all formulas in Φ, i.e.

IΦ(Σ,M) = (Σ, {m ∈M | m |=I Φ}).

The translate operation can be used to rename symbols in a signature, but
also to add new symbols to a signature. If σ is a signature morphism from Σ to
Σ′ then the expression Tσ(Σ,M) denotes an abstract datatype (Σ′,M ′) where
M ′ contains all Σ′-structures m which are extensions of some Σ-structure m in
M , i.e.

Tσ(Σ,M) = (Σ′, {m′ ∈ StrI(Σ′) | m′|σ ∈M}).

The derive operation allows to hide parts of a signature. Dσ(Σ′,M ′) denotes
the abstract datatype having as signature the domain of σ and as models the
translations of the models of Sp by |σ, i.e.

Dσ(Σ′,M ′) = (Σ, {m′|σ | m′ ∈M ′}).

At last, the union operation is used to combine two specifications. Since for
arbitrary institutions the union of signatures is not defined, we have to require
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that both specifications have the same signature. To form the union of two
specifications of different signatures Σ1 and Σ2, one has to provide a signature
Σ and signature morphisms σ1 : Σ1 → Σ and σ2 : Σ2 → Σ, and write Tσ1Sp1 +
Tσ2Sp2. The semantics of (Σ,M1) + (Σ,M2) is the abstract datatype (Σ,M ′)
where M ′ is the intersection M1 and M2, i.e.

(Σ,M1) + (Σ,M2) = (Σ,M1 ∩M2).

3 The Institution S

In this section we introduce the components of the institution S formalizing a
reasonable large subset of the logic underlying the specification language Z from
the Z standard [13]. What is missing, for example, are generic definitions. Other
constructs, like the free type construct, can be easily added and their semantics
defined by transformation as it is done in the Z standard. We also don’t treat
the types and operations defined in the prelude and the mathematical toolkit,
e.g. natural numbers; these can be easily added if needed.

Note that this is not an attempt to give a semantics to the Z specification
language. The relationship between S and Z is similar to the relationship between
the institution of equational logic and the semantics of a specification language
based on this institution.

3.1 Signatures

A signature Σ in SignS consists of a set of names for given-types G and a set of
global-variables O. Each global-variable id in O is associated with a type τ(id)
built from the names of given-types and the constructors cartesian product,
power-set, and schema-type. Note that S has no type constructor for function
types. Instead, a function from T1 to T2 is identified with its graph and is of type
P(T1 × T2). This allows functions to be treated as sets and admits higher-order
functions, as functions may take as arguments the graph of a function and also
return the graph of a function.

Definition 2 (Signatures). Let F and V be two disjoint, recursive enumerable
sets of names. A signature Σ in SignS is a tuple (G,O, τ) where G and O are
finite disjoint subsets of F . The function τ assigns each name in O a type in
T (G), where T (G) is inductively defined by:

– G ⊆ T (G)
– (product-type) T1 × · · · × Tn ∈ T (G) for Ti ∈ T (G), 1 ≤ i ≤ n
– (power-set-type) P(T ) ∈ T (G) for T ∈ T (G)
– (schema-type) <x1 : T1, . . . , xn : Tn> ∈ T (G) for Ti ∈ T (G) and xi ∈ V and
xi 6= xj for 1 ≤ i, j ≤ n.

Note that the elements of T (G) are names of types and not sets; therefore the
type constructors P( ) and × should not be confused with the familiar operations
on sets.
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The function T , mapping a set of given-type names G to T (G), is extended
to a functor from Set to Set by extending the function f : G→ G′ to a function
T (f) : T (G)→ T (G′) as follows:

– T (f)(g) = f(g) for g ∈ G,
– T (f)(T1 × . . .× Tn) = T (f)(T1)× . . .× T (f)(Tn) for T1, . . . , Tn ∈ T (G),
– T (f)(P(T )) = P(T (f)(T )) for T ∈ T (G),
– T (f)(<x1 : T1, . . . , xn : Tn>) = <x1 : T (f)(T1), . . . , xn : T (f)(Tn)>

for T1, . . . , Tn ∈ T (G).

A signature morphism σ : (G,O, τ)→ (G′, O′, τ ′) is a pair of maps between
the given-types and the set of global-variables.

Definition 3 (Signature-Morphisms). A signature morphism σ from a sig-
nature (G,O, τ) to a signature (G′, O′, τ ′) is a pair of functions σG : G → G′

and σO : O → O′ such that σG and σO are compatible with τ and τ ′, that is
τ ; T (σG) = σO; τ ′.

The category SignS has as objects signatures Σ = (G,O, τ) and as mor-
phisms signature morphisms σ = (σG, σO) as defined above.

Example 1. As an example consider the following small Z specification of a bank
account which defines a given-type Integer, a global-variable +, and a schema
ACCOUNT :

[Integer]

+ : Integer × Integer → Integer

ACCOUNT
bal : Integer

The signature of this specification is Σ = ({Integer}, {+,ACCOUNT}, τ) where
τ maps + to the type P(Integer× Integer× Integer) and ACCOUNT to the type
P(<bal : Integer>) . Note that the function type of + is translated to the type
P(Integer× Integer× Integer) of its graph.

A property necessary for writing modular specifications is the cocompleteness
of the category of signatures of an institution.

Theorem 1. The category SignS is finitely cocomplete.

The colimit of a functor F : J → SignS is given by the colimits of the sets of
given-type names and the sets of global-variables. Let F (i) = (Gi, Oi, τi). If the
functor FG from J to Set is defined by FG(i) = Gi and the functor FO from J
to Set by FO(i) = Oi, then the colimit (G,O, τ) of F is given by the colimit
G of FG and the colimit O of FO. The function τ is uniquely determined by
the colimit property of G. Note that, because we have assumed that the set of
given-type names and the set of global-variables are finite, SignS is only finitely
cocomplete
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3.2 Structures

Given a signature Σ = (G,O, τ), a Σ-structure A interprets each given-type
in G as a set from Set and each global-variable id in O as a value of the set
corresponding to the type of id .

Definition 4 (Σ-structures). For a given signature Σ = (G,O, τ) the cat-
egory StrS(Σ) of Σ-structures has as objects pairs (AG, AO) where AG is a
functor from the set G, viewed as a discrete category, to Set, and AO is the
set {(o1, v1), . . . , (on, vn)} for O = {o1, . . . , on} and vi ∈ ĀG(τ(oi)). The functor
ĀG : T (G)→ Set is given by:

– ĀG(T ) = AG(T ) for T = g and g ∈ G
– ĀG(T1 × · · · × Tn) = (ĀG(T1)× · · · × ĀG(Tn)) for T1 × · · · × Tn ∈ T (G)
– ĀG(P(T )) = 2ĀG(T ) for P(T ) ∈ T (G)
– ĀG(<x1 : T1, . . . , xn : Tn>)

= {{(x1, v1), . . . , (xn, vn)} | vi ∈ Āg(Ti), i ∈ 1 . . . n}
for <x1 : T1, . . . , xn : Tn> ∈ T (G).

Example 2. An example of a structure A over the signature defined in Ex. 1
consists of a function AG mapping Integer to Z and the set

AO = {(ACCOUNT , {{(bal , n)} | n ∈ Z}), (+, graph(λ(x, y).x+ y))}.

The notation graph(f) is used to denote the graph of a function f : T → T ′.

A morphism h from a Σ-structure A to a Σ-structure B is a family of func-
tions between the interpretations of the given-types which is compatible with
the interpretations of the global-variables in O.

Definition 5 (Σ-homomorphism). A Σ-homomorphism h from a structure
A = (AG, AO) to a structure B = (BG, BO) is a natural transformation h :
AG ⇒ BG for which h̄τ(o)(vA) = vB for all o ∈ O, (o, vA) ∈ AO and (o, vB) ∈ BO
holds. h̄ is the extension of h : AG ⇒ BG to h : ĀG ⇒ B̄G given by:

– h̄T (v) = hT (v) for T ∈ G and v ∈ ĀG(T )
– h̄T ((v1, . . . , vn)) = (h̄T1(v1), . . . , h̄Tn(vn)) for T = T1 × · · · × Tn ∈ T (G) and

(v1, . . . , vn) ∈ ĀG(T )
– h̄T (S) = {h̄T ′(v) | v ∈ S} for T = P(T ′) ∈ T (G) and S ∈ ĀG(T )
– h̄T ({(x1, v1), . . . , (xn, vn)}) = {(x1, h̄T1(v1)), . . . , (xn, h̄Tn(vn))}

for T = <x1 : T1, . . . , xn : Tn> ∈ T (G) and {(x1, v1), . . . , (xn, vn)} ∈ ĀG(T )

Definition 6 (σ-reduct). Given a signature morphism σ from Σ = (G,O, τ)
to Σ′ = (G′, O′, τ ′) in SignS and a Σ′-structure A = (AG, AO), the σ-reduct of
A, written A|σ, is the Σ-structure B = (BG, BO) given by:

– BG = σG;AG
– BO = {(o, v) | (σO(o), v) ∈ AO, o ∈ O}

For a Σ′-homomorphism h : A→ B the σ-reduct is defined as h|σ = σG;h.
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Definition 7 (StrS). The contravariant functor StrS from SignS to Cat as-
signs to each signature Σ the category having as objects Σ-structures and as
morphisms Σ-homomorphisms, and to each SignS-morphism σ from Σ to Σ′

the functor from the category StrS(Σ′) to the category StrS(Σ) mapping a Σ-
structure A and a Σ-homomorphism to their σ-reduct.

If an institution has amalgamation, two structures A and B over different
signatures ΣA and ΣB can be always combined provided that the common com-
ponents of both signatures are interpreted the same in A and B. This allows to
build larger structures from smaller ones in a modular way. An institution has
amalgamation if and only if its structure functor preserves pushouts, i.e. maps
pushout diagrams in SignI to pullback diagrams in the category of categories.
The functor StrS not only preserves pushouts but also arbitrary finite colimits.

Theorem 2. The functor StrS preserves finite colimits.

3.3 Expressions

The Σ-formulas are first-order formulas over expressions denoting sets and ele-
ments in sets. Expressions can be tested for equality and membership. An impor-
tant category of expressions, called schema-expressions S, denote sets of elements
of schema-type. Schema-expressions will be discussed later in this paper.

E ::= id | (E, . . . , E) | E.i | <x1 := E, . . . , xn := E> | E.x | E(E)
| {E, . . . , E} | {S • E} | P(E) | E × . . .× E | S

The function application E1(E2) is well-formed if E1 is of type P(T1 × T2)
and E2 is of type T1. The result is of type T2. If E1 represents the graph of
a total function, then E1(E2) yields the result of that function applied to E2.
Otherwise, if E1 is the graph of a partial function or not functional at all, then
the result of the function application where E2 is not in the domain of that
function or where several results are associated with E2 in E1 is not specified in
the Z standard [13]. This leaves room for different treatments of undefinedness.
A possible choice described in the standard and which we will adopt in this
paper is to choose an arbitrary value from ĀG(T2) in these cases.

Well-formedness of expressions over a signature Σ = (G,O, τ) is defined
wrt. an environment ε = (Σ, (X, τX)) which consists of the signature Σ, a set
of variables X ⊂ V , and a function τX : X → T (G) mapping a variable to its
type.

We use the notation ε[<x1 : T1, . . . , xn : Tn>] to denote the environment
(Σ, (X ′, τ ′X)) given by X ′ = X ∪ {x1, . . . , xn} and

τ ′X(id) =
{
Ti if id = xi for some 1 ≤ i ≤ n
τX(id) else

An expression E is well-formed with respect to ε if
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– E = id and id ∈ X ∪O ∪G. The type of E wrt. ε is

τ ε(E) =


τX(id) if id is in X,
τ(id) if id is in O,
P(id) if id is in G.

– E = (E1, . . . , En) and each Ei is well-formed for all 1 ≤ i ≤ n. Then
τ ε(E) = τ ε(E1)× . . .× τ ε(En).

– E = E1.i, τ ε(E1) = T1 × . . .× Tn and 1 ≤ i ≤ n. The type of E is Ti.
– E = <x1 := E1, . . . , xn := En>, xi ∈ V , xi 6= xj , and each Ei is well-formed.

The type of E is <x1 : τ ε(E1), . . . , xn : τ ε(En)>.
– E = E1.x, τ ε(E1) = <x1 : T1, . . . , xn : Tn> and x = xi for some 1 ≤ i ≤ n.

The type of E is Ti.
– E1(E2), τ ε(E1) = P(T1 × T2) and τ ε(E2) = T1. The type of E is T2.
– E = {E1, . . . , En}, each Ei is well-formed, and all Ei have the same type T

for 1 ≤ i ≤ n. The type of E is P(T ).
– E = {S •E1}, S is well-formed and has type P(<x1 : T1, . . . , xn : Tn>), and
E1 is well-formed with respect to ε[<x1 : T1, . . . , xn : Tn>]. The type of E is
P(τ ε

′
(E1)).

– E = P(E1) and E1 is well-formed. The type of E is P(τ ε(E1)).
– E = E1 × . . .×En and each Ei is well-formed. The type of E is P(τ ε(Ei)×
. . .× τ ε(En)).

– E = S and S is a well-formed schema-expression with respect to ε (well-
formedness of schema-expressions is defined later in this paper.) The type of
E is the type of S with respect to ε.

Let E be an expression well-formed with respect to an environment ε =
(Σ, (X, τX)), and let A = (AG, AO) be a Σ-structure. The semantics of an
expression E is given with respect to a variable binding β compatible with the
environment ε. Let X = {x1, . . . , xn}, a variable binding β = (A,AX) compatible
with ε consists of a Σ-structure A and a set AX = {(x1, v1) . . . (xn, vn)} with
vi ∈ ĀG(τX(xi)) for all 1 ≤ i ≤ n.

If v = {(x1, v1), . . . , (xn, vn)} is an element of type T = <x1 : T1, . . . , xn : Tn>
then the notation β[v] is used to describe the variable binding (A,A′X) where
(xi, vi) is in A′x iff (xi, vi) is in v or (xi, vi) is in AX but not in v.

Now the semantics of an expression E wrt. β is defined as follows:

– [[id]]β = v if (id, v) ∈ AX and id ∈ X or (id, v) ∈ AO and id ∈ O, or
[[id]]β = AG(id) if id is in G.

– [[(E1, . . . , En)]]β = ([[E1]]β , . . . , [[En]]β).
– [[E.i]]β = vi if [[E]]β = (v1, . . . , vn).
– [[<x1 := E1, . . . , xn := En>]]β = {(x1, [[E1]]β), . . . , (xn, [[En]]β)}.
– [[E.x]]β = vi if [[E]]β = {(x1, v1), . . . , (xn, vn)} and x = xi.
– [[E1(E2)]]β = v if v is unique with ([[E2]]β , v) in [[E1]]β . If another v′ with

([[E2]]β , v′) in [[E1]]β exists, or if none exists, then v is an arbitrary element
of ĀG(T2) where T2 is the co-domain of the E1, that is, τ ε(E1) = P(T1×T2).
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– [[{E1, . . . , En}]]β = {[[E1]]β , . . . , [[En]]β}.
– [[{S • E}]]β = {[[E]]β[v] | v ∈ [[S]]β}.
– [[P(E)]]β = 2[[E]]β .
– [[E1 × . . .× En]]β = [[E1]]β × . . .× [[En]]β .

Schema-expressions A schema denotes a set of elements of schema-type
which have the form {(x1, v1), . . . , (xn, vn)} and are called bindings. Thus the
type of a schema is P(<x1 : T1, . . . , xn : Tn>) if Ti is the type of vi for 1 ≤ i ≤ n.

A simple schema of the form x1 : E1, . . . , xn : En defines the identifiers of a
schema and a set of possible values for each identifier. Given a schema S, the
schema S|P has as elements all the elements of S satisfying the predicate P .
Other operations on schemata include forming the negation, disjunction, con-
junction and implication of schemata. Negation, disjunction and conjunction
correspond to the complement, union, and intersection of the sets denoted by
the arguments. For the disjunction, conjunction, and implication of schema-
expressions, the type of the arguments have to be compatible, that is, if two
components have the same name, they have to have the same type. The type
of the result has as components the union of the components of the arguments
with all duplicates removed.

Adjustments to the type of schemas can be made by using hiding and re-
naming. Hiding hides some components of a schema-type and renaming renames
some components. A particular kind of renaming is decorating the identifiers
with finite sequences of elements from {′, !, ?}.

An existentially quantified schema ∃S1.S2 denotes the set of all bindings of
the identifiers of S2 without the ones in S1 such that there exists a binding in
S1 and the union of the bindings is an element of S2. An universally quantified
schema ∀S1.S2 is an abbreviation for ¬∃S1.¬S2.

S ::= x1 : E, . . . , xn : E | (S|P ) | ¬S | S ∨ S | S ∧ S | S ⇒ S

| ∀S.S | ∃S.S | S \ [x1, . . . , xn] | S[x1/y1, . . . , xn/yn]
| S Decor | E

Note that the schema operations ∆S and ΞS, used in Z for the specification
of sequential systems, are only convenient abbreviations for schema expressions
involving the schema operations defined above. For example, ∆S is the same as
the conjunction of the schema S with S′, and ΞS is the same as the schema S ∧
S′|(x1 = x′1∧. . .∧xn = x′n) given that the type of S is P(<x1 : T1, . . . , xn : Tn>).

A schema-expression S is well-formed with respect to an environment ε =
(Σ, (X, τX)) with Σ = (G,O, τ), if

– S = x1 : E1, . . . , xn : En, xi ∈ V , and Ei is well-formed and has type P(Ti)
for each 1 ≤ i ≤ n. The type of S is P(<x1 : T1, . . . , xn : Tn>).

– S = S1|P and P is well-formed with respect to ε′ = ε[T ], where the type of
S1 is P(T ). The type of S is P(T ).

– S = ¬S1 and S1 is well-formed. The type of S is τ ε(S1).
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– S = S1 op S2, S1 and S2 have compatible types, S1 and S2 are well-formed,
and op ∈ {∨,∧,⇒}.
Two types P(<x1 : T1, . . . , xn : Tn>) and P(<x′1 : T ′1, . . . , x

′
m : T ′m>) are com-

patible if for all i and j such that xi = x′j we have Ti = T ′j . The type of S
has as components the union of the components of the type of S1 and S2

with the duplicates removed.
– S = ∃S1.S2, S1 and S2 are well-formed with respect to ε, and their types are

compatible. The type of S is the type of S2 with all the identifiers removed
which occur in S1.

– S = S1 \ [x1, . . . , xn] and S is well-formed. Note that it is not required that
the xi have to be identifiers of the type of S1. The type of S is the type of
S1 without the identifier xi if xi occurs in the type of S for all 1 ≤ i ≤ n.

– S = S1[x1/y1, . . . , xn/yn] and S is well-formed. Note that it is not required
that the xi have to be identifiers of the type of S1. The type of S is the type
of S1 where xi is replaced by yi if xi is an identifier of S1. Note that the
mapping from the identifiers of the type of S1 to the identifiers of the type
of S defined by this replacement has to be injective.

– S = S1 Decor and S1 is well-formed. Decor is a finite sequence of elements
from {′, !, ?}. The type of S is P(<x̄1 : T1, . . . , x̄n : Tn>) if S1 is of type
P(<x1 : T1, . . . , xn : Tn>). x̄i is the decorated form of xi, for example, if
Decor is ! then x̄i is xi!.

– S = E and E is well-formed with type P(<x1 : T1, . . . , xn : Tn>). The type
of S is P(<x1 : T1, . . . , xn : Tn>).

Let v be the set {(x1, v1), . . . , (xn, vn)} and X be a set of variables, then
v|X denotes the binding v restricted to the identifiers in the set X, i.e. the set
{(xi, vi) | xi ∈ X ∧ (xi, vi) ∈ v ∧ 1 ≤ i ≤ n}.

If a schema-expression S is well-formed with respect to ε, its semantics [[S]]β

with respect to a structure A = (AG, AO) and a variable binding β = (A,AX)
compatible with ε is defined as follows:

– [[x1 : E1, . . . , xn : En]]β = {{(x1, v1), . . . , (xn, vn)} | vi ∈ [[Ei]]
β
, 1 ≤ i ≤ n}.

– [[S|P ]]β = {v ∈ [[S]]β | β[v] |=S P}. The satisfaction relation |=S is defined in
Sect. 3.4.

– [[¬S]]β = {v ∈ ĀG(T ) | v 6∈ [[S]]β} and S has type T .
– [[S \ [y1, . . . , yn]]]β = {v|{x1,...,xm} | v ∈ [[S]]β}, where {x1, . . . , xm} is the set

of identifiers of the type of S without the identifiers y1, . . . , yn.
– [[S1 op S2]]β = {v ∈ ĀG(T ) | v|X1 ∈ [[S1]]β op v|X2 ∈ [[S2]]β} where op is in
{∨,∧,⇒}, P(T ) is the type of S1 op S2, and X1 and X2 are the set of
components of schemata S1 and S2, respectively.

– [[∃S1.S2]]β = {v ∈ ĀG(T ) | ∃v1 ∈ [[S1]]β : (v1 ∪ v)|X2 ∈ [[S2]]β} where P(()T )
X2 is the set of components of schema S2 and P(T ) is the type of ∃S1.S2.

– [[S[y1/y
′
1, . . . , yn/y

′
n]]]β = {f̄(v) | v ∈ [[S]]β} where f is the function from the

identifiers of type S to the identifiers of type S1 defined by [y1/y
′
1, . . . , yn/y

′
n]

as follows:

f(id) =
{
y′i if yi = id for some 1 ≤ i ≤ n
id else
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and f̄ is the canonical extension of f to bindings.
– [[S1 Decor ]]β = {{(x̄1, v1), . . . , (x̄n, vn)} | {(x1, v1), . . . , (xn, vn)} ∈ [[S1]]β}.
x̄i is the identifier xi decorated with Decor . For example, if Decor is ′ then
x̄i is xi′.

3.4 Formulas

The formulas in SenS(Σ) are the usual first-order formulas built on the mem-
bership predicate and the equality between expressions.

P ::= true | false | E ∈ E | E = E | ¬P | P ∨ P | P ∧ P
| P ⇒ P | ∀S.P | ∃S.P

A formula P is well-formed in an environment ε = (Σ, (X, τX)) if

– P = E1 ∈ E2, τ ε(E2) = P(τ ε(E1)), and E1 and E2 are well-formed.
– P = (E1 = E2), τ ε(E1) = τ ε(E2), and E1 and E2 are well-formed.
– P = ¬P1 and P1 is well-formed.
– P = P1 op P2, P1 and P2 are well-formed, and op ∈ {∨,∧,⇒}.
– P = ∀S.P1, S is well-formed and has type P(T ) where T is a schema-type

and P1 is well-formed with respect to ε[T ].
– P = ∃S.P1, S is well-formed and has type P(T ) where T is a schema-type

and P1 is well-formed with respect to ε[T ].

Given a signature-morphism σ : Σ → Σ′ and a formula P well-formed with
respect to ε = (Σ, (X, τX)), then the formula σ̄(P ) is well-formed with respect
to (Σ′, (X, τ ′X)) where τ ′X = τX ;T (σG) and σ̄(P ) is given by:

– σ̄(id) = id if id ∈ X, σ̄(id) = σO(id) if id ∈ O, and σ̄(id) = σG(id) if id ∈ G.
– σ̄((E1, . . . , En)) = (σ̄(E1), . . . , σ̄(En)).
– σ̄(E.i) = σ̄(E).i.
– σ̄(<x1 := E1, . . . , xn := En>) = <x1 := σ̄(E1), . . . , xn := σ̄(En)>.
– σ̄(E.x) = σ̄(E).x.
– σ̄(E1(E2)) = σ̄(E1)(σ̄(E2)).
– σ̄({E1, . . . , En}) = {σ̄(E1), . . . , σ̄(En)}.
– σ̄({S • E}) = {σ̄(S) • σ̄(E)}.
– σ̄(P(E)) = P(σ̄(E)).
– σ̄(E1 × . . .× En) = σ̄(E1)× . . .× σ̄(En).
– σ̄(x1 : E1, . . . , xn : E) = x1 : σ̄(E1), . . . , xn : σ̄(En).
– σ̄(S|P ) = σ̄(S)|σ̄(P ).
– σ̄(¬S) = ¬σ̄(S).
– σ̄(S1 op Sn) = σ̄(S1) op σ̄(Sn) for op ∈ {∨,∧,⇒}.
– σ̄(∃S1.S2) = ∃σ̄(S1).σ̄(S2) and σ̄(∀S1.S2) = ∀σ̄(S1).σ̄(S2).
– σ̄(S \ [x1, . . . , xn]) = σ̄(S) \ [x1, . . . , xn].
– σ̄(S[x1/y1, . . . , xn/yn]) = σ̄(S)[x1/y1, . . . , xn/yn].
– σ̄(E1 ∈ E2) = (σ̄(E1) ∈ σ̄(E2)).
– σ̄(E1 = E2) = (σ̄(E1) = σ̄(En)).
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– σ̄(true) = true and σ̄(false) = false.
– σ̄(¬P ) = ¬σ̄(P ).
– σ̄(P1 op P2) = σ̄(P1) op σ̄(P2) for op ∈ {∨,∧,⇒}.
– σ̄(∀S.P ) = ∀σ̄(S).σ̄(P ) and σ̄(∃S.P ) = ∃σ̄(S).σ̄(P ).

Definition 8 (SenS). The functor SenS from SignS to Set maps each signature
Σ to the set formulas well-formed wrt. ε = (Σ, ({}, τX)) and each signature
morphism σ from Σ to Σ′ to the translation of Σ-formulas to Σ′-formulas given
by σ̄.

Validity of a well-formed formula P in β = (A,AX), β |=S P , is defined by:

– β |=S true.
– β |=S E1 ∈ E2 iff [[E1]]β ∈ [[E2]]β .
– β |=S E1 = E2 iff [[E1]]β = [[E2]]β .
– β |=S ¬P iff not β |=S P .
– β |=S P1 op P2 iff β |=S P1 op β |=S P2 for op ∈ {∨,∧,⇒}.
– β |=S ∀S.P iff β[v] |=S P for all v ∈ [[S]]β .
– β |=S ∃S.P iff β[v] |=S P for some v ∈ [[S]]β .

Definition 9 (Satisfaction). Given a signature Σ, a formula P which is well-
formed with respect to (Σ, ({}, τX)), and a Σ-structure A, then A |=SΣ P if
(A, {}) |=S P .

Theorem 3 (The Institution S). The category SignS , the functor StrS , the
functor SenS and the family of satisfaction relations given by |=SΣ define the
institution S = 〈SignS ,StrS ,SenS , |=S〉.

Example 3. To complete our small example of a bank account we define the
schema ∆ACCOUNT and the operation UPDATE adding n to the balance of
the account:

∆ACCOUNT = ACCOUNT ∧ACCOUNT ′

UPDATE
∆ACCOUNT
n : Integer

bal′ = bal + n

The abstract datatype in S corresponding to this specification consists of the
signature:

ΣBA = ({Integer}, {+,ACCOUNT ,∆ACCOUNT ,UPDATE}, τ)

where τ is given by

τ(id) =


P(Integer× Integer× Integer) if id = +
P(<bal : Integer>) if id = ACCOUNT
P(<bal : Integer, bal ′ : Integer>) if id = ∆ACCOUNT
P(<bal : Integer, bal ′ : Integer, n : Integer>) if id = UPDATE

12



The following set of formulas specifies the schemata ACCOUNT , ∆ACCOUNT
and the UPDATE operation:

Φ =
{ACCOUNT = (bal : Integer),
∆ACCOUNT = ACCOUNT ∧ACCOUNT ′,
UPDATE = ((∆ACCOUNT ∧ (n : Integer)) | bal ′ = bal + n)}.

A ΣBA-structure A = (AG, AO) satisfying Φ is given by function AG mapping
Integer to Z and the set

AO =

{(+, graph(λ(x, y).x+ y)),
(ACCOUNT , {{(bal , x)} | x ∈ Z}),
(∆ACCOUNT , {{(bal , x), (bal ′, y)} | x, y ∈ Z}),
(UPDATE , {{(bal , x), (bal ′, y), (n, z)} | x, y, z ∈ Z ∧ y = x+ z})}.

Now the interpretation of UPDATE in A, denoted by A(UPDATE ), defines an
operation that given an integer n transforms a state, which is an element of the
interpretation of ACCOUNT in A, to another state:

({(bal , x)}, z) 7→ {(bal , y)} iff {(bal , x), (bal ′, y), (n, z)} is in A(UPDATE ).

4 Relating Abstract Datatypes to Schemata

Let Σ = (G,O, τ) be a signature in S. A schema-type

T = <x1 : T1, . . . , xn : Tn>

defines a signature Σ′ = (G,O∪{x1, . . . , xn}, τ ′) where τ ′(xi) = Ti and τ ′(id) =
τ(id) for id ∈ O.1

Given a Σ-structure A = (AG, AO), an element {(x1, v1), . . . , (xn, vn)} of
type T defines a Σ′-structure A′ = (AG, AO ∪ {(x1, v1), . . . , (xn, vn)}).

Definition 10. Given a signature Σ = (G,O, τ), a schema-expression S of
type P(<x1 : T1, . . . , xn : Tn>) and a Σ-structure A = (AG, AO). We define an
abstract datatype (ΣS ,MA

S ) by

– ΣS = (G,O∪{x1, . . . , xn}, τS) where τS(xi) = Ti for 1 ≤ i ≤ n and τS(id) =
τ(id) for id ∈ O and

– MA
S = {(AG, AO ∪ vS) | vS ∈ [[S]]((AG,AO),{})}.

This definition can be extended to abstract datatypes Sp = (Σ,M) in AdtS by
taking the union of all MA

S for A ∈M :

SpS = (ΣS ,
⋃
A∈M

MA
S ).

1 Note that Σ′ is not a signature as defined in Def. 2 because {x1, . . . , xn} is not a
subset of F since, for technical reasons, we had to require that the set of variable
names and the set of identifier names are disjoint. However, we can assume that O′

is the set O ∪ {x̄1, . . . , x̄n} where the x̄i are suitable renamings of xi to symbols in
F not occurring in O.
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Example 4. Given Σ = ({Integer}, {+}, τ), then the signatures corresponding
to the schemata ACCOUNT , ∆ACCOUNT , and UPDATE are:

ΣA = ({Integer}, {+, bal}, τA),
Σ∆A = ({Integer}, {+, bal , bal ′}, τ∆A),
ΣU = ({Integer}, {+, bal , bal ′, n}, τU ).

The next theorem relates the operations on schemata with the operations on
abstract datatypes:

Theorem 4. Let Sp = (Σ,M) be an abstract datatype in S. If

– S = x1 : E1, . . . , xn : En, then SpS = I{xi∈Ei|1≤i≤n}TσSp where σ is the
inclusion of Σ into ΣS.

– S = S1|P , then SpS = I{P}SpS1 .
– S = S1 ∧ S2, then SpS = Tσ1SpS1 + Tσ2SpS2 . The signature morphisms σ1

and σ2 are the inclusions of the signatures ΣS1 and ΣS2 into ΣS1∧S2 . This
is needed because, in contrast to the union of abstract datatypes, the types of
S1 and S2 in the union of S1 and S2 are only required to be compatible.

– S = S1 \ [x1, .., xn], then SpS = DσSpS1 where σ is the inclusion of ΣS into
ΣS1 .

– S = S1[x1/y1, .., xn/yn], then SpS = TσSpS1 where σG is the identity and
σO(x) = yi if x = xi for some i and σO(x) = x if x 6= xi for all i.

Example 5. Given Sp = (Σ,M) and UPDATE = (∆ACCOUNT ∧(n : Integer) |
bal ′ = bal + n) we can write SpU = (ΣU ,MU ) as:

SpU = I{bal′=bal+n}(Tσ1Sp∆A + Tσ2I{n∈Integer}Tσ3Sp).

Here, σ1 is the inclusion of Σ∆A into ΣU , σ3 the inclusion of Σ into Σ(n:Integer),
and σ2 the inclusion of Σ(n:Integer) into ΣU . Σ(n:Integer) = ({Integer}, {+, n}, τ ′)
is the signature corresponding to the schema (n : Integer).

What about the other schema operations ¬S, S1∨S2, S1 ⇒ S2, and ∃S1.S2?
The existential quantifier is the same as hiding the schema variables of S1 in
the conjunction of S1 and S2. Let x1, . . . , xn be the schema variables of S1,
then ∃S1.S2 and (S1 ∧ S2) \ [x1, .., xn] have the same semantics. This yields the
following theorem:

Theorem 5. Let Sp = (Σ,M) be an abstract datatype in S, and S = ∃S1.S2 a
well-formed schema expression. Then

SpS = Dσ(Tσ1SpS1 ∧ Tσ2SpS2)

where σ1 and σ2 are the inclusions of ΣS1 and ΣS2 into ΣS1∧S2 , and σ is the
inclusion of the signature of the whole expression into ΣS1∧S2 .

It is easy to define negation, disjunction and implication on abstract data-
types:
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Definition 11. Let (Σ,M), (Σ,M1) and (Σ,M2) be abstract datatypes in an
arbitrary institution I, define:

¬(Σ,M) = (Σ, {m ∈ StrI(Σ) | m 6∈M})
(Σ,M1) ∨ (Σ,M2) = (Σ,M1 ∪M2)

(Σ,M1)⇒ (Σ,M2) = (Σ, {m ∈ StrI(Σ) | m ∈M1 ⇒ m ∈M2})

What is the relationship of these operations to the corresponding schema
operations? Disjunction can be treated similar to conjunction; however, while it
seems natural to expect Sp¬S = ¬SpS , this does not hold. The reason is that in
Sp¬S the negation of S is interpreted within a given abstract datatype Sp while
the negation of SpS also permits the negation of Sp itself. If (AG, AO ∪ v) is a
model of Sp¬S , then v is not in [[S]]β and (AG, AO) is always a model of Sp.
On the other hand, if (AG, AO ∪ v) is a model of ¬SpS , either v is not in [[S]]β

or (AG, AO) is not a model of Sp. The solution is to add the requirement that
(AG, AO) is a model of Sp to ¬SpS . Implication has a similar problem.

Theorem 6. Let Sp = (Σ,M) be an abstract datatype in S. If

– S = S1 ∨ S2, then SpS = Tσ1SpS1 ∨ Tσ2SpS2 . The signature morphisms σ1

and σ2 are the inclusions of the signatures ΣS1 and ΣS2 into ΣS1∨S2 .
– S = ¬S1, then SpS = ¬SpS1 + TσS1

Sp where σS is the inclusion of the Σ
into ΣS.

– S = S1 ⇒ S2, then SpS = (Tσ1SpS1 ⇒ Tσ2SpS2) + TσSSp. The signature
morphisms σ1 and σ2 are the inclusions of the signatures ΣS1 and ΣS2 into
ΣS1⇒S2 .

5 Conclusion

In this paper we have formalized the relationship between the structuring mech-
anism in Z and the structuring mechanism of property-oriented specification
languages. Z specifications are structured using schemata and operations on
schemata, which are based on the particular logic underlying Z. In contrast,
property-oriented specifications are structured using abstract datatypes and op-
erations on abstract datatypes, which can be formulated largely independent of
the logic used for the specifications.

The advantage of having the structuring mechanism represented as part of
the logic is that it is possible to reason within that logic about the structure
of specifications. The disadvantage is that it is not easy to transfer results and
methods to be used with a different logic and specification language. For example,
the specification of sequential systems in Z consists of a schema for the state
space and a schema for each operation. In the example of the bank account the
schema ACCOUNT defines the state space of the bank account, and the schema
UPDATE defines the update operation that changes the state of the account.
Using the results of this paper we can use abstract datatypes instead of schemata
for the specification of sequential systems and the bank account specification can
be written without the use of schemata as a CASL-S specification as follows:
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spec BASE =
sort Integer
op + : P(Integer× Integer× Integer)

spec ACCOUNT = BASE then
op bal : Integer

spec ∆ACCOUNT = ACCOUNT and { ACCOUNT with bal 7→ bal ′ }

spec UPDATE = ∆ACCOUNT then
op n : Integer
axioms bal ′ = bal + n
Note that this specification does not make any reference to schemata any-

more. Instead of schemata the structuring facilities of CASL-S are used. Since
these structuring facilities are institution independent2, this allows the use of
the Z-style for the specification of sequential systems also with other specifica-
tion languages. For example, this specification style can be used in the state as
algebra approach (e.g. [1, 2, 5, 7]).

In the process of relating schemata and their operations to abstract datatypes
we have defined the operations negation, disjunction and implication on abstract
datatypes, which were previously not defined. Further work needs to be done to
study the relationship of these new operations with the other operations on
abstract datatypes, and how to integrate the new operations into proof calculi,
like that of Hennicker, Wirsing, and Bidoit [8]. Work in this direction has been
done for the case of disjunction in Baumeister [3].
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