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INTRODUCTION

The Dexter Hypertext Reference Model and somesofatiants gained wide acceptance as a basisdor th
design of hypermedia systems and interoperabdityst It was formalised by Halasz and Schwarz (1990
in Z, a specification language based on set the®iryce then, the object-oriented paradigm is widely
adopted in design and implementation of informasgatems. In addition, more emphasis is how put on
visual modeling languages that make models morstive. A first object-oriented specification fdane

Dexter Model was presented by Van OssenbruggerEd@ds (1995). It is an Object-Z approach without

graphical representation.

This work presents an object-oriented formal speatibn of a Dexter-based reference model for
hypermedia systems in the Unified Modeling LanguélgmML). The specification consists of a visual
representation with UML class diagrams supplememigd formal constraints on model elements, i.e.
invariants on elements as well as pre-conditiorts @ost-conditions on operations written in the ©bje
Constraint Language (OCL). UML has been chosenusecd is the standard modeling language; OCL is

part of the UML (1999).

A visual representation has the advantage of slgpwina glance the relevant concepts, how they are
organised and how they are related to each othbrs $emi-formal graphical representation is
supplemented with semantic information formallytten in OCL. The use of OCL improves the model
precision— as stressed by Richter and Gogolla (1998pmpared to constraints imposed when written as

text. In this work it allows for an object-orientéatmal specification that is comparable to a Alg$z &
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Schwarz, 1990) or a VDM specification (Tochterm&nbitrich, 1996), for example.

This work is structured as follows: The secondisaagives an overview of the state-of-the-art ie tield

of reference models for hypermedia systems. Thid g@ction presents the goals of the current approa
Section four describes the argument of using UMd @tCL. The fifth section presents the core of the
model. Section six summarises the extension pdisswiof this model. Finally, in the last sectisome

conclusions and future steps are outlined.

BACKGROUND

For the specification of models, formal, semiforraainformal techniques can be used. Formal teclasq
are those based on mathematics, logic or algelstdasrwhich syntax, semantics and manipulationsule
are explicitly defined. Semiformal techniques araimly diagram-based and tabular-based techniques,
which present information in a structured form.ohmhal techniques are those that only use the ratura

language. Several reference models have been gedeilo the area of hypermedia.

The formal approaches include amongst others tledliSTModel (Furuta & Scotts, 1990), the Dexter
Model (Halasz & Schwartz, 1994) and the Dortmunchifaof Models (Tochtermann & Dittrich, 1996).

The former is a specification based on the Petti fagnalism, that defines five different levels of
abstraction. The Dexter Hypertext Reference Mosléhé most well known model. It is formally spesdfi

in Z and was often used as a discussion basis @neixfensions. DHM (Devise Hypermedia Model) of
Gregnbaek and Trigg (1996) is one of this extensi®hs. Dortmund Family of Models is formalised in the
Vienna Development Method (VDM) with the goal otroducing flexibility using alternative data type

specifications. Most of these models focus on thcshypertext or hypermedia structure.

To the semi-formal models we count the aforemeptioHM, the Amsterdam Hypermedia Model
(AHM) of Hardman, Bulterman, and van Rossum (1994 the Adaptive Hypermedia Application Model

(AHAM) of De Bra, Houben and Wu (1999). In contréstthe Dexter Model, DHM is an object-oriented



and semi-formal approach. It presents a class ahagn the notation proposed by Coad and Yourdon
(1991) of part of the hypermedia model (mainly stssof the Storage Layer). It introduces the casoafp
location and reference specification. It does noteh the Run-Time Layer and operations are infdgmal
described. AHM is also an informal extension of fexter Model, which supports the modeling of
dynamic media, such as audio, video and animatoallow for specification of temporal relationships
between the data items. It introduces conceptd) sscchannel and synchronisation arcs. AHAM is a

Dexter-based approach for adaptive hypermediaregstehich specification is tuple-based.

GOALSOF THISAPPROACH

Given such a variety of reference models for hy@elimthe question should be asked: Why should anoth

reference model for hypermedia systems be defiibd”ain reasons for such a project are:

» To produce an approach that is both object-orieatetiformal,

» To obtain an easily extendable core reference model

* To supplement semi-formal specification techniquils formal specification,

» To use a standard notation for the visual represientof object-oriented models,

» To define a less mathematical and widely comprahkEnformal specification.

After analysis of amongst others the approachegiomed above, the Dexter Model proved to be sudgtabl
for use as a basis of the approach developed diidenbin this work. It is a strong Dexter-baseddalo
that includes a visual representation of the ref@enodel in the standard UML supplemented with OCL

constraints that formally specify invariants, ame-@nd post-conditions for operations.

Just as in the case of the Dexter Model, the hypdigmspace is modelled as a three layer architectine
layers are the Run-Time Layer, the Storage Laywet the Within-Component Layeonnected by the

interfaces Presentation Specification and AnchorTig model focuses mainly on the description afict



and dynamic aspects of the Storage Layer and theTRuoe Layer, and the mechanisms of the interfaces,
Anchoring and Presentation Specification (see [iglly. The Within-Component Layer is purposely

neither elaborated within the Dexter Model nor witbur reference model.

The main goal of the reference model is to des¢hbanetwork of nodes and links in the Storage Laye

the mechanisms by which these links and nodesetaged. The nodes are treated in this layer asrglene

data containers. The content and structure witha Hypermedia nodes are described in the Within-
Component Layer. The Run-Time Layer contains thecmgation of the presentation of nodes and links

focusing on user interaction.

As it is a Dexter-based reference model we dedidese the Dexter terminology, resisting the temmnta
to use more expressive names, such as “end postead of specifier. End point was introduced byMDH
that also replaced Dexter’s anchor value by locagigecification. Although, we introduce some change
mostly simplifications — to the Dexter Model, sugh only allowing atoms to have content, to aggeegat
components information, i.e. attributes, anchord present specifications directly to componentkdin

have exactly two specifiers, an end point “fromtiand point “to”.

USING UML FOR A VISUAL AND FORMAL SPECIFICATION

The standard UML is used in this chapter to viseaiind specify the reference model. UML diagrands an
modeling elements allows for a graphical represiemaf the reference model and the use of OCLt (giar
UML) allows for a formal description of the funatiality of the model. The Run-Time Layer, Storage
Layer and the Within-Component Layer, into which teference model divides a hypermedia system, are
represented as UML packages. The UML class diagrhmigure 1 shows the architecture model of
hypermedia systems composed by these packagebettdrfaces between them, i.e. the Anchoring and

Presentation Specification interfaces.
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Figure 1. Architecture Modd of Hypermedia Systems

In the following sections the object-oriented rejereation with UML of the Storage Layer and Run-&im
Layer are presented as well as an OCL specificatiome operations of these layers. These opegatio
are functions to access components and anchorgrang and presentation functions. Note that a detap
specification of the reference model is not witthie scope of this chapter. The UML-based Spedcifinat
Environment (USE, 2001) was used to check the fipatibn of the reference. In this chapter some of
these expression are simplified as follows withdbgective of augmenting readability: spaces actuged

in invariants’ hames, non-side effect-free operai@re included in constraints — for abbreviation —
whenever they can be replaced by an expressionth@ndperation “oclAsType” is sometimes omitted to

increase clarity (Warmer & Kleppe, 1999).

The use of a visual representation has the advatitag some invariants do not require an OCL caimitr
as they are included in the visual specificationcontrast, in a Z specification they must be expli

included. For example, the constraint “a link isemuence of two specifiers” is given by the aggrega



association of type composition between thesses Linkand Specifierwith multiplicity 2 and property

{ordered}.

THE CORE OF THE HYPERMEDIA REFERENCE MODEL

The Storage L ayer

The Storage Layer describes the structure of armguiaas a finite set of components together with two
functions, aresolverand anaccessoifunction. These concepts are modelled lmyags Hypermediand a
class ComponentVith the two operationgesolverandaccessordefined for theclass Hypermediat is
possible to “retrieve” components. Every componeas a globally unique identiticlass UID) The
accessor function allows for the “access” to a comegmt given its UID. UIDs provide a guaranteed

mechanisms for addressing any component in a hygukam

As with the Dexter model, addressing is accomptishea indirect way based on the entities callechan
(class Anchor)consisting of two parts: an anchor Izlass AnchorlD)and anchor valugclass
AnchorValue) The anchor value is an arbitrary value that di@scsome location within a component. The
anchor ID is an identifier that uniquely identifigge anchor within the scope of the component. fraye

with the UID it permits unique identification ofglanchor within the scope of the hypermedia.

Figure 2 shows the Storage Layer represented bMia dlass diagram. All the classes depicted are giart
the package Storage Layer with exceptiorCohtentand Anchor Valuethat are classes of the package

Within-Component Layer. In the remainder of thistem some of these classes are described in detail
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Figure 2: Storage Layer Model

Component

A component is an abstract representation of aorrimdtion item from the application domain. It is
represented with aabstract classComponentEvery component has a unique identifier (UID)oassted
with it. These UIDs are assumed to be unique inathele universe of discourse. A component can eithe
be a nodgclass Node)r a link (class Link) A node, in turn, can either be an at¢ctass Atom)or a
composite of other componer{tdass Composite)The composite pattern (Gamma & et. al., 1995%)sed

to represent this structure as shown in FigureoRlifks description see subsection below.

A component has associated component informatiandiscribes the properties of the component. These

properties are a set of attribut@dass Attribute),a presentation specificatiqelass PresentSpeend a



sequence of ancho(slass Anchor)Attributes allow definition of arbitrary propertiesuch as keywords
attached to a component. The list of anchors pesva mechanism for specifying the end points of the
links that relate this node to other nodes in teewvork. The presentation specification is usedhas t

interface to the Run-Time Layer.

Compared to the Dexter model there is no needarotiject-oriented specification to include clagees
component base and component information. Attrigudechors and presentation specifications aggregat
directly to class component. In addition we introeluthe concept of node in the class hierarchy

Component-Node-Composite-Atom-Li@kmposites, in contrast to the Dexter Model cahiaoe content.

The model assures “type consistency” between coemieni.e. two components are “type consistent”, if
they are both atoms or both links or both compssiiée “type consistency” is specified by the falilog
OCL constraint.

context Component :: consistency (c1:Component, c2: Component): Boolean

post: result = cl.ocllsTypeOf (Atom) and c2.ocllsTypeOf (Atom)

or cl.ocllsTypeOf (Composite) and c2.ocllsTypeOf (Composite)
or cl.ocllsTypeOf (Link) and c2.oclIsTypeOf (Link)

Anchor

Anchoring provides a mechanism that allows foriligkbetween nodes but also for addressing (refgrrin
to locations within the content of a component. @athor is defined as a pair consisting of an antibor
(class AnchorlD)yand an anchor valuglass AnchorValue)rhe anchor ID is an identifier which uniquely
identifies its anchor within the scope of the comgmt, of which it is part. Through the pair compane
UID - anchor ID, an anchor can therefore be unigugéntified across the whole universe. The anchor
value is an arbitrary value that indicates somatlon, item or substructure within the componerite T
anchoring process is made possible by this decdtiggosf the anchor in two parts: the anchor IDused

by the Storage Layer, while the anchor value isugable field for use by the Within-Component Layer

The UML diagram (Figure 2) includes the name of flaekage for classes that do not belong to the



“Storage Layer” package.

Thus, to ensure that the anchor identifiers arguenwithin a component the following invariant cioasit
must be fulfilled: The number of anchors must beadtp the number of different anchor identifiers.
context Component

inv number of anchors:
anchors - size = anchors.anchorID - asSet - size

Link

A link consists of a sequence of two specifiersspicifier defines one single end point of the lilrk.
comparison links of the Dexter Model, are allowedhiave more than two specifiers. A link is modelgd
aclass Linkand an aggregation association of type compositi@class SpecifierTheclass Specifiehas
an attributedirection. The direction encodes whether the end point issthece of the link (from) or the
destination (to). All links should have one souatel one destination. The following invariant forises

this, i.e. at least one specifier with value “froenid one specifier with value “to” for the directio

context Link

inv one specifier with direction FROM and one with direction TO:
specifiers.direction - exists (' s: Specifier | s.direction =#FROM) and
specifiers.direction - exists (' s: Specifier | s.direction =#TO)

Hypermedia

A hypermedia system consists of a set of componeetsiodes and links, a functioesolverthat returns
the UID for a given component specifier (more tlware specifier may return the same UID), and an
accessorfunction which given a UID returns a componente Hypermedia is represented in the object-
oriented model by alass Hypermediawhich is a composition of objects of tyggomponent A
hypermedia requires at least one component (Thistnt is formalised by the multiplicity in the

diagram).

Theresolverfunction is responsible for “resolving” a componepécification into UIDs that are primitives



in the model with an attribute ID. Theccessorfunction is responsible for “accessing” the congun
corresponding to a resolved UID. The resolver igadial function; the accessor a total and inveatib

function.

context Hypermedia :: resolver ( cs : ComponentSpec ) : Set (UID)
pre: components — exists (c: Component |
c.ocllsTypeOf (Link)
and c. ocllsTypeOf (Link)/compSpecs — includes (cs) )
post: result = UID.alllnstances - select (u: UID | cs.uid - includes (u))

context Hypermedia :: accessor (uid : UID ) : Component
pre: components — exists (c: Component |

c. ocllsTypeOf (Link)

and c. ocllsTypeOf (Link)./compSpecs.uids - includes (uid) )
post: result = uid.component

Access to Components and Anchors

The Hypermediaclass includes two operations for links and arghde. ensuring the navigation
functionality of the hypermedia system. They arelihkTo and thelinkToAnchorfunctions. ThdinkTo
function returns the set of links that resolve tspacific component. THenkToAnchorobtains the set of
links that resolve to a specific anchor. The follogvare the OCL pre- and post-conditions for the

operationdinksToandlinkToAnchor

context Hypermedia :: linksTo (uid : UID ) : Set (UID)
pre: components - exists (¢ : Component | accessor (uid) =c)
post: result = UID.alllnstances - select (lid : UID |
Component.alllnstances - exists (link : Component |
link.oclIsTypeOf (Link) and link = accessor (lid)
and ComponentSpec.alllnstances - exists (¢cs: ComponentSpecs |
link.specifiers.compSpec — includes (cs)
and wuid =resolver (cs) ) ) )

context Hypermedia :: linksToAnchor (uid:UID, aid:AnchorID) : Set (UID)
post: result = linksTo (uid) - select (1lid: UID |

accesor(lid).oclIsTypeOf (Link)

and accessor (lid). /anchorSpecs - 1includes (aid) )



Hypermedia I nvariants
Every classHypermediamust satisfy four constraints. The first constrdm called the “components
accessibility”. It assures that all components dfiypermedia system are accessible by means of the
accessor operation. This can be formalised asasllo

context Hypermedia

inv components accessibility:

components — forAll (¢: Component |
UID.alllnstances - exists (uid:UID | ¢ = accessor (uid) ) )

The second constraint states that the set of Ulilasireed “resolving” component specifications (resol
range) is equal to the set of valid nodes thathmmetrieved by thaccessoraccessor domain), i.e. the
resolverfunction must be able to produce all possibledvaliDs. This can be proved proving the following
two inclusions:

range of resolverf] domain of accessor and
range of resolver ] domain of accessor

The range of theesolveris included in the domain of theccessorby definition. The following OCL

constraint thus proves then that the domain oatluessois included in the range of thesolver

context Hypermedia
inv range of resolver [] domain of accessor:
UlID.alllnstances — forAll (uid:UID |
components.specifiers.compSpec — exists
( cs:ComponentSpec | resolver (cs) - includes (uid) ) )

The third constraint ensures that the set of arscigentifiers of a component should always be etputie
set of anchors identifiers of the links resolvirg that component. It is specified in OCL using the
previously defined operatidmkTo.

context Hypermedia

inv anchors Ids of a component = anchors IDs of the links resolving

to the component:
components — forAll (c¢: Component |



c.anchors.anchorID = Link.alllnstances - select (1:Link |
UID.alllnstances - exists (uid: UID |
L.specifiers.anchorSpecs =
linksTo(uid).component.anchors.anchorID
and accessor (uid) =c)))

The fourth constraint guarantees that a hypermgditems does not include cycles in the compondmnt/su
component relationship, i.e. no component may ®il@component (directly or transitively) of itself.
Formally, it means that a component is not incluidetthe transitive closure of this component,it@das to

be proved that the transitive closure of the retatihildren does not contain a pair with two egpl@iments.

The OCL specification of this constraint has tolde#h some difficulties. To calculate the transdi
closure, first the associatiarhildren must be transformed into an association classortinfately, OCL
collections of collections are flattened, Mandetl @&bengarle (1999) propose as a solution to defiee t
transClosas a sequence of an even number of elements, whenepositions belongs to components and
odd positions to composites. The transitive closiane be calculated then in two steps. First anatioer
called subcomponentis defined that builds a sequence of pairs of amepts including all components
that have children of type composite. In the seaiagd an operatiomansitiveClosurds defined. It applies
the Warshall's algorithm to a given sequence of pasiies (pair of related composites) to calculbee t
transitive closure. The result is a sequence gfaii of composites included in the transitive alesof the
initial sequence. Due to space limitations, the Gipécification of this invariant is not includedréefor

more details see Koch (2001).

The Authoring Functions

In addition to the functions to manipulate anchansl links, the hypermedia reference model includes
authoring functions. They are mainly required todate the model, i.e. to create components
(createAtomicComponent, createCompositeComporaetcreateLing, to modify componentgmodify

Component)and to remove componentgdeleteComponentias well as to manipulate attributes



(attributeValue, setAttributeValuendallAttributes)

These functions are defined as operations otldes HypermediaOCL constraints are used to specify the
pre- and post-conditions that have to satisfy tlaegboring functions. Two examples of OCL exprassio

associated to authoring methods are presented below

M odifying a Component

Components are modified by the operatmadifyComponenthat ensures that the associated information
as well as the type (atom, composite or link) remmainchanged and that the resulting hypermediaimema
link consistent. Theesolveris not modified when modifying a component asrthe component overrides

the old one.

context Hypermedia :: modifyComponent (uid:UID, new:Component)
pre: components - includes (accessor (uid) )
post: let old = accessor (uid)
in concistency (new, old)
and components = components@pre — excluding (old)
- including (new)

M odifying Attributes of a Component

The operatiorsetAttributeValuegiven a component UID, an attribute and a valusets the value of the

attribute.

context Hypermedia :: setAttributeValue (uid:UID, a:Attributes, v:Value)
pre: components - includes (accessor (uid) )

and components.attributes — includes (a)
post: let atr = Attributes.alllnstances — select (at:Attribute | at = a

and components - exits (comp:Component | comp = accessor (uid)
and comp.attributes (at)) - includes (at))
- asSequence — first
in atr.value =v

The Run-Time Layer

The Run-Time Layer describes how the mechanismgastipg the user’s interaction with the hypermedia



system, which comprise how the components are mesdéo the user. This presentation is based on the
concept of instantiation of a component, i.e. aycopthe component is cached to the user. If ther us
modifies the instantiation, it is written back intloe Storage Layer. The copy receives an instéoriiat
identifier (IID). It should be noted that more thame instantiation for a component may exist
simultaneously and that a user may be viewing rtitae one component. Thus, the fundamental concepts
of this layer are the instantiation and the sessimnch are modelled by @ass Instantiatiorand aclass
SessionFigure 3 shows the classes of the Run-Time Lagdra partial visualisation of the Storage Layer,

mainly including classes that are related to thesg#s of the Run-Time Layer.

Session

instants Cid Instartiation

instantilatu_ar [uid, p=) . 1 Storage Laver &
Inatartiation sessions hypermedia Hypermedia
Hit 1 1 | realizer (nst):Component
I=ary - runTitneResalverics) (UID 1
higtory
fordered? * Storage Laver
1 Component=pec
1
i feeolyesT o
operations ks 1. J& components 1.
: . Storage Layer &0 | 4 1| Storage Layer
Cperation o - _1
_ s ingtUid 1]x] o socessTo Companent
1| iid ] 1
11 inst
ardered
Instantiation f !
1| Storage Laver 1
pres Fresent>pec pres snchars
link&nchorm T 2nchodD Specs Spec Storage Laver &
1 Anchar
jordered} 1
link = 1 | anchorld
Link Marker . 1| Storage Layer
linkh atrkers anchotlink AnchorD

Figure 3: Model of the Run-Time Layer



| nstantiation

Each instantiation has a unique instantiation iflentfrom a given set of instantiations I@lass 11D)
Instantiation of a component also results in ingion of its anchors. Therefore, an instantiatitas
associated a set of link markers which “represethis”set of Run-Time anchors of the component,aand
function maps instantiated anchors to anchor Ibgs function is called “link anchorlinkAnchor)and an
instantiated anchor is known as a link marker. Thispping is modelled in the UML diagram with
aggregation associations betweglass Instantiationand class LinkMarkeras well as an association
betweerclass LinkMarkemandclass AnchorlXsee Figure 3).
context Instantiation : linkAnchor (Im : LinkMarker) : AnchorID

pre: links - include (Im)
post: result = Im.anchorLink

The invariant “the domain of linkAnchor is equal ttie range of links” for the operation link anchor
demands that for every link marker the functiork lanchor maps the link marker to an anchor ID. The
following is the OCL specification of this invarian

context Instantiation

inv dom linkAnchor = ran links:

links — forAll (Im: LinkMarker |
AnchorID.alllnstances - exists (aid : AnchorID |
linkAnchor (Im) = aid

and LinkMarker.alllnstances - exists (1m : LinkMarker |
linkAnchor (Im) = aid implies links - includes (Im))))

Session

In order to keep track of all these instantiatitmes Run-Time Layer uses an entity sessiora session the
user can open a component that results in theianeat an instantiation, edit an instantiation, esdkie
modifications, create a new component or delet@naponent. The most common action is to follow &,lin
which takes the IID of an instantiation togethethwthe link marker contained within that instantiatand
then presents to the user the component resolendieg to the content of a link component spegifie.

components that are the end point destinationl dihila.



The Run-Time package includes therefore a Gssiorwith an association to the cladgpermediaand

an aggregation association of type composition ttaasHistory. The history records all the operations
(interactions) a user performs during a sessi@n,since the last open session. Similarly to thetée
Model seven basic types of actiome included that a user can perform during a session. Theganact
are: open and close a session, present and unpraseinstantiation of a component, create a new

instantiation during a session as well as edite savdelete an instantiation.

For the manipulation of instantiations a mappingction is defined from instantiations to components
Instantiations are generated for one session. @Gaanstantiation identification, the methiodtantsof the
class Sessioreturns the instantiation of the component andntethodinstantsUidreturns the UID of the
corresponding component. The following is the fdisagion of pre- and post-condition for the opeati
instantsUidin OCL:

context Session :: instantsUid (iid: IID) : UID

pre: iids — includes (iid)
post: result =iid.instUid

The instantiator is the core of the Run-Time model. Given a UID otanponent and a presentation
specification, the function returns, an instantiatiof the component that is part of the sessiore Th
presentation specification is a primitive in thedal which contains information about how the congru
is to be presented by the system during instaotiafihe following OCL constraint expresses the prad
post-conditions of thastantiatormethod.

context Session :: instantiator (uid: UID, ps: PresentSpec) : Instantiation

pre: hypermedia.components - includes (accessor(uid))

and accessor (uid).presSpec = ps
post: result = 1ids.inst — select (ins:Instantiation |

ins.instPresSpec = ps and ins.iid.instUid = uid )
- asSequence - first

The inverse function to thmstantiator is therealizer. This takes an instantiation and returns a “new”



component reflecting the recent changes due tangdihe instantiation. The following invariant asssi
that the set of components accessible by the amchswction is equal to the set of components sedli
from instantiations. Thus, every session fulfils tbllowing invariant:
context Session
inv range of accessor = range of realizer:
UID.alllnstances - forAll (uid : UID |

PresentSpec.alllnstances — exist
(ps: PresentSpec | accessor (uid) = realizer (instantiator(uid,ps))))

A read-only session can be modelled as follows:
context Session
inv read only session:
not history.operations — forAll (op: Operation |

op.opn =#CREATE or op.opn =#EDIT
or appn=#SAVE or opopn=#DELETE)

The Presentation Functions

A set of functions is included in the Run-Time Layéth the purpose of fulfilling the presentatiohtbe
components of the Storage Layer, eopening a session, opening an instantiation, rerhmfaan
instantiation, modifying an instantiaticend/ora component, deleting a component and closingssise
There are several operations which can open a nstantiation:opening components, presenting a
component, following a link and creating a new congnmt. Due to limited space we only include OCL

expressions of the first three functions.

Opening a Sesson
A session starts with an existing hypermedia (S@rbhayer) and neither instantiations nor historige T

openSessiohas therefore to fulfil the following constraint:



context Session :: openSession (h: Hypermedia)
pre: history.operations - isEmpty
post: self.ocllsNew and h.sessions = h.sessions@pre — including (self)
and history.operations.opn - asSequence — first = #OPEN
and iids —» isEmpty

Opening an I nstantiation

There are several operations which can open a mstantiation: open an instantiation, present a
component, follow a link and create a new compar@rawsing is the most common user activity. Itrtsta
with a user mouse click that activates thkbowLink function of the Run-Time Layer. Thesolverand
accessoifunctions are responsible for identifying the noolde accessed. A set of objects are involved in
this open function. The operati@peninstantiationopens up a new instantiation based on a existing

component. The function uses a specifier and tesemt specification of the component as input.

context Session::openlnstantiation (spec:Specifier,pspec:PresentSpec) : Instantiation
post: let newins = Instantiation.alllnstances -> select (ins:Instantiation |

ins.oclIsNew and IID.alllnstances -> exists (11d:IID | 11d.inst = ins

and ComponentSpec.alllnstances -> exists (cs:ComponentSpec |

spec.compSpec = cs

and UID.alllnstances -> exists (uid: UID | cs.uids -> asSequence -> first = uid

and uid = 11d.instUID

and ins.presSpec = pspec ) ) ) ) -> asSequence -> first

in iids.inst = iids.inst@pre -> including (newins)
and result = newins

Removal of an Instantiation

The operatiorunPresenmodels the removal of an instantiation. The posidtion indicates that after the
operationunPresents completed a new operation is included in thetony list and that the instantiation

identifier is no longer included in the set of andtiation identifiers of the corresponding session.

context Session :: unPresent (11d:I1ID)
pre: 1ds - includes (i1d)
post: : let op = Operation.alllnstances — select (0:Operation |
o.opn =# UNPRESENT ) - asSequence — first
in op.ocllsNew and history.operations —» asSequence =



history.operations@pre —» asSequence ) — append (op)
post: iids = iids@pre — excluding (iid)

EXTENDING THE OBJECT-ORIENTED REFERENCE MODEL

The object-oriented specification of the hypermedierence model presented in the previous section
allows for an easy extension to model special hypédia systems, such as adaptive or mobile hypeamedi
The UML diagrams show a visual representation efrttetamodel augmenting intuitive comprehension.
OCL has the advantage of requiring a less in-demtithematical background than other specification
languages. Extensions are obtained enhancing teereference model with new packages and classes, a

well as adding attributes, operations and assoaoisti

The Munich Reference Model for adaptive hypermexlistems is such an extension (Koch, 2001). It
extends the core hypermedia reference model with n®deling and adaptive functionality. The three-
layer structure is kept unchanged. Though the &orhayer includes, in addition to the domain
information, a user profile and a set of adaptatigies. In the UML representation the Storage Layer
subsystem includes three packages: the DomainJsee and the Adaptation Metamodels. The Domain

Metamodel corresponds — slightly adapted — to tbea§e Layer of the core hypermedia reference model

The User Metamodel includes a user manager anddelrfar each user, consisting of user attributa$ an
attributes values. Attributes may be dependenherdomain or domain-independent. The former build a
overlay model for each user, i.e. current approgmess of each node. The later describes the usfde p

i.e. the preferences, interests and tasks of e us

The Adaptation Metamodel is defined as a set oéstulwhich can be classified into construction,
acquisition and adaptation rules. Adaptation rutEscribe the implementation of techniques to
dynamically adapt content, navigation and presiemtatf nodes. The dynamic generation of pages adapt
to the current state of the user model is guardritgeperations, such asnstructor, evaluatoandtrigger

that are applied by navigation in addition to #veessoland theresolverfunction.



The Run-Time Layer of the Munich Reference Modellg® an extended version of the Run-Time Layer of
the core of the hypermedia model shown in Figurét 8bserves the user behaviour and provides this

information to the adaptation engine.

CONCLUSIONSAND FUTURE TRENDS

This chapter presents an object-oriented spediitadbf a Dexter-based reference model. The UML
notation is used for the visualisation of the refime model and OCL (defined as part of UML) is used
the formal specification of invariants for the mbdkements and for the specification of the preelitions

and post-conditions on operations describing thetfanality of hypermedia.

The visualisation with UML diagrams has the advgataf showing the concepts of the model at a glance
and how these concepts are related. This graphégmbsentation is lacking in the Dexter Hypertext
Reference Model specified in Z or in the tuple-loadescription of AHAM. OCL is quite a new language
and only few articles report on experiences usi@y (Baar, 2000). Apart from some minor improvements
that would optimise the specification, it transpitbat OCL is adequate as formal complementaryulzge

to the visual UML specification.

The object-oriented formal specification descrifee basic structure and functionality to be addiegs¢he
design of hypermedia systems (Hennicker & Koch,020@ was defined with the goal of easily allowing
for extensions of this model. An extension for atl@phypermedia systems is presented in Koch (2001)
An important future step will be to specify a reflece model for mobile software applications. Initola

new formal reference models will be required toec@pth technological changes in hypermedia, such as
the case of the Semantic Web — World Wide KnowledfBerners-Lee (1999), a Web based on typed and
semantic links. An appropriated visualisation aodralisation could be obtained extending the object

oriented specification in UML/ OCL presented irstohapter.
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APPENDIX: UML CONCEPTS

This appendix is organised as an alphabeticabfigintries, each giving a brief description of ds&L
concept. The list only includes UML concepts usedhis chapter. For more details see UML complete

documentation (1999) or the UML Reference ManuainiBaugh, Jacobson & Booch, 1999).

Abstract class: A class that may not be instantiated. The nambefbstract class is shown in italics.

Aggregation: A form of association that specifies a whole-patationship between an aggregate and a
constituent part. An aggregation is shown as atotliamond adornment on the end of the associlitien

at which it connects to the aggregate class.

Association: The semantic relationship between two or more eka#isat involves connections among their

instances. An association is shown as a solid@athecting the borders of two classes.

Class: The descriptor for a set of objects that sharestime attributes, operations, methods, relationships
and behaviour. A class represents a concept wittieirsystem being modelled. A class is shown adid so
outline rectangle with three compartments separayekdorizontal lines. The compartments hold thesla

name, list of attributes and list of operationspexctively. The middle and bottom compartments wan



suppressed.

Class diagram: A graphical representation of the static view stadws a collection of declarative (static)

model elements, such as classes, types, and tmténts and relationships.

Composition: A form of aggregation association with strong oveh@r and coincident lifetime of parts of
a whole. Composition is shown by a solid diamoneorachent on the end of the association line attatthed

the composite element.

Inheritance: A taxonomic relationship between a more generahetd and a more specific element. The
more specific element is fully consistent with tiheore general element and contains additional
information. Inheritance between classes is shasva solid-line path from the child element (sulbs)ade
the parent element (superclass), with a large Wdtiangle at the end of the path where it meetsntiore

general element.

Interface: A named set of operations that characterised tiavoeur of an element. An interface is

displayed as a small circle with the name of therface placed below the symbol.

Invariant: A semantic condition or restriction representedragxpression (constraint) that must be true at

all times (or, at least, at all times when no ofienas incomplete).

Multiplicity: A specification of the range of allowable cardihalvalues that a set may assume.
Multiplicity is specified by a text expression catsg of a comma-separated list of integer intexvaach

in the form “minimum .. maximum”.

Role: A named slot within an object structure that repnés behaviour of an element that participates in a
context. The rolename is shown by a graphic stplaged near the end of an association path, atwhic

meets a class box.

Object: A discrete entity with a well-defined boundary addntity that encapsulates state and behaviour;



an instance of a class. The canonical notatiorafioobject is a rectangle showing the name of thecbb

and its class, all underlined.

Package: A general-purpose mechanism for organising elemigts groups. Packages may be nested
within other packages. A package is shown as & leggtangle with a small rectangle attached on one

corner.

Precondition: A constraint that must be true when an operatiamisked.

Postcondition: A constraint that must be true at the completioarobperation.

Subsystem: A package of elements treated as a unit, includiegecification of the behaviour of the entire
package contents treated as a coherent unit. Arstagins has a set of interfaces that describe asioakhip
to the rest of the system and the circumstancesrunmbich it can be used. A subsystem is notatead as

package symbol containing the keyword «subsystem».



